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Abstract 
 

 In  this  research paper,  we  aim  to  establish three interesting summation  formulae  for the  I-

function of  two  variables recently introduced in the literature. The results are derived with the 

help of classical summation theorems due to Watson, Dixon and Whipple.  A few known results 

are also obtained as special cases of our main findings. Since the I-function of two variables  is  

the  most  generalized  function  of  two  variables  and  it includes as special cases many of the 

known functions appearing in the literature,  the results derived in this paper will therefore serve 

as the key formulas from which a large number of summation formulas including elementary 

functions can be obtained by specializing the parameters therein. 

 

Keywords:  I-function; Mellin-Barnes Contour integral;  H-function;   

     Summation theorems 
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1. Introduction 
 

The I-function of two variables defined and studied by Shantha Kumari et al. (2014) is 

represented by means of the double Mellin - Barnes Contour integral in the following manner. 
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where   (   )   ( )   and    ( )  are given by  
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Also: 

 

(i)             ;  

(ii)   √  ; 

(iii) an empty product is interpreted as unity;  

(iv) the parameters          (       ),    (     )  are nonnegative integers such that 

       (       )       ,         (     ) (not all zero 

simultaneously); 

(v)      (        ),        (        ),    (        ),    (        ),    (  

      ),   (        )  are assumed to be positive quantities for standardization 

purpose. 

(vi)   (        ),    (        ),   (        ),    (        ),   (  

      )  and    (        )  are complex numbers; 

(vii) The exponents     (       ),    (       ),    (        ),    (        ),  

  (        ),    (        ) of  various gamma  functions involved in (1.2), 

(1.3) and  (1.4)  may take non-integer values; and 
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(viii)      and      are  suitable contours of  Mellin - Barnes type. Moreover, the contour      

is in the complex s-plane and runs from        to         ,  (   real) so that all the 

singularities of    (      )(        )  lie to the right of    and all the 

singularities of    (        )(        ) ,    (            )(  

      ) lie  to the left of    ;  The other contour     follows similar conditions in the 

complex t-plane. 

 

The function defined by (1.1) is  an  analytic  function  of     and     if 
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Further, the integral (1.1) is convergent if  
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In this paper, for the sake of brevity we shall use the following contracted notation for the I-

function defined in (1.1): 
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Further, if     (        ) ,      (        )  in (1.1), then the function will be 

denoted by   
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and if     (        ) ,     (        ) ,     (        )  and     (  

      ) and      in (1.1),  then the corresponding function will be denoted by 
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where 
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A detailed account of the I-function, its behavior and various special cases in one and two 

variables (including the generalized hypergeometric function p qF ) can be found in the paper by 

Shantha Kumari et al. (2014).  

 

Remark:    
 

It is not out of place to mention two interesting papers by Mishra et al. (2012, 2013). 

 

 

2. Results Required 
 

In our present investigation, we shall require the following classical summation theorems. 

 

Watson's Theorem (Bailey, 1935) 
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provided   (      )     and the parameters are such that the series on the left is defined.  
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Dixon's Theorem  (Bailey, 1935)  
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Whipple's Theorem (Bailey, 1935) 
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3. Main Summation Formulae 
 

 In this section, the following three very general summation formulae will be established. 

 

Summation Formula 3.1. 
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provided 

 

(i)            (both      and    are  not simultaneously zero); 

(ii) The conditions given in (1.7),  (1.8) and (1.9) are satisfied. 
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where ( )  stands for the Pochhammar symbol defined  by 
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       ( )         and      is an integer. 

 

Summation Formula 3.2. 
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Summation  Formula   3.3. 
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(i)              (both      and    are  not simultaneously zero); 

(ii) The conditions given in  (1.7),  (1.8) and (1.9)  are satisfied. 
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Proof:   

 

In order to establish our first general summation formula (3.1) we proceed as follows.  Denoting 

the left-hand side of (3.1) by S, using the definition of the I-function of two variables with the 

help of (1.1), we have 
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Now, changing the order of integration and summation, which is easily seen to be justified due to 

the uniform convergence of the series involved in the process, we have after some simplification 
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Summing up the series, we have 
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Now  we  observe  that the 3 2F    appearing in the inner side, can be evaluated with  the  help of  

classical summation theorem  (2.1)  and  after  a  little simplification, interpreting the result with 

the help of the definition of the I-function of  two variables (1.1) we easily arrive at the right - 

hand side of (3.1). This completes the proof of our first general summation formula. 

 

 In exactly the same manner, the summation formulae (3.2) and (3.3) can be established with the 

help of the known results (2.2) and (2.3) respectively. 

 

4. Special Cases 
 

On  account  of  the  most  general  nature of  the  I-function of two variables,  it includes  as  

special  cases  many of  the  known  functions  of  one  and  two variables  appearing  in  the 

literature and hence  the results  derived in this paper  will serve as the key formulas  from which 

we can obtain  a  large number of  known  and  unknown  results. However here we shall 

mention some of the known results. 

 

(i) If we take  the exponents    (       ) =   (       )  =   (        ) , 

  (        ) =   (        ) =   (        )=1 in various gamma  functions 

involved in (1.2), (1.3) and (1.4),  the I-function  of  two  variables can be reduced to H-

function of two variables  defined by Mittal and Gupta, (1972) and hence we get the 

corresponding summation formulae recorded in (Srivastava et al. (1982)).  

 

(ii) When all the exponents    (       ),     (       ),    (        ),     (  

      ),     (        ),    (        ) of  various gamma  functions involved in  

(1.2), (1.3)  and (1.4)  are equal to  unity,  and  if  we  take               
        ,                 with            ,          and  specializing  the 

parameters,  (3.2) and (3.3) reduces to  known results by  Nair, V.C. (1968, p.256, 

Equation (8.62), pp. 254-255, Equation (8.59)). 

 

Similarly other results can also be obtained. 

 

5. Conclusion 
 

 In this research paper we have established three summation formulae involving  the I-function of 

two variables recently introduced by Shantha Kumari et al. (2014), by using  some classical 

summation theorems. As we have seen the  generalized function of two variables introduced by 

Agarwal(1965) and Sharma(1965) have found interesting applications in wireless 

communication [Xia et al. (2012)], and the results evaluated  in this paper may be potentially 

useful. 
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