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Abstract

During the last few decades several researchers have been devoted to establishing stability of
different kinds of functional equations, differential equations, functional differential equations,
fractional differential equations, etc. under different sufficient conditions in different spaces like
Banach spaces, Banach modules, fuzzy Banach spaces etc. In this paper, we remain confined in the
discussion of stability of functional equations in intuitionistic fuzzy Banach spaces. Ulam was the
first person who introduced an open question concerning the stability of a group homomorphism
in an international conference. Thereafter several researchers have replied and are still replying
to this open question in different contexts. The objective of the present paper is to determine the
Hyers-Ulam-Rassias type stability concerning the Pexiderized functional equation in intuitionistic
fuzzy Banach spaces. Under a few sufficient conditions, Hyers-Ulam-Rassias type stability of a
Pexiderized functional equation has been established in intuitionistic fuzzy Banach spaces.
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1. Introduction

The stability problem of a functional equation was posed by Ulam (1960) in 1940 concerning
the stability of group homomorphisms and answered in the next year by Hyers (1941) for
Cauchy functional equation in Banach spaces and then generalized by T. Aoki (1950) and Th.
M. Rassias (1978) for additive mappings and linear mappings by considering an unbounded
Cauchy difference, respectively. In the spirit of Rassias’s approach, Gavruta (1994) replaced the
unbounded Cauchy difference by a general control function to generalize Rassias’s theorem. The
Hyers-Ulam stability theorem was generalized by F. Skof (1983) for the function f : X → Y,

where X is a normed space and Y is a Banach space, and then the result of Skof was extended by
P. W. Cholewa (1984) and S. Czerwik (1992). In this way several stability problems for various
functional equations have been investigated. Recently, the fuzzy version of different functional
equations was discussed by A. K. Mirmostafaee and M. S. Moslehian (2008) and C. Park (2009).

The concept of intuitionistic fuzzy sets was introduced by Atanassov (1986) as a generalization
of fuzzy sets. One of the most important problems in intuitionistic fuzzy topology is to obtain an
appropriate concept of intuitionistic fuzzy metric spaces and intuitionistic fuzzy normed spaces.
J. H. Park (2004), Saadati and Park (2006), and T. K. Samanta and Iqbal (2009) introduced and
studied a few notions of intuitionistic fuzzy metric spaces and intuitionistic fuzzy normed spaces.

Several results for the Hyers-Ulam-Rassias stability of many functional equations have been
proved by several researchers like A. K. Mirmostafaee and M. S. Moslehian (2008), C. Park
(2009), Nabin et al. (2014), Nabin et al. (2014), Shakeri (2009), Samanta et al. (2012) and
Samanta et al. (2013) in fuzzy Banach spaces and intuitionistic fuzzy Banach spaces. Our goal is
to determine some stability results concerning the Pexiderized functional equation f(x + y) =

g(x) + h(y) in intuitionistic fuzzy Banach spaces.

2. Preliminaries

In this section we recall some lemmas, definitions, and examples used in this paper.

Lemma 1. (Deschrijver and Kerre (2003))

Consider the set L ∗ and the order relation ≤L ∗ defined by

L ∗ = {(x 1, x 2) : (x 1, x 2) ∈ [0, 1] 2 and x 1 + x 2 ≤ 1 },

(x 1, x 2) ≤L ∗ (y 1, y 2) ⇔ x 1 ≤ y 1, x 2 ≥ y 2, ∀(x 1, x 2), (y 1, y 2) ∈ L ∗.

Then (L ∗, ≤L ∗ ) is a complete lattice. We denote its units by 0L ∗ = ( 0, 1 ) and 1L ∗ = ( 1, 0 ).

Definition. (Atanassov (1986)) An intuitionistic fuzzy set A ζ, η in a universal set U is an object
A ζ, η = { (ζA(u), ηA(u)) : u ∈ U }, where ζA(u) ∈ [ 0, 1 ] and ηA(u) ∈ [ 0, 1 ] for all u ∈ U

are called the membership degree and the non-membership degree, respectively, of u in A ζ, η and
furthermore satisfy ζA(u) + ηA(u) ≤ 1.
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Definition. (Deschrijver et al. (2004)) A triangular norm (t-norm) on L ∗ is a mapping
τ : (L ∗) 2 → L ∗ satisfying the following conditions:
(a) (∀x ∈ L ∗)(τ(x, 1L ∗) = x ) (boundary condition);
(b) (∀ (x, y) ∈ (L ∗) 2 )(τ(x, y) = τ(y, x)) (commutativity);
(c) (∀ (x, y, z) ∈ (L ∗) 3 )(τ(x, τ(y, z)) = τ(τ(x, y), z)) (associativity);
(d) (∀ (x, x′, y, y′) ∈ (L ∗) 4 )(x ≤L ∗ x

′ and y ≤L ∗ y
′ ⇒ τ(x, y) ≤L ∗ τ(x′, y′)) (monotonic-

ity).

A t-norm τ on L ∗ is said to be continuous if for any x, y ∈ L ∗ and any sequences {xn}
and {yn} which converge to x and y respectively,

lim
n→∞

τ(xn, yn) = τ(x, y).

For example, let a = (a 1, a 2), b = (b 1, b 2) ∈ L ∗, consider
τ(a, b) = (a 1b 1, min{ a2 + b 2, 1 }) and M(a, b) = (min{ a 1, b 1 }, max{ a2, b 2 }). Then
τ(a, b) and M(a, b) are continuous t-norm.

Now, we define a sequence τ n recursively by τ 1 = τ and

τ n
(
x (1), · · · , x (n+1)

)
= τ

(
τ n− 1

(
x (1), · · · , x (n)

)
, x (n+1)

)
,

for all n ≥ 2 and x (i) ∈ L ∗.

Definition. (Deschrijver et al. (2004)) A continuous t-norm τ on L ∗ is said to be continuous
t-representable if there exists a continuous t-norm ∗ and a continuous t-conorm � on [0, 1] such
that, for all x = (x 1, x 2), y = (y 1, y 2) ∈ L ∗,

τ(x, y) = (x 1 ∗ y 1, x 2 � y 2).

Definition. (Deschrijver et al. (2004)) A negator on L ∗ is any decreasing mapping N : L ∗ → L ∗

satisfying N(0L ∗) = 1L ∗ and N(1L ∗) = 0L ∗ . If N(N(x)) = x for all x ∈ L ∗, then N is
called an involutive negator. A negator on [0, 1] is a decreasing mapping N : [0, 1] → [0, 1]

satisfying N(0) = 1 and N(1) = 0. N s denotes the standard negator on [0, 1] defined by
N s(x) = 1 − x for all x ∈ [0, 1].

Definition. (Shakeri (2009)) (1) Let L = (L ∗, ≤L ∗). The triple (X, P, τ) is said to be an L-
fuzzy normed space if X is a vector space, τ is a continuous t-norm on L ∗ and P is an L-fuzzy
set on X × (0, +∞) satisfying the following conditions for all x, y ∈ X and t, s > 0,
(a) P (x, t) > 0L ∗;
(b) P (x, t) = 1L ∗ if and only if x = 0;
(c) P (αx, t) = P

(
x, t
|α|

)
for all α 6= 0;

(d) P (x + y, t + s) ≥L ∗ τ(P (x, t), P (y, s));
(e) P (x, .) : (0, ∞) → L ∗ is continuous;
(f) lim

t→ 0
P (x, t) = 0L ∗ and lim

t→∞
P (x, t) = 1L ∗ .

In this case P is called an L-fuzzy norm (briefly, L ∗-fuzzy norm).
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(2) If P = Pµ, ν is an intuitionistic fuzzy set, then the triple (X, Pµ, ν , τ) is said to be an
intuitionistic fuzzy normed space (briefly, IFN-space). In this case P = Pµ, ν is called an
intuitionistic fuzzy norm on X .

Note that, if P is an L ∗-fuzzy norm on X , then the following are satisfied:
(i) P (x, t) is nondecreasing with respect to t for all x ∈ X .
(ii) P (x − y, t) = P (y − x, t) for all x, y ∈ X and t > 0.

Example 1.

Let (X, ‖.‖) be a normed space.

Let τ(a, b) = (a 1b 1, min{a2 + b 2, 1}) for all a = (a 1, a 2), b = (b 1, b 2) ∈ L ∗ and µ, ν be
membership and non-membership degree of an intuitionistic fuzzy set defined by

Pµ, ν(x, t) = (µx(t), νx(t)) =

(
t

t + m‖x‖
,
‖x‖

t + ‖x‖

)
,

for all t ∈ R+ in which m > 1. Then, (X, Pµ, ν , τ) is an IFN-space. Here, µ(x, t) + ν(x, t) = 1

for x = 0 and µ(x, t) + ν(x, t) < 1 for x 6= 0.

Let M(a, b) = (min{a 1, b 1}, max{a2, b 2}) for all a = (a 1, a 2), b = (b 1, b 2) ∈ L ∗ and µ, ν
be membership and non-membership degree of an intuitionistic fuzzy set defined by

Pµ, ν(x, t) = (µx(t), νx(t)) =
(
e−

‖x‖
t , e−

‖x‖
t

(
e
‖x‖
t − 1

))
,

for all t ∈ R+. Then (X, Pµ, ν , M) is an IFN-space.

Definition. (1) A sequence {xn} in an IFN-space (X, Pµ, ν , τ) is said to be convergent to a point
x ∈ X (denoted by xn → x) if Pµ, ν(xn − x, t) → 1L ∗ as n → ∞ for every t > 0.

(2) A sequence {xn} in an IFN-space (X, Pµ, ν , τ) is said to be a Cauchy sequence if, for any
0 < ε < 1 and t > 0, there exists n 0 ∈ N such that

Pµ, ν(xn − xm, t) >L ∗ (N s(ε), ε),

for all n, m ≥ n 0, where N s is the standard negator.

(3) An IFN-space (X, Pµ, ν , τ) is said to be complete if every Cauchy sequence in (X, Pµ, ν , τ) is
convergent in (X, Pµ, ν , τ). A complete intuitionistic fuzzy normed space is called an intuitionistic
fuzzy Banach space.

3. Stability Of The Functional Equation

Throughout this section X, Y, Z are assumed to be real vector spaces.

Theorem 1.

Let (Y, Pµ, ν , τ ) be a complete IFN-space and (Z, P
′
µ, ν , τ) be an IFN-space. Let φ : X 2 → Z

be a mapping such that

P
′

µ, ν(φ(3x, 3y), t) ≥L∗ P
′

µ, ν(αφ(x, y), t), (1)
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for all x, y ∈ X, t > 0 and for some 0 < α < 3. If f, g, h : X → Y are mappings such that

Pµ, ν( f(x + y) − g(x) − h(y), t ) ≥L∗ P
′

µ, ν(φ(x, y), t), (2)

for all x, y ∈ X and t > 0, then there exists a unique additive mapping A : X → Y such that
for all x ∈ X, t > 0,

Pµ, ν( f(x) − A(x) − f(0), t ) ≥L∗ M 1

(
x, (3 − α)

t

2

)
(3)

and
f(3nx)

3n
→ A(x), as n → ∞, (4)

g(3nx)

3n
→ A(x),

h(3nx)

3n
→ A(x) as n → ∞, (5)

where
M 1(x, t) := τ 6

(
P
′

µ, ν

(
φ

(
−x
2
,
3x

2

)
,
t

4

)
, P

′

µ, ν

(
φ

(
3x

2
,
−x
2

)
,
t

4

)
,

P
′

µ, ν

(
φ

(
−x
2
,
−x
2

)
,
t

4

)
, P

′

µ, ν

(
φ

(
3x

2
,
3x

2

)
,
t

4

)
, P

′

µ, ν

(
φ

(
x

2
,
−x
2

)
,
t

4

)
,

P
′

µ, ν

(
φ

(
−x
2
,
x

2

)
,
t

4

)
, P

′

µ, ν

(
φ
(x
2
,
x

2

)
,
t

4

))
.

Proof:

Here, for all x, y ∈ X and t > 0, we have

Pµ, ν

(
2f

(
x + y

2

)
− f(x) − f(y), t

)
≥L ∗ τ

3

(
P
′

µ, ν

(
φ
(x
2
,
y

2

)
,
t

4

)
, P

′

µ, ν

(
φ
(y
2
,
x

2

)
,
t

4

)
,

P
′

µ, ν

(
φ
(x
2
,
x

2

)
,
t

4

)
, P

′

µ, ν

(
φ
(y
2
,
y

2

)
,
t

4

))
[ by (2) ]. (6)

Let us now define F (x) = f(x) − f(0) for all x ∈ X . Clearly, F (0) = 0 and F satisfies (6).
Putting y = −x in (6) for the function F , we get for all x ∈ X, t > 0,

Pµ, ν(−F (x) − F (−x), t) ≥L ∗ τ
3

(
P
′

µ, ν

(
φ

(
x

2
,
−x
2

)
,
t

4

)
,

P
′

µ, ν

(
φ

(
−x
2
,
x

2

)
,
t

4

)
, P

′

µ, ν

(
φ
(x
2
,
x

2

)
,
t

4

)
, P

′

µ, ν

(
φ

(
−x
2
,
−x
2

)
,
t

4

))
. (7)

Replacing x by −x and y by 3x in (6), we get for the function F
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Pµ, ν(2F (x) − F (−x) − F (3x), t)

≥L ∗ τ
3

(
P
′

µ, ν

(
φ

(
−x
2
,
3x

2

)
,
t

4

)
, P

′

µ, ν

(
φ

(
3x

2
,
−x
2

)
,
t

4

)
,

P
′

µ, ν

(
φ

(
−x
2
,
−x
2

)
,
t

4

)
, P

′

µ, ν

(
φ

(
3x

2
,
3x

2

)
,
t

4

))
, (8)

for all x ∈ X, t > 0. Now, by using (7) and (8), we get for all x ∈ X, t > 0,

Pµ, ν

(
F (x) − F (3x)

3
, t

)
≥L ∗ M 1

(
x,

3t

2

)
. (9)

Clearly, M 1(3x, t) ≥L ∗ M 1

(
x, t

α

)
and lim

t→∞
M 1(x, t) = 1L ∗ . Replacing x by 3nx in (9), we

get

Pµ, ν

(
F (3n x)

3n
− F (3n+1 x)

3n+1
, t

)
≥L ∗ M 1

(
x,

3n+1 t

2αn

)
, (10)

for all x ∈ X, t > 0, n ∈ N. Clearly, for all x ∈ X and n ∈ N,

F (x) − F (3n x)

3n
=

n− 1∑
r=0

(
F (3 r x)

3 r
− F (3 r+1 x)

3 r+1

)
.

Now, for all x ∈ X, t > 0, n ∈ N,

Pµ, ν

(
F (x) − F (3n x)

3n
, t

n− 1∑
r=0

α r

3 r+1

)

≥L ∗ τ
n− 1

(
Pµ, ν

(
F (x) − F (3x)

3
,
t

3

)
, Pµ, ν

(
F (3x)

3
) − F (3 2 x)

3 2
,
tα

3 2

)
,

· · · , Pµ, ν
(
F (3n− 1 x)

3n− 1
− F (3n x)

3n
,
tαn− 1

3n

))
= M 1(x,

t

2
) [ by (9) and (10) ].

That is,

Pµ, ν

(
F (x) − F (3n x)

3n
, t

)
≥L ∗ M 1

x, t

2
n− 1∑
r=0

α r

3 r+1

 , (11)

for all x ∈ X, t > 0, n ∈ N. Replacing x by 3m x in (11), we get

Pµ, ν

(
F (3m x)

3m
− F (3n+m x)

3n+m
, t

)
≥L ∗ M 1

x, t

αm

3m 2
n− 1∑
r=0

α r

3 r+1

 , (12)
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for all x ∈ X, t > 0, m, n ∈ N. Since αm

3m

n− 1∑
r=0

α r

3 r+1 → 0 as m → ∞,

M 1

x, t

αm

3m 2
n− 1∑
r=0

α r

3 r+1

 → 1L ∗ as m → ∞.

Thus from (12) we see that
{
F (3n x)

3n

}
is a Cauchy sequence in (Y, Pµ, ν , τ). Since (Y, Pµ, ν , τ)

is a complete IFN-space, there exists a mapping A : X → Y such that F (3n x)
3n → A(x) as

n → ∞. This proves (4). Let δ > 0. Now, for all x ∈ X, t > 0 and n ∈ N,

Pµ, ν(F (x) − A(x), t + δ)

≥L ∗ τ

M 1

x, t

2
n− 1∑
r=0

α r

3 r+1

 , Pµ, ν

(
F (3n x)

3n
− A(x), δ

) [ by (11) ].

Taking the limit as n→∞, we get, by using (4),

Pµ, ν(F (x) − A(x), t + δ) ≥L ∗ τ

M 1

x, t

2
∞∑
r=0

α r

3 r+1

 , 1L ∗

 ,

for all x ∈ X, t > 0. Taking the limit as δ → 0, we get (3). From the definition of A we get
for all x ∈ X, n ∈ N,

A(3n x) = 3nA(x) and A(0) = 0. (13)

Now, for all x ∈ X, t > 0, n ∈ N, we have, by using (13),

Pµ, ν(2A(2x) − 4A(x), t)

≥L ∗ τ
3

(
Pµ, ν

(
2A(2x) − 2f(3n2x)

3n
,
t

4

)
, Pµ, ν

(
A(3x) − f(3n+1 x)

3n
,
t

4

)
,

Pµ, ν

(
A(x) − f(3n x)

3n
,
t

4

)
, Pµ, ν

(
2f(3n2x) − f(3n+1 x) − f(3n x),

3n t

4

))
.

By using (6) and (1), we find that last term tends to 1L ∗ as n → ∞. This implies that

Pµ, ν(2A(2x) − 4A(x), t) = 1L ∗ [ by (4) ],

for all x ∈ X, t > 0, i.e., for all x ∈ X ,

A(2x) = 2A(x). (14)

Now, using (14) for all x, y ∈ X, t > 0 and n ∈ N,
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Pµ, ν(A(x+ y)−A(x)−A(y), t)

≥L ∗ τ
3

(
Pµ, ν

(
2A

(
x + y

2

)
− 2

3n
f

(
3n
(
x + y

2

))
,
t

4

)
, Pµ, ν

(
A(x) − f(3n x)

3n
,
t

4

)
,

Pµ, ν

(
A(y) − f(3n y)

3n
,
t

4

)
, Pµ, ν

(
2f

(
3n
(
x + y

2

))
− f(3n x) − f(3n y),

3n t

4

))
.

By using (4), (6), and (1) and taking the limit as n → ∞, we get for all x, y ∈ X, t > 0,

Pµ, ν(A(x + y) − A(x) − A(y), t) = 1L ∗ .

Therefore, A(x+ y) = A(x) +A(y) for all x, y ∈ X , i.e., A is additive. To prove the uniqueness,
let us assume that A′ : X → Y is a mapping satisfying (3) and (13). Now, using (13) and (3),
we get for all x ∈ X, t > 0 and n ∈ N,

Pµ, ν(A(x) − A′(x), t)

≥L ∗ τ

(
Pµ, ν

(
A(3n x)

3n
− f(3n x)

3n
+
f(0)

3n
,
t

2

)
, Pµ, ν

(
f(3n x)

3n
− A′(3n x)

3n
− f(0)

3n
,
t

2

))
≥L ∗ τ

(
M 1

(
x, (3 − α)

3n t

4αn

)
, M 1

(
x, (3 − α)

3n t

4αn

))
.

Taking the limit as n → ∞, we get Pµ, ν(A(x) − A′(x), t) = 1L ∗ for all x ∈ X, t > 0,
i.e., A′(x) = A(x) for all x ∈ X . Thus A is unique. Now using (1) and (2) we get for all
x ∈ X, t > 0, n ∈ N,

Pµ, ν

(
g(3n x)

3n
+
h(3n x)

3n
− A(2x), t

)
≥L ∗ τ

(
P
′

µ, ν

(
φ(3n x, 3n x),

3n t

2

)
, Pµ, ν

(
A(2x) − f(3n 2x)

3n
,
t

2

))
≥L ∗ τ

(
P
′

µ, ν

(
φ(x, x),

3n t

2αn

)
, Pµ, ν

(
A(2x) − f(3n 2x)

3n
,
t

2

))
.

Taking limit as n → ∞, we get by (4) for all x ∈ X, t > 0,

Pµ, ν

(
g(3n x)

3n
+
h(3n x)

3n
− A(2x), t

)
→ 1L ∗ as n → ∞.

Then, by using (14), we get for all x ∈ X ,

g(3n x)

3n
+
h(3n x)

3n
→ 2A(x) as n → ∞. (15)

Replacing x and y by 3n+1 x and 3n x respectively in (2), we get for all x ∈ X, t > 0 and
n ∈ N,

Pµ, ν( f(3
n+1 x + 3n x) − g(3n+1 x) − h(3n x), t ) ≥L ∗ P

′

µ, ν(φ(3
n+1 x, 3n x), t). (16)
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Again, replacing x and y by 3n x and 3n+1 x respectively in (2), we get for all x ∈ X, t > 0

and n ∈ N,

Pµ, ν( f(3
n x + 3n+1 x) − g(3n x) − h(3n+1 x), t ) ≥L ∗ P

′

µ, ν(φ(3
n x, 3n+1 x), t). (17)

Now, by using (1), (16), and (17), we get for all x ∈ X, t > 0 and n ∈ N,

Pµ, ν

(
g(3n+1 x) − h(3n+1 x)

3n
− g(3n x) − h(3n x)

3n
, t

)
≥L ∗ τ

(
P
′

µ, ν

(
φ(3n+1 x, 3n x),

3n t

2

)
, P

′

µ, ν

(
φ(3n x, 3n+1 x),

3n t

2

))
≥L ∗ τ

(
P
′

µ, ν

(
φ(3x, x),

3n t

2αn

)
, P

′

µ, ν

(
φ(x, 3x),

3n t

2αn

))
.

Taking limit as n → ∞, we get for all x ∈ X, t > 0,

Pµ, ν

(
g(3n+1 x) − h(3n+1 x)

3n
− g(3n x) − h(3n x)

3n
, t

)
→ 1L ∗ as n → ∞.

Corresponding to ε > 0, there exists m ∈ N such that

Pµ, ν

(
g(3n+1 x) − h(3n+1 x)

3n
− g(3n x) − h(3n x)

3n
, t

)
≥L ∗ (N s(ε), ε), (18)

for all x ∈ X, t > 0, n ≥ m. For fixed x ∈ X and m ∈ N, there exists m′ ∈ N with m′ ≥ m

such that
Pµ, ν

(
g(3m x) − h(3m x)

3m′
, t

)
≥L ∗ (N s(ε), ε), (19)

for all t > 0. Now, for n ≥ m′:

Pµ, ν

(
g(3n x) − h(3n x)

3n
, t

)
≥L ∗ Pµ, ν

(
g(3n x) − h(3n x)

3m
, t

)
[∵ n ≥ m]

≥L ∗ τ
n−m

(
Pµ, ν

(
g(3m x) − h(3m x)

3m′
,

t

(n − m + 1)3m′−m

)
,

Pµ, ν

(
g(3m+1 x) − h(3m+1 x)

3m
− g(3m x) − h(3m x)

3m
,

t

n − m + 1

)
, . . . ,

Pµ, ν

(
g(3n x) − h(3n x)

3n− 1
− g(3n− 1 x) − h(3n− 1 x)

3n− 1
,

t

(n − m + 1)3n−m− 1

))
≥L ∗ (N s(ε), ε) [ by (18), (19) ].

Thus,
g(3n x)

3n
− h(3n x)

3n
→ 0 as n → ∞. (20)

From (14) and (20) we get (5). This completes the proof of the theorem. �
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Corollary 1.

Let ψ : [a, ∞) → R+ be a mapping such that

(i)ψ(ts) ≤ ψ(t)ψ(s), (ii)
ψ(3)

3
< 1,

where a is a fixed real number satisfying 0 ≤ a ≤ 3. Let (Y, Pµ, ν , M) be a complete IFN-
space and (Z, P

′
µ, ν , M) be an IFN-space, where M is given in Example 1.Let z 0 ∈ Z. If

f, g, h : X → Y are mappings such that

Pµ, ν( f(x + y) − g(x) − h(y), t ) ≥L∗ P
′

µ, ν((ψ(‖x‖) + ψ(‖y‖))z 0, t),

for all x, y ∈ X, t > 0 with ‖x‖, ‖y‖ ≥ a, then there exists a unique additive mapping
A : X → Y such that

Pµ, ν( f(x) − A(x) − f(0), t )

≥L∗ P
′

µ, ν

(
ψ(‖x‖)z 0, min

{
1

ψ
(
1
2

)
+ ψ

(
3
2

) , 1

2ψ
(
1
2

) , 1

2ψ
(
3
2

)} (3 − ψ(3))
t

8

)
and

f(3nx)

3n
→ A(x),

g(3nx)

3n
→ A(x),

h(3nx)

3n
→ A(x) as n → ∞,

for all x ∈ X with ‖x‖ ≥ 2a and t > 0.

Proof:

Define φ(x, y) = (ψ(‖x‖) + ψ(‖y‖))z 0 and take α = ψ(3). Clearly, (1) is satisfied and
0 < α < 3. Then

M 1(x, t) ≥L∗ P
′

µ, ν

(
ψ(‖x‖)z 0, min

{
1

ψ
(
1
2

)
+ ψ

(
3
2

) , 1

2ψ
(
1
2

) , 1

2ψ
(
3
2

)} t

4

)
.

�

Corollary 2. Let (Y , Pµ, ν , M) be a complete IFN-space and (Z, P
′
µ, ν , M ) be an IFN-space,

where M is given in Example 2.7. Let z 0 ∈ Z and p < 1. If f, g, h : X → Y are mappings
such that

Pµ, ν( f(x + y) − g(x) − h(y), t ) ≥L∗ P
′

µ, ν(((‖x‖) p + (‖y‖) p)z 0, t),

for all x, y ∈ X, t > 0, then there exists a unique additive mapping A : X → Y such that

Pµ, ν( f(x) − A(x) − f(0), t ) ≥L∗ P
′

µ, ν

(
‖x‖ pz 0,

2 p(3 − 3 p) t

3 p 16

)
and

f(3nx)

3n
→ A(x),

g(3nx)

3n
→ A(x),

h(3nx)

3n
→ A(x) as n → ∞,

for all x ∈ X, t > 0.
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Proof:

Define φ(x, y) = (‖x‖ p + ‖y‖ p)z 0 and take α = 3 p. Clearly, (1) is satisfied and 0 < α < 3.
Then

M 1(x, t) = P
′

µ, ν

(
‖x‖ pz 0,

2 p t

3 p 8

)
.

�

Theorem 2.

Let (Y , Pµ, ν , τ ) be a complete IFN-space and (Z, P
′
µ1, ν1

, τ ) be an IFN-space. Let φ : X 2 →
Z be a mapping such that

P
′

µ, ν

(
φ
(x
3
,
y

3

)
, t
)
≥L∗ P

′

µ, ν

(
1

α
φ(x, y), t

)
,

for all x, y ∈ X, t > 0 and for some α > 3. If f, g, h : X → Y are mappings such that

Pµ, ν( f(x + y) − g(x) − h(y), t ) ≥L∗ P
′

µ, ν(φ(x, y), t),

for all x, y ∈ X and t > 0, then there exists a unique additive mapping A : X → Y such that
for all x ∈ X, t > 0,

Pµ, ν( f(x) − A(x) − f(0), t ) ≥L∗ M 1

(
x, (α − 3)

t

2

)
and

3n(f(3−n x) − f(0)) → A(x), 3n(g(3−n x) − f(0)) → A(x), 3n(h(3−n x) − f(0)) → A(x),

as n → ∞, where M 1 is given in Theorem 1.

4. Conclusion

In this paper, the Hyers-Ulam-Rassias stability of f(x + y) = g(x) + h(y), the Pexiderized
functional equation, has been discussed in intuitionistic fuzzy Banach spaces. But instead of
considering the crisp mappings f, g, h if we consider the fuzzy mappings how the Hyers-Ulam-
Rassias stability of the corresponding Pexiderized functional equation can be established in
intuitionistic fuzzy Banach spaces. It is very important to investigate the Hyers-Ulam-Rassias
stability of the fuzzy functional equations in intuitionistic fuzzy Banach spaces.
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