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Abstract 
 
In this paper the concept of reducibility in graph theory is discussed, and the deletable vertex 
(edge) in graph (digraph) is defined. The class of graphs (digraphs)  is called vertex (edge) 
reducible if for any G  either   is the trivial graph (null graph) or it contains a vertex (edge) 
v  such that  vG . We introduce some classes of graphs (digraphs) which are reducible and 
others which are not. The vertex reducibility and edge reducibility of Eulerian graphs and 
Eulerian digraphs have also been studied. 
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1. Introduction 
 
The concept of reducibility is amply discussed for some classes of lattices by Bordalo and 
Monjardet (1996). In fact they proved that the class of pseudo complemented lattices as well as 
the class of semi-modular lattices is reducible. Kharat and Waphare (2001) identified some 
classes of postes, which are reducible. Further, they have introduced a concept of reducibility 
number for posets. We discuss some analogous concepts in graphs. Akram (2007) introduced the 
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concept of contractibility number of graphs and Akram (2009) included the concept of vertex 
extension of graphs. Borse and Waphare (2008) defined a non–separating cycle of a graph G as a 
cycle for which )(CVG   is connected. Attar (2012) defined the edge removable cycle as 

follows let   be a class of graphs (digraphs), satisfying some property, the cycle C in G  is 
called edge removable if )(CEG     . 

 
For the undefined concepts and terminology the reader is referred to Wilson (1978), Clark 
(1991), Harary (1969), West (1999) and Tutte (1984).  
 
Definition 1.1.  
 
Let   be a class of graphs satisfying certain property P , and G . A vertex(edge) v  in G  is 
called deletable with respect to  , if  vG . In general, a set S  of vertices (edges) is called 

deletable with respect to  , if  SG . Generally, if kS   then we say that S is a 

k deletable set. 
 
Definition 1.2.  
 
Let   be a class of graphs satisfying a certain property P . The class   is called vertex (edge) 
reducible if for any G  either   is the trivial graph (null graph) or it contains a vertex (edge) 
v  such that  vG . 
 
The following results provide some reducible classes. 
 
Proposition 1.1. 
 
1. The class of trees is vertex reducible, but not edge reducible. 
 
2. The class of connected graphs is vertex reducible. 
 
Proof:  
 
The proposition follows from the well-known fact that every non-trivial connected graph 
contains a vertex which is not a cut vertex [see Harary (1969)].  
 
Proposition 1.2. 
 
1. The class of bipartite graphs is vertex reducible and edge reducible. 
 
2. The class of complete graphs is vertex reducible, but not edge reducible. 
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Proof:  
 
Obvious.  
 
Proposition 1.3.  
 
The classes of Hamiltonian graphs, regular graphs, Eulerian graphs are neither edge reducible 
nor vertex reducible. 
 
Proof:  
 
The proof follows from the fact that neither an edge nor a vertex of a cycle is deletable.  
 
Definitions 1.3.  
 
Let   be a class of graphs and, G  be non-trivial (non-null). The vertex (edge) reducibility 
number of G  with respect to   is the smallest positive integer m , if exists, such that G  contains 

a deletable set S  of vertices (edges) of cardinality m . We write )]()[( GredeGredvm   . 

If such a number does not exist forG , then we say that the corresponding reducibility number is 
 . 
 
One can immediately note that a class   is reducible if and only if its reducibility number is 1 
for every non-trivial graph G . 
 
In this paper we provide characterizations for the vertex and edge reducibility number of 
Eulerian graphs and Eulerian digraphs. We require the following concepts and results. 
 
Definitions 1.4. Clark (1991) 
 
The neighborhood  )(vN  of the vertex v  in a graph G  consists of the set of vertices adjacent 

to v . If U  is a nonempty subset of the vertex set V of G  then the sub graph ][UG (or 

simply ][U ) of G  induced by U  is defined to be the graph having vertex set U  and edge set 

consisting of those edges of G  that have both ends inU . Similarly, if F is a nonempty subset of 
the edge set E of G  then the sub graph ][FG (or simply ][F ) of G  induced by F is the graph 

whose vertex set is the set of ends of edges in F and whose edge set is F . 
 
Let H be a sub graph of a graphG . A vertex of attachment of H in G  is a vertex of H that is 
incident with some edge of G  which is not an edge of H . We write ),( HGW for the set of 
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vertices of attachment of H inG . A sub graph H of a graph G  is said to be detached in G  if it 
has no vertices of attachment inG . 
 

If v  is a vertex of a digraph D , then its in-degree )(vd   is the number of arcs in D  of the 

form ),( vw  and its out-degree or score )(vd   is the number of arcs in D  of the form ),( wv . We 

can define the induced sub digraph analogous to the induced sub graph. 
 

Let D  be a digraph. Then the directed walk in D  is a finite sequence kk vavavW ...110  whose 

terms are alternately vertices and arcs such that for ki ,...2,1 , the arc ia has origin 1iv  and 

terminus iv . A closed walk has the same first and last vertices, and a spanning walk contains all 

the vertices. The concepts directed trails, directed paths, and directed cycles have meaning 
similar to the corresponding known concepts in graphs. A semi path has the same definition of 

directed path, but each arc ix  may be either ii vv 1 or 1iivv . 

 
A vertex v  of the digraph D  is said to be reachable from a vertex u if there is a directed path in 
D  from u to v . A digraph D  is called strongly connected or strong if, every two vertices v  
and w , are mutually reachable; and it is weakly connected, or weak,   if every two vertices are 
joined by a semi path. A strong component of a digraph is a maximal strong sub digraph; and a 
weak component is a maximal weak sub digraph. 
 
An Eulerian trail in a digraph D  is a closed spanning walk in which each arc of D  occurs 
exactly once. A digraph is Eulerian if it has such a trail. 
 
Note that an Eulerian digraph is strongly connected. Good (1996) (see also Welson (1978) 
characterized Eulerian digraphs as follows. 
 
Theorem 1.1.  
 
A weak digraph D  is Eulerian if and only if every vertex of D  has equal in-degree and out-
degree.  
 
Let H be a sub digraph of a digraph D . A vertex of attachment of H in D  is a vertex in H  that 
dominates or is dominated by some vertex of D  that is not a vertex of H. We write ),( HDW for 

the set of vertices of attachment of H  in D . 
 
A sub digraph H  of a digraph D  is said to be detached in D  if it has no vertices of attachment 
in D . 

 



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                     721                              
          

   

2. Vertex Reducibility of Eulerian Graphs and Digraphs 
 
 In this section the vertex reducibility number for Eulerian graphs and Eulerian digraphs has been 
studied. We need the following concept of complementary sub graph. 
 
Definition 2.1. Tutte (1984)  
 

Let H be a sub graph of a graph G . Then there is a sub graph cH of G  such that 

)()()( HEGEHE c  and ),())()(()( HGWHVGVHV c  . We call cH the complementary 

sub graph to H  inG . 
 
Firstly, we prove some required lemmas and then using these lemmas to characterize the vertex 
reducibility number of Eulerian graphs. 
 
Lemma 2.1.  
 
Let G be a graph and )(GVU  . Then the complementary sub graph to UG  is the subgraph 

whose vertex set is )(UNU  and edge set is eGEe :)({   is incident with a vertex of }U . 

 
Proof:  
 
Let H  be the complementary subgraph to UG  . By Definition 2.1, 
 

 ),(),()}()({)( UGGWUUGGWUGVGVHV   .  

 
We have 
 

UUNUGGW  )(),( .  

 
Hence,  
 

)()( UNUHV  .  

 
Further, 
 

)()()( UGEGEHE  .  
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Let )()()( UGEGEHEe  . We have )(GEe  and )( UGEe  . This implies that at 

least one of the end vertices of e is in U . Hence, eGEeHE :)({)(   is incident with a vertex 

of }U . 

 
Lemma 2.2.  
 
Let G be a graph and U be a nonempty subset of )(GV . Let H be the complementary subgraph 

to UG  . Then a component 1H of H is the complementary subgraph to the subgraph 

))(( 1 UHVG  . 

 
Proof:  
 
Since H is a complementary sub graph to UG  , we have 
 

),(),()}()({)( UGGWUUGGWUGVGVHV     

 
and 
 

)()()( UGEGEHE  .  
 
To prove a component 1H  of H is the complementary subgraph to the subgraph 

})({ 1 UHVG  we have to prove 
 

1 1 1( ) { ( ) ( ( ) ( ( ) ))} ( , { ( ) })V H V G V G V H U W G G V H U                 

                  
1 1{ ( ) } ( , { ( ) })V H U W G G V H U                                                                  (1) 

and 
 

}))({()()( 11 UHVGEGEHE  .                                                                                  (2)                         
 
Since 1H  is a component in H , )()( 1 HVHV  and )()( 1 HEHE  . As  
 

),()( UGGWUHV   , ),()( 1 UGGWUHV   .  
 
Hence, 
  

)}(),({})({)( 111 HVUGGWUHVHV   . 

 
We prove that  
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}))({,()(),( 11 UHVGGWHVUGGW   .  

 
Let 
 

)(),( 1HVUGGWx  .  

 

We have ),( UGGWx   and )( 1HVx . Since ),( UGGWx  , we have )( UGVx  and 

there is an edge )(1 GEe  incident with x  such that its other end vertex )(1 UGVx  . By 

Lemma 2.1, we get )()( UNUHV  and, hence, 

 

))()(())(()())(( 111 HVUNHVUHVUNUx   . 

 
Now using the fact that UGVUGVx  )()( , we get that Ux  and, hence, 

)()( 1HVUNx  . The vertex Ux 1 and it is adjacent to x . As Ux 1 , by Lemma 2.1, the 

edge )(1 HEe  . Using the fact that 1H is a component of H we get that )( 11 HVx  . 

Therefore UHVx )( 11  . Thus, }))({,( 1 UHVGGWx  .  

 

On the other hand, suppose }))({,( 1 UHVGGWx  . Hence, UHVx )( 1 and there is an 

edge e incident with x  whose other end vertex UHVx )( 10  . We have )( 10 HVx   

and Ux 0 . Since Ux 0 , by Lemma 2.1, e  is an edge of H . As 1H is a component of H and 

)( 10 HVx   we have )( 1HVx . Recall that UHVx )( 1 and hence Ux .Thus x  is a vertex 

of UG  , e  is incident with x  and its other end Ux 0 . Therefore, ),( UGGWx  . 

Thus, )(),( 1HVUGGWx  , as required. 

 

)2( . Let )( 1HEuve  . Then, both )(, 1HVvu  . Since )()( 1 HVHV  , )(, HVvu  . By 

Lemma 2.1, at least one of vu, is inU . Therefore, at least one of vu,  is in UHV )( 1 . Hence, 

e is not an edge of })({ 1 UHVG  . 

 

On the other hand, if uve   is an edge not in })({ 1 UHVG  , then either UHVu )( 1 or 

UHVv )( 1 . Suppose UHVu )( 1 . By Lemma 2.1, it follows that e is an edge of H . 

Since 1H is a component of H , e  is an edge of 1H . 

 
Lemma 2.3:  
 
Let G be a graph having no odd vertex, and H be a sub graph of G . Then, H has no odd vertex 

if and only if cH has no odd vertex. 
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Proof:  
 
Let G  be a graph having no odd vertex, and let H be a sub graph of G  For any vertex v in 

cH we have, )()( vdvd cHG   if )(HVv , and )()()( vdvdvd cHHG   if )(HVv . Since G  

has no odd vertex, it follows that, if every vertex of H is even. Then, every vertex of cH  is 
even. The converse follows by using similar arguments.  
 
Here is a stipulated characterization for vertex reducibility number of eulerian graphs. 
 
Theorem 2.2.  
 

Let  be the class of Eulerian graphs and G . Then kGredv   )( , if and only if k is the 

smallest number such that there exists a set of vertices U of cardinality k with UGH  is 

connected and cH is Eulerian. 
 
Proof:  
 

Suppose kGredv   )( . There exists U , a subset of cardinality k  of )(GV  such 

that UGH   is Eulerian, and U  is a smallest such set. Since H is Eulerian we have H is 

connected. By Lemma 2.3, each vertex in cH  has even degree. To prove Euleriannas of cH , it 

is enough to prove that cH  is connected. 
 

Suppose cH  is not connected, and 1H is a component of cH  such that SUHV  )( 1 . By 

Lemma 2.3, 1H  is the complementary sub graph to SG  . We obtain a contradiction to 

minimality of k  by proving that SG   is Eulerian and kS  . Note that if US   

then cHH 1 , a contradiction to our assumption that cH is not connected. Hence kS  .Since 

cH  has no odd vertex, the component 1H  has no odd vertex and hence, by Lemma 2.3, SG   

has no odd vertex. It remains to prove that SG   is connected. If possible, suppose 2H is a 

component of SG   which is disjoint from the component of SG   that contains H . We prove 

that 2H  is detached inG . Suppose on the contrary that e is an edge in G  with end vertices yx,  

such that )( 2HVx ) and )( 2HVy .  Since 2H is disjoint from H it follows that Sy . Then, 

UHVx  )( 2  and UHVSy )( 1 and hence e is an edge in cH .  As 1H  is   a component 

of cH , we get that )(, 1HVyx  and therefore SHVx )( 1 , a contradiction 

to SGVHVx  )()( 2 . Thus 2H is detached in G  and hence 2H  is a proper component ofG , 

which is impossible. We conclude that SG   is connected. 
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To prove the smallestness of k , suppose 1U is a set of vertices in G   such that 1UG   is 

connected and the complementary sub graph to i 1UG   is Eulerian. If UkU 1  then, as 

1UG   is connected and the complementary sub graph to i 1UG   is Eulerian, by Lemma 2.3, 

1UG  is Eulerian, a contradiction to kGredv   )( . 

 
Conversely, suppose k is the smallest number such that there exists )(GVU  of cardinality k  

with UGH   is connected and cH  is eulerian. By Lemma 2.2, H  is Eulerian. 

Hence, kGredv   )( .  Assume that knGredv   )( . Let )(1 GVU   be a set such that 

nU 1  and  1UG   is Eulerian then, as proved in the previous part, we have 1UG   is 

connected and the complementary sub graph to 1UG   is Eulerian, which is a contradiction to 

the choice of k . Hence, kGredv   )( . 

 
Corollary 2.1.  
 

Let  be the class of Eulerian graphs and G . Then 2)(   Gredv , if and only if 

G contains two vertices vu, such that 

 
1. },{ vuG  is connected, and 

 
2. )()( vNuN  where )(),( vNuN are the neighbors of u and v respectively. 

 
Proof:  
 
The condition )2(  of the corollary says that the complementary sub graph to },{ vuGH   is 

Eulerian. In fact, every vertex of cH other than u   and  v  has degree 2. The proof follows from 
Theorem 2.1.  
 
Corollary 2.2.  
 
Let   be the class of Eulerian graphs. Let H be any complete graph with odd number of 

vertices. Then, 2)(   Hredv . 

 
We introduce the concept of complementary sub digraph analogous to Definition 2.1. 
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Definition 2.2.  
 

Let H  be a sub digraph of a digraph D . Then there is a sub digraph cH of D  such that  
 

)()()( HADAHA c   and ),())()(()( HDWHVDVHV c  . 

  

We call cH  the complementary sub digraph to H  in D . 
 
Now we prove some lemmas with the help of which we characterize the vertex reducibility 
number of Eulerian digraphs. 
 
Lemma 2.4.  
 
Let D be a digraph and UD  . Then the complementary sub digraph to UD  is the sub 
digraph whose vertex set is )(),(),(:)({ DAvuoruvDVuU  for some }Uu and arc set is 

:)(),{( DAvu  either Uu or }Uv . 

 
Proof:  
 
Let H  be the complementary sub digraph to UD  . By Definition 2.2, 
 

),(),()}()({)( UDDWUUDDWUDVDVHV   .  

 
We have )(),(),(:)({),( DAvuoruvDVvUDDW  for some }Uu . Thus,  

 
)(),(),(:)({)( DAvuoruvDVvUHV   , for some }Uu  and  

                                                                             )()()( UDADAHA  . 

 
Let )()()( UDADAHAa  . We have )(DAa  and )( UDAa  . Therefore, at least one 

of the end vertices of a  is in U . Hence, :)(),{()( DAvuHA   either Uu  or }Uv . 

 
Lemma 2.5:  
 
Let D  be a digraph and U be a nonempty subset of )(DV . Let H be the complementary sub 

digraph to UD  . Then a component 1H of H is a complementary sub digraph to the sub 

digraph UHVD )(( 1 . 

 
The proof is similar to the proof of Lemma 2.2.  
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Lemma 2.6. 
 
Let D  be a digraph having in-degree equal to out-degree for each vertex, and H be a sub digraph 
of D . Then in-degree and out-degree are equal for each vertex in H if and only if in-degree and 

out-degree are equal for each vertex in cH . 
 
Proof:  
 

Let v  be a vertex in cH , then )()( vdvd cHD
   and )()( vdvd cHD

  , if )(HVv , 

and )()()( Hdvdvd DHD c
  and )()()( Hdvdvd DHD c

  , if )(HVv . Since in-degree and 

out-degree are equal for each vertex of D , it follows that if every vertex of H  has in-degree 

equal to out-degree then every vertex of cH  has in-degree and out-degree equal.  
 
The converse part follows by using the similar arguments.  
 
The following result characterizes the vertex reducibility of Eulerian digraphs. 
 
Theorem 2.3.  
 

Let  be the class of Eulerian digraphs and D . Then kDredv   )(   if and only if k is the 

smallest number such that there exists a set of vertices U of cardinality k with UDH  is 

strongly connected and cH  is Eulerian. 
 
Proof:  
 

Let D  be an Eulerian digraph and kDredv   )( . Therefore, there exists )(DVU   of 

cardinality k  such that UDH   is Eulerian and k  is a smallest such number. Since H is 

Eulerian, H  is strongly connected. We prove cH  is Eulerian. By Theorem 1.1 and Lemma 2.6, 

it is enough to prove that cH  is weakly connected. Assume that cH  is not weakly connected. 

Let 1H  be a weak component of cH  such that SUHV  )( 1 . By Lemma 2.5, 1H is the 

complementary sub digraph to SD  .  
 

We obtain a contradiction to the minimality of k  by proving that SD   is Eulerian and kS  . 

Note that if US   then cHH 1 , a contradiction to our assumption that cH is not weakly 

connected. By Lemma 2.6, every vertex in SD   has in-degree equal to out-degree. We prove 

that SD  is weakly connected. If possible suppose 2H  is a weakly component of SD  which 
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is disjoint from the weak component of SD   which contains sub digraph SD  . We prove that 

2H  is detached in D .  Suppose that a  is an arc in D  with end vertices yx,  such that )( 2HVx  

and )( 2HVy .  Since 2H  is disjoint from ,H  Sy .  

 

Therefore, UHVx  )( 2  and UHVSy )( 1 . Hence a  is an arc in cH . As 1H  is a weak 

component of 1H , we get that )(, 1HVyx   and therefore SHVx )( 1  a contradiction to 

SDVHVx  )()( 2 . Thus 2H  is detached in D  and hence 2H  is a proper weak component 

of D , which is impossible. Hence SD   is connected. 
 

To prove the smallestness of k , suppose 1U  is a set of vertices in D  such that 1UD  is strongly 

connected and the complementary sub digraph to  1UD   is Eulerian. If UkU 1  then, as 

1UD   is strongly connected and the complementary sub digraph to 1UD   is Eulerian, by 

Lemma 2.6, 1UD   is Eulerian, a contradiction to kDredv   )( . 

 
Conversely, suppose that k  is the smallest number such that there exists )(DVU   of 

cardinality k  with UDH   is strongly connected and the complementary sub digraph cH  is 

Eulerian. By Lemma 2.6, we have H is Eulerian. Hence, kDredv   )( . Assume 

that knDredv   )( .  Let )(1 DVU   be a set such that nU 1  and 1UD   is Eulerian then 

as proved in the first part, 1UD   is strongly connected and the complementary sub digraph to 

1UD   is Eulerian, which is a contradiction to smallestness of k . Hence, kDredv   )( . 

 
Corollary 2.3.  
 

Let  be the class of Eulerian digraphs, then 2)(   Dredv  if and only if there exist two 

vertices vu, such that 

 

1. },{1 vuDD   is strongly connected; and 

 
2.  u dominates w , if and only if w  dominates ;v  and v  dominates w  , if and only if w  

dominates u . 
 
Proof:  
 
Observe that if vu, satisfy conditions )1(  and )2( then the complementary sub digraph to 

},{ VUD  is Eulerian. The proof follows from Theorem 2.3. 
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3. Edge Reducibility of Eulerian Graphs and Digraphs 
 
We characterize edge reducibility number of Eulerian graphs. 
 
Theorem 3.1. 
 

Let   be the class of Eulerian graphs and G . Then,  kGrede   )(  if and only if k is the 

length of a smallest cycle C in G  such that )(CEG  is connected. 

 
Proof:  
 

Suppose that kGrede   )(  . Then there exists a set of edges },...,,{ 21 keee such that 

},...,,{ 211 keeeGG  is Eulerian. Now, we claim that the edge induced subgraph C  of 

},...,,{ 21 keee  forms a cycle. We consider the following two cases. 

 

Case 1: C contains a cycle properly. Let },...,,{ 21 neee  with kn   be a cycle in C . We have 

},...,,{ 21 keeeG   is Eulerian, a contradiction to kGrede   )( . 

 
Case 2: C  does not contain any cycle. Then C is a forest and has an end vertex. It follows that 

removal of C  from G  gives a non Eulerian graph which is a contradiction. 
 
Therefore, C  is a cycle. The smallest of k  follows immediately. 
 
Conversely, assume that k is the length of a smallest cycle C in G such that )(CEG  is 

connected. We prove that kGrede   )( . As )(CEG  is connected, it follows that )(CEG   

is Eulerian. Hence, kGrede   )( . If kGrede   )( , then there exists an edge set 

},...,,{ 2 nfff with kn   such that },...,,{ 21 nfffG  is eulerian. By the previous part of the 

proof, the set },...,,{ 2 nfff  contains 1C  a cycle of smaller length than k  such that )( 1CEG  is 

connected which is impossible. Hence, kGrede   )( . 

 
Corollary 3.1.  
 
Let G  be a non-trivial simple Eulerian graph then the following statements are true. 
 

1. If every cycle in G  contains a vertex of degree 2 in G then   )(Grede . 
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2. If   )(Grede , then G  contains a vertex of degree 2. 

 
Proof:  
 
The statement )1(  follows from Theorem 3.1. The statement )2(  follows by taking 1k in the 

following result of Mader (1974) and Theorem 3.1.  
 
Theorem 3.2. Mader (1974)  
 
Let G  be a k -connected simple graph with minimum degree at least 2k . Then, G  contains a 
circuit C such that )(CEG  is k -connected. 

 
Now we try to find the edge reducibility number for line graphs. Consider the set X of edges of a 
simple graph G  with at least one edge as a family of 2 -vertices subsets of )(GV . The line graph 

of G , denoted by )(GL  is the intersection graph )(X . Thus, the vertices of )(GL  are the 

edges of G  with two vertices of )(GL  being adjacent whenever the corresponding edges of G  

are adjacent. If uvx  is an edge of G  then the degree of x   in )(GL  is clearly 2)()(  vdud . If 

G  is Eulerian then the line graph )(GL  is Eulerian Harary (1969). 

 
Theorem 3.3.  
 

Let  be the class of Eulerian graphs, G  be simple and 3)( GV . Then, 

3))((   GLrede if and only if )(GVv such that 3)( vd . 

 
Proof:  
 

Assume that 3))((   GLrede . Then, by Theorem 3.1, there exists a cycle C  of length 3 in 

)(GL  such that )()( CEGL  is Eulerian. If there is no )(GVv such that 3)( vd , then G  is a 

cycle and )(GL is also a cycle (a contradiction). Hence, it is necessary that G  contains a vertex 

with degree greater than or equal to 3. 
 
Conversely, let G  be an Eulerian graph containing a vertex v with 3)( vd . Since G  is 

Eulerian 4)( vd . Thus, the sub graph H of )(GL  induced by the edges incident at v  in )(GL is 

complete graph on at least 4 vertices. We select any triangle C  in H , and assert that 
)()( CEGL  is connected. This assertion is clearly true as any two vertices of C  can be joined 

by a path in )(GL  which does not contain any edge of C . Now taking into account that )(GL is 

simple the result follows by Theorem 3.1.  
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Theorem 3.4.  
 

Let   be the class of Eulerian digraphs, and D . Then kDreda   )( if and only if k is the 

length of a smallest cycle C  in D such that )(CAD   is strongly connected. 

 
Proof:  
 

Suppose that kDreda   )( . Then, there exists a set of arcs },...,,{ 21 kaaa such that 

},...,,{ 211 kaaaDD  is an Eulerian digraph; it is smallest such set.  

 

Let C  be the sub digraph formed by },...,,{ 21 kaaa . It is clear that )(CAD  is strongly 

connected. We prove that C  is a cycle in D . Observe that in-degree and out-degree are equal for 
every vertex inC . In particular, a strong component of C  is Eulerian. Hence, if C  is not a cycle 

then it contains a cycle 0C  properly. As )(1 CADD   is strongly connected, )( 02 CADD  ) 

is also strongly connected, and hence 2D is Eulerian. This contradicts to our assumption that 

)(Dreda  is k . Therefore C  is a cycle in D . 

 
Conversely, assume that k is the length of a smallest cycle C  in D  such that )(CAD   is 

strongly connected. We prove that kDreda   )( .  

 

Let },...,,{ 21 kaaa  be the set of arcs of the cycleC . Therefore, },...,,{ 21 kaaaD  is an Eulerian 

digraph and we get kDreda   )( .If kDreda   )( , then there exists a set },...,,{ 21 nfff  of 

arcs in D , with kn   such that },...,,{ 21 nfffD  is an Eulerian digraph. But then },...,,{ 21 nfff  

forms a cycle as proved in the previous part, which is impossible due to the choice of k . We 

conclude that kDreda   )( . 

 

4. Conclusions 
 
We conclude that the properties of the graph may be studied by reducing its vertex set. We found 
that some graphs contain a deletable vertex (edge) and others don’t. We found the necessary and 
sufficient condition for Eulerian graphs to be vertex (edge) reducible. There are many other 
classes of graphs for example the class of regular graphs, the class of Hamiltonian graphs and 
others to be discussed in the future.     
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