

Quadratic Equation in One Variable

An equation that can be written in the form $ax^2 + bx + c = 0$

where *a*, *b*, and *c* are real numbers with $a \neq 0$, is a **quadratic equation**. The given form is called **standard** form.

Second-degree Equation

A quadratic equation is a **second-degree** equation.

This is an equation with a squared variable term and no terms of greater degree.

$$x^2 = 25$$
, $4x^2 + 4x - 5 = 0$, $3x^2 = 4x - 8$

Zero-Factor Property

If *a* and *b* are complex numbers with ab = 0, then a = 0 or b = 0 or both.

USING THE ZERO-FACTOR PROPERTY

Solve
$$6x^2 + 7x = 3$$

Solution:

$$6x^2 + 7x = 3$$

$$6X^{2} + 7X - 3 = 0$$

Standard form
$$(3x - 1)(2x + 3) = 0$$

Factor.
$$3x - 1 = 0$$
 or
$$2x + 3 = 0$$

Factor.
property.

USING THE ZERO-FACTOR PROPERTY

Solve $6x^2 + 7x = 3$

Solution:

3x-1=0 or 2x+3=0 3x=1 or 2x=-3 Solve each equation. $x = \frac{1}{3}$ or $x = -\frac{3}{2}$

Square Root Property

If
$$x^2 = k$$
, then

$$x = \sqrt{k}$$
 or $x = -\sqrt{k}$

Copyright ©2009 Pearson Education, Inc.

Example 2 USING THE SQUARE ROOT PROPERTY

Solve each quadratic equation.

a. $x^2 = 17$

Solution:

By the square root property, the solution set is $\{\pm\sqrt{17}\}$

Example 2 USING THE SQUARE ROOT PROPERTY

Solve each quadratic equation.

b. $x^2 = -25$

Solution:

Since
$$\sqrt{-1} = i$$
,

the solution set of $x^2 = -25$

is
$$\{\pm 5i\}$$
.

USING THE SQUARE ROOT PROPERTY

Solve each quadratic equation. c. $(x-4)^2 = 12$

Solution:

Use a generalization of the square root property. $(x-4)^2 = 12$

$$x-4=\pm\sqrt{12}$$

$$x = 4 \pm \sqrt{12}$$

 $x = 4 \pm 2\sqrt{3}$

Generalized square root property.

Add 4.

$$\sqrt{12} = \sqrt{4\Box 3} = 2\sqrt{3}$$

Solving A Quadratic Equation By Completing The Square

To solve $ax^2 + bx + c = 0$, by completing the square:

Step 1 If $a \neq 1$, divide both sides of the equation by *a*.

- **Step 2** Rewrite the equation so that the constant term is alone on one side of the equality symbol.
- **Step 3** Square half the coefficient of *x*, and add this square to both sides of the equation.
- **Step 4** Factor the resulting trinomial as a perfect square and combine like terms on the other side.
- **Step 5** Use the square root property to complete the solution.

Example 3USING THE METHOD OF
COMPLETING THE SQUARE a = 1

- Solve $x^2 4x 14 = 0$ by completing the square. Solution
- **Step 1** This step is not necessary since a = 1.
- **Step 2** $x^2 4x = 14$
- **Step 3** $x^2 4x + 4 = 14 + 4$

Step 4
$$(x-2)^2 = 18$$

Add 14 to both sides.

$$\left[\frac{1}{2}(-4)\right]^2 = 4;$$

add 4 to both sides.

Factor; combine terms.

Example 3USING THE METHOD OF
COMPLETING THE SQUARE a = 1

Solve $x^2 - 4x - 14 = 0$ by completing the square. Solution

Step 4 $(x-2)^2 = 18$ Factor; combine terms.Step 5 $x-2 = \pm \sqrt{18}$ Square root property.Take both
roots. $x = 2 \pm \sqrt{18}$ Add 2. $x = 2 \pm 3\sqrt{2}$ Simplify the radical.The solution set is $\{2 \pm 3\sqrt{2}\}$.

Copyright ©2009 Pearson Education, Inc.

Example 4USING THE METHOD OF
COMPLETING THE SQUARE a ≠ 1

Solve $9x^2 - 12x + 9 = 0$ by completing the square. Solution

$$9x^2 - 12x + 9 = 0$$

$$x^{2} - \frac{4}{3}x + 1 = 0$$
 Divide by 9. (Step 1)

$$x^{2} - \frac{4}{3}x = -1$$
 Add -1. (Step 2)

$$x^{2} - \frac{4}{3}x + \frac{4}{9} = -1 + \frac{4}{9} \left[\frac{1}{2}\left(-\frac{4}{3}\right)\right]^{2} = \frac{4}{9}; \text{ add } \frac{4}{9}$$

Example 4USING THE METHOD OF
COMPLETING THE SQUARE a = 1

Solve $9x^2 - 12x + 9 = 0$ by completing the square. Solution

$$x^{2} - \frac{4}{3}x + \frac{4}{9} = -1 + \frac{4}{9} \qquad \left[\frac{1}{2}\left(-\frac{4}{3}\right)\right]^{2} = \frac{4}{9}; \text{ add } \frac{4}{9}$$
$$\left(x - \frac{2}{3}\right)^{2} = -\frac{5}{9} \qquad \text{Factor, combine} \\ \text{terms. (Step 4)} \\ x - \frac{2}{3} = \pm \sqrt{-\frac{5}{9}} \qquad \text{Square root property}$$

USING THE METHOD OF Example 4 COMPLETING THE SQUARE a = 1

Solve $9x^2 - 12x + 9 = 0$ by completing the square. Solution $x - \frac{2}{2} = \pm \sqrt{-\frac{5}{2}}$

$$x - \frac{2}{3} = \pm \frac{\sqrt{5}}{3}i$$

Square root property

$$\sqrt{-a} = i\sqrt{a}$$

Quotient rule for radicals

$$x = \frac{2}{3} \pm \frac{\sqrt{5}}{3}i$$
 Add $\frac{2}{3}$.

Example 4USING THE METHOD OF
COMPLETING THE SQUARE a = 1

Solve $9x^2 - 12x + 9 = 0$ by completing the square. Solution

$$x = \frac{2}{3} \pm \frac{\sqrt{5}}{3}i$$
 Add $\frac{2}{3}$.

The solution set is
$$\left\{\frac{2}{3} \pm \frac{\sqrt{5}}{3}i\right\}$$
.

Quadratic Formula

The solutions of the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, are

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.$$

USING THE QUADRATIC FORMULA (REAL SOLUTIONS)

Solve
$$x^2 - 4x = -2$$

Solution:

$$x^2-4x+2=0$$

Write in standard form.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic formula.

USING THE QUADRATIC FORMULA (REAL SOLUTIONS)

Solve
$$x^2 - 4x = -2$$

USING THE QUADRATIC FORMULA (REAL SOLUTIONS)

Solve
$$x^2 - 4x = -2$$

USING THE QUADRATIC FORMULA (REAL SOLUTIONS)

Solve
$$x^2 - 4x = -2$$

The solution set is $\{2 \pm \sqrt{2}\}$.

Copyright ©2009 Pearson Education, Inc.

USING THE QUADRATIC FORMULA (NONREAL COMPLEX SOLUTIONS)

Solve $2x^2 = x - 4$.

Solution:

Example 6

 $2x^{2} - x + 4 = 0$ Write in standard form. $x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4(2)(4)}}{2(2)}$ Quadratic formula; a = 2, b = -1, c = 4Use parentheses and substitute carefully to avoid errors.

Example 6 USING THE QUADRATIC FORMULA (NONREAL COMPLEX SOLUTIONS)

Solve
$$2x^2 = x - 4$$
.

Solution:

