1.4
 Quadratic Equations

Solving a Quadratic Equation Completing the Square The Quadratic Formula

Quadratic Equation in One Variable

An equation that can be written in the form

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers with $a \neq 0$, is a quadratic equation. The given form is called standard form.

Second-degree Equation

A quadratic equation is a second-degree equation.

This is an equation with a squared variable term and no terms of greater degree.

$$
x^{2}=25, \quad 4 x^{2}+4 x-5=0, \quad 3 x^{2}=4 x-8
$$

Zero-Factor Property

If a and b are complex numbers with $a b=0$, then $a=0$ or $b=0$ or both.

Example 1
 USING THE ZERO-FACTOR PROPERTY

Solve $6 x^{2}+7 x=3$

Solution:

$$
6 x^{2}+7 x=3
$$

$$
\begin{array}{cl}
6 X^{2}+7 X-3=0 & \text { Standard fo } \\
(3 x-1)(2 x+3)=0 & \text { Factor. } \\
3 x-1=0 \quad \text { or } \quad 2 x+3=0 & \begin{array}{l}
\text { Zero-factor } \\
\text { property. }
\end{array}
\end{array}
$$

USING THE ZERO-FACTOR PROPERTY

Solve $6 x^{2}+7 x=3$

Solution:

$$
\begin{aligned}
& 3 x-1=0 \quad \text { or } \quad 2 x+3=0 \\
& 3 x=1 \quad \text { or } \quad 2 x=-3 \quad \text { Solve each } \\
& x=\frac{1}{3} \text { or } \\
& x=-\frac{3}{2} \\
& \text { Zero-factor } \\
& \text { property. } \\
& \text { Solve each } \\
& \text { equation. }
\end{aligned}
$$

Square Root Property

If $x^{2}=k$, then

$$
x=\sqrt{k} \quad \text { or } \quad x=-\sqrt{k}
$$

USING THE SQUARE ROOT PROPERTY

Solve each quadratic equation.

a. $x^{2}=17$

Solution:

By the square root property, the solution set is

$$
\{ \pm \sqrt{17}\}
$$

USING THE SQUARE ROOT PROPERTY

Solve each quadratic equation.

b. $x^{2}=-25$

Solution:

Since $\sqrt{-1}=i$,
the solution set of $x^{2}=-25$
is $\quad\{ \pm 5 i\}$.

Example 2

USING THE SQUARE ROOT PROPERTY

Solve each quadratic equation.

c. $(x-4)^{2}=12$

Solution:

Use a generalization of the square root property.

$$
(x-4)^{2}=12
$$

$$
x-4= \pm \sqrt{12}
$$

Generalized square root property.

$$
\begin{array}{ll}
x=4 \pm \sqrt{12} & \text { Add } 4 \\
x=4 \pm 2 \sqrt{3} & \sqrt{12}=\sqrt{4 \boxed{3}}=2 \sqrt{3}
\end{array}
$$

Solving A Quadratic Equation By Completing The Square

To solve $a x^{2}+b x+c=0$, by completing the square:
Step 1 If $a \neq 1$, divide both sides of the equation by a.
Step 2 Rewrite the equation so that the constant term is alone on one side of the equality symbol.
Step 3 Square half the coefficient of x, and add this square to both sides of the equation.
Step 4 Factor the resulting trinomial as a perfect square and combine like terms on the other side.
Step 5 Use the square root property to complete the solution.

Example 3

USING THE METHOD OF

COMPLETING THE SQUARE a = 1
Solve $x^{2}-4 x-14=0$ by completing the
square.
Solution
Step 1 This step is not necessary since $a=1$.
Step $2 x^{2}-4 x=14$
Step $3 x^{2}-4 x+4=14+4$

Step $4(x-2)^{2}=18$

Add 14 to both
sides.
$\left[\frac{1}{2}(-4)\right]^{2}=4$;
add 4 to both sides.
Factor; combine terms.

Example 3
 USING THE METHOD OF
 COMPLETING THE SQUARE $\mathrm{a}=1$

Solve $x^{2}-4 x-14=0$ by completing the square.
Solution
Step $4(x-2)^{2}=18$
Step $5 x-2= \pm \sqrt{18}$
Square root property.
Take both roots.

$$
x=2 \pm \sqrt{18} \quad \text { Add } 2
$$

$$
x=2 \pm 3 \sqrt{2} \quad \text { Simplify the radical. }
$$

The solution set is $\{2 \pm 3 \sqrt{2}\}$.

USING THE METHOD OF

COMPLETING THE SQUARE $a \neq 1$
Solve $9 x^{2}-12 x+9=0$ by completing the square.

Solution

$$
\begin{array}{rlrl}
9 x^{2}-12 x+9 & =0 & & \\
x^{2}-\frac{4}{3} x+1 & =0 & & \text { Divide by 9. (Step 1) } \\
x^{2}-\frac{4}{3} x & =-1 & & \text { Add -1. (Step 2) } \\
x^{2}-\frac{4}{3} x+\frac{4}{9} & =-1+\frac{4}{9} & {\left[\frac{1}{2}\left(-\frac{4}{3}\right)\right]^{2}=\frac{4}{9} \text {;add } \frac{4}{9}}
\end{array}
$$

USING THE METHOD OF

 COMPLETING THE SQUARE $a=1$Solve $9 x^{2}-12 x+9=0$ by completing the square.
Solution

$$
\begin{array}{rlrl}
x^{2}-\frac{4}{3} x+\frac{4}{9} & =-1+\frac{4}{9} & {\left[\frac{1}{2}\left(-\frac{4}{3}\right)\right]^{2}=\frac{4}{9} ; \text { add } \frac{4}{9}} \\
\left(x-\frac{2}{3}\right)^{2} & =-\frac{5}{9} & & \text { Factor, combine } \\
\text { terms. (Step 4) } \\
x-\frac{2}{3} & = \pm \sqrt{-\frac{5}{9}} & & \text { Square root property }
\end{array}
$$

USING THE METHOD OF

 COMPLETING THE SQUARE $a=1$Solve $9 x^{2}-12 x+9=0$ by completing the square. Solution

$$
\begin{array}{ll}
x-\frac{2}{3}= \pm \sqrt{-\frac{5}{9}} & \text { Square root property } \\
x-\frac{2}{3}= \pm \frac{\sqrt{5}}{3} i & \begin{array}{l}
\sqrt{-a}=i \sqrt{a} \\
\begin{array}{l}
\text { Quotient rule for } \\
\text { radicals }
\end{array}
\end{array}
\end{array}
$$

$$
x=\frac{2}{3} \pm \frac{\sqrt{5}}{3} i \quad \text { Add } 2 / 3
$$

Example 4

USING THE METHOD OF

 COMPLETING THE SQUARE $a=1$
Solve $9 x^{2}-12 x+9=0$ by completing the

 square. Solution$$
x=\frac{2}{3} \pm \frac{\sqrt{5}}{3} i \quad \text { Add } 2 / 3
$$

The solution set is $\left\{\frac{2}{3} \pm \frac{\sqrt{5}}{3} i\right\}$.

Quadratic Formula

The solutions of the quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$, are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 5

USING THE QUADRATIC FORMULA (REAL SOLUTIONS)

Solve $x^{2}-4 x=-2$

Solution:

$$
x^{2}-4 x+2=0
$$

Write in standard form.

$$
\text { Here } a=1, b=-4, c=2
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Quadratic formula.

Example 5

USING THE QUADRATIC FORMULA (REAL SOLUTIONS)

Solve $x^{2}-4 x=-2$

Solution:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Quadratic formula.

The fraction

$$
=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)}
$$ bar extends under $-b$.

Example 5

USING THE QUADRATIC FORMULA (REAL SOLUTIONS)

Solve $x^{2}-4 x=-2$

Solution:

Example 5

USING THE QUADRATIC FORMULA (REAL SOLUTIONS)

Solve $x^{2}-4 x=-2$

Solution:

The solution set is $\{2 \pm \sqrt{2}\}$.

Solve $2 x^{2}=x-4$.

Solution:

$$
\begin{aligned}
x & =\frac{2 x^{2}-x+4=0 \quad \text { Write in standard form. }}{2(2)} \quad \begin{array}{c}
\text { Quadratic formula; } \\
a=2, b=-1, c=4
\end{array} \\
& =\frac{1 \pm \sqrt{1-32}}{4} \quad \begin{array}{c}
\text { Use parentheses and } \\
\begin{array}{c}
\text { substitute carefully to } \\
\text { avoid errors. }
\end{array}
\end{array}
\end{aligned}
$$

Solve $2 x^{2}=x-4$.

Solution:

$$
\begin{aligned}
& =\frac{1 \pm \sqrt{1-32}}{4} \\
x & =\frac{1 \pm \sqrt{-31}}{4} \sqrt{-1}=i
\end{aligned}
$$

The solution set is $\left\{\frac{1}{4} \pm \frac{\sqrt{31}}{4} i\right\}$.

