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Abstract 
 
In this paper, we define a new class of convex functions which is called  ),( mr convex 
functions. We also prove some Hadamard's type inequalities based on this new definition. 
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1. Introduction 
 
The following definition is well known in the literature: a function ,R,R:  IIf   is said to 
be convex on I if the inequality 
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holds for all Iyx ,  and  1,0t . Geometrically, this means that if QP,  and R  are three 
distinct points on the graph of f  with Q  between P  and R , then Q  is on or below chord PR . 
Let RR: If  be a convex function defined on the interval I   of real numbers and 

Iba ,  with .ba    Then the following double inequality holds for convex functions: 
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This inequality is well known in the literature as Hadamard's inequality. Pearce et al. (1998) 
generalized this inequality to r convex positive function f  which is defined on an interval 

],,[ ba  for all ],[, bayx   and ];1,0[   
 

    
   

1

1

( ) (1 ) ( ) , if 0,
( (1 ) )

 ( ) ( ) ,                 if 0,

rr r
f x f y r

f x y
f x f y r

 

 
 



      
 

 

 
Clearly 0 convex functions are simply log convex functions and 1 convex functions are 
ordinary convex functions. Another inequality which is well known in the literature as 
Minkowski Inequality is stated as follows; 
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Definition 1. 
  
A function   ,0: If  is said to be log-convex or multiplicatively convex if  log f  is convex, 
or, equivalently, if for all Iyx ,  and  1,0t  one has the inequality: 

 
      tt yfxfyttxf  1)()()1( ,                                                                 (2) 

 
[Pečarić et al. (1992)].  
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We note that a log convex function is convex, but the converse may not necessarily be true. 
 
Ngoc et al. (2009) established following theorems for r convex functions: 
 
 
Theorem 1. 
  
Let ),0(],[: baf  be r convex function on ],[ ba  with .ba   Then the following 
inequality holds for :10  r   
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Theorem 2. 
  
Let ),0(],[:, bagf  be r convex and s convex functions respectively on ],[ ba  with 

.ba    Then, the following inequality holds for ,0 r    
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Theorem 3. 
 
Let ),0(],[:, bagf  be r convex and s convex functions respectively on ],[ ba  with 

.ba   Then the following inequality holds if ,1r  and  :111  sr   
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Gill et al. (1997) proved the following inequality for r convex functions. 
 
Theorem 4. 
 
Suppose f  is a positive r convex function on ],[ ba . Then, 
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If f  is a positive r concave function, then the inequality is reversed. 
 
For related results on r convexity see [Yang and Hwang (2001), Gill et al. (1997) and Ngoc et 
al. (2009)]. Toader (1985) defined m convex functions, as follows: 
 
Definition 2. 
 
The function   ,R,0: bf  ,0b  is said to be m convex, where  ,1,0m  if we have 
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for all  byx ,0,   and  .1,0t  We say that f  is m concave if f  is m convex. 
 
We refer to the papers [Bakula et al. (2006); Bakula et al. (2007); Özdemir et al. (2010) and 
Toader (1988)] involving inequalities for m convex functions. Dragomir and Toader (1993) 
proved the following inequality for  m convex functions. 
 
Theorem 5.  
 
Let   R,0: f  be a m convex function with ].1,0(m  If  ba0  and  ,,1 baLf   
then one has the inequality: 
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Dragomir (2002) proved some Hadamard-type inequalities for  m convex functions as follows. 
 
Theorem 6. 
 
 Let   R,0: f be a m convex function with ].1,0(m If   ba0  and  ,,1 baLf    
then one has the inequality: 
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Theorem 7. 
 
 Let   R,0: f  be a m convex function with ].1,0(m If  bamLf ,1  where 

,0  ba  then one has the inequality: 
 



392                                                                                                                                                 M. Emin Özdemir et 
al. 
                                                                              

    
.

2

)(
)()(

1

1 bfaf
ambdxxf

mab

amb
dxxf

m

b

ma

mb

a












                                       (9) 

 
 

2. Main Results 
 

We will start with the following definition. 
 
Definition 3. 
 
A positive function f  is  mr, convex on    bba ,0,   if for all  ,,, bayx     1,0m  and 

 1,0  
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This definition of  mr, convexity naturally complements the concept of  mr, concavity in 
which the inequality is reversed. 
 
Remark 1. 
 
We have that  1,0 convex functions are simply log convex functions and  1,1 convex 
functions are ordinary convex functions on    bba ,0,  . 
 
Remark 2. 
 
We have that  1,r convex functions are r convex functions. 
 
Remark 3. 
 
We have that  m,1 convex functions are m convex functions. 
 
Now, we will prove some inequalities based on above definition and remarks. 
 
Theorem 8. 
 
Suppose that f  is a  mr, convex function on    .,0, bba   Then, we have the inequality; 
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for .0r  If f  is a  mr, concave function, then the inequality is reversed. 
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Proof :  
 

Let  .1,0 r  First assume that  .)(
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Using the fact that 
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we obtain the desired result. Similarly, for  ,)(
1

bfafm r   we have 
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Finally, let ,1r  for  ,)(
1

bfafm r   we have 
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Computing the right hand side of the above inequality, we get 
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The proof of the other case such as  ,)(
1

bfafm r   may be obtained in a similar way. 
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Remark 4. 
 
In Theorem 8, if we choose ,1m  we have the inequality (6). 
 
Theorem 9. 
 
Let :f       ,0,0, bba  be  mr, convex function on  ba,  with .ba   Then, the 
following inequality holds: 
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for  .10  r   
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Using the inequality (1), we get  
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Thus, 
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which completes the proof. 
 
Corollary 1. 
 
In Theorem 9, if we choose a  m,1 convex function on  ba,  with .ba    Then, we have the 
following inequality; 
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Corollary 2. 
 
In Theorem 9, if we choose an  1,r convex function on  ba,  with .ba    Then, we have the 
following inequality; 
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Remark 5. 
 
In Theorem 9, if we choose a  1,1 convex function on    bba ,0,   with .ba   Then, we have 
the right hand side of Hadamard's inequality. 
 
Theorem 10. 
 
Let :, gf       ,0,0, bba  be  mr ,1 convex and  mr ,2 convex function on  ba,  with 

.ba   Then, the following inequality holds; 
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Proof: 
 
Since f  is  mr ,1 convex function and g  is  mr ,2 convex function, we have  
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and 
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Integrating both sides of the above inequality over  1,0  with respect to ,t  we obtain 
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By applying Hölder's inequality, we have 
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By using the fact that  
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We obtain the desired result. 
 
Corollary 3.  
 
In Theorem 10, if we choose ,1m  221  rr  and ),()( xgxf   we have the following 
inequality; 
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Corollary 4. 
 
In Theorem 10, if we choose 1m  and ,221  rr  we have the following inequality; 
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Theorem 11. 
 
Let :f       ,0,0, bba  be a  mr, convex function on  ba,  with  ].1,0(m   If 

 ba0  and ],,[1 baLf   then one has the following inequality; 
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Proof: 
 
Since f  is  mr, convex function, we can write 
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for  .1,0t  Integrating both sides of (13) over  1,0  with respect to ,t  we obtain 
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Similarly, for  ,)(
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Finally, let ,1r  for  ,)(
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When ),()( bfaf   the proof is similar. So, we obtain the inequality 
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Analogously, by integrating both sides of the inequality (14), we obtain 
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which completes the proof. 
 
 
Remark 6. 
 
In Theorem 11, if we choose ,1r  we have the inequality (7). 
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Remark 7. 
 
In Theorem 11, if we choose ,1m  we have the inequality (6). 
 
Remark 8. 
 
In Theorem 11, if we choose ,1 rm  we have the right hand side of  Hadamard's inequality. 
 
Theorem 12. 
 
Let :f       ,0,0, bba  be a  mr, convex function on  ba,  with ].1,0(m    If 

],,[1 baLf   then one has the following inequalities; 
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Proof: 
 
By the  mr, convexity of f , we have that 
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for all  .1,0t  Integrating the result over  1,0  with respect to ,t  we get 
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in (16), we obtain the first inequality of (15). 
 
By the  mr, convexity of f , we also have that  
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for all  .1,0t  Integrating the above inequality over  1,0  with respect to ,t  we get 
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By a similar argument, we can state 
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which completes the proof. 
 
Remark 9. 
 
In theorem 12, if we choose ,1r  we have the inequality (8). 
 
Remark 10. 
 
In theorem 12, if we choose ,1 rm  we have the Hadamard's inequality. 
 
1. Conclusion 
 
In this paper, a new class of convex functions called  ),( mr convex functions have been 
defined and some new Hadamard-type inequalities have been obtained.  
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