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Abstract 
 
This paper deals with the drainage of Sisko fluid film down a vertical belt. It provides an 
approximate solution of the resulting non-linear and inhomogeneous ordinary differential 
equation using perturbation method (PM) and Adomian decomposition method (ADM). 
Comparison of the results obtained by both methods demonstrate that these series solutions are 
strictly identical but ADM is easy to compute and can be extended to any higher order. The 
important physical quantities like velocity profile, volume flow rate, average film velocity, shear 
stress, force exerted by the fluid film and vorticity vector are derived. The effects of fluid 
behaviour index, Stokes number and Sisko fluid parameter on some of these physical quantities 
are observed. Furthermore, we also made a comparison between the Sisko fluid film and 
Newtonian fluid film. 
 
Keywords: Thin film flow, Sisko fluid model, drainage, perturbation method, Adomian 

decomposition method 
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1.  Introduction 
 
Thin film flows have extensively been investigated theoretically and experimentally by many 
scientists Van Rossum (1958), Raghuraman (1971), O’ Brien and Schwartz (2002), Mayers 
(2005), Siddiqiui et al. (2007). Such flows have found many applications in our nature and 
industry. The motion of rain drop down a window pane, in eye the tear films, flow of water on 
stalactites hanging from the roof of a limestone cave, the acclivity of buoyant magma below the 
solid rocks and the spreading of lava on volcanoes are the naturally occurring examples. In 
industry, tertiary oil recovery, fabrication of microchip, and in many coating processes its 
application are found. In all these examples, repetitive feature is that fluid in contact with rigid 
boundary is drain down due to gravity. Typically, it consists of an extent of liquid bounded by a 
solid boundary (vertical belt) and with a free surface (usually air). The thickness is much shorter 
than the length of the contacting object so that the flow takes place mainly in the longer 
dimensions under the action of gravity. The velocity component perpendicular to the object is 
much smaller than the velocity component along the object.  
 
We will consider the particular example of the motion of thin liquid film down an infinity long 
vertical belt which can be extended to any frame of coatings and lubrication process, O’ Brien 
and Schwartz (2002). 
 
Over the past two decades, much attention has been paid to the study of non-Newtonian fluids 
because of their profuse industrial and technological applications. It is a broad class of fluids so, 
there is not a single model that can describe all the properties of non-Newtonian fluids. Therefore 
several constitutive equations are proposed to predict the physical structure and behavior of such 
fluids. Among these, comparatively simple model, named Sisko fluids, is capable of describing 
shear thinning and thickening phenomena, which commonly exists in nature. Such fluids are well 
known and have many industrial applications. It is the most appropriate model for the flow of 
greases. Waterborne coatings and metallic automotive basecoat where polymeric suspensions are 
used, cement slurries, lubricating greases, most psueodoplastic fluids and drilling fluids are some 
of its industrial applications, Sisko (1958 ), Siddiqiui et al. (2009), Mekheimer and El Kot 
(2012).  
 
Most of the natural and industrial occurring problems when are modeled show non-linearity and 
few of them show linearity. Non-linearity increases the mathematical complexity of the problems 
which reduces the chance of getting exact solutions. For this reason, various techniques such as 
perturbation method (PM), Adomian decomposition method (ADM), homotopy analysis method 
(HAM), optimal homotopy analysis method (OHAM),homotopy perturbation method (HPM), 
optimal homotopy perturbation method (OHPM) and some others have been developed to find 
approximate solutions of these type of problems.  
 
These techniques have been used successfully to get solutions of many problems of industrial 
and technological importance. PM Bush (2000), Ji-Huan He (2006) and ADM Adomian (1987), 
Wazwaz (2009), Siddiqiui et al. (2010), Dita and Grama (1997) will be used in this paper to 
analyze the non-linear behavior of drainage from a vertical belt. PM is well known and widely 
used approximate method which relies on the existence of a relatively small parameter. ADM 
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recently get attention of the researchers because it can be used to get any higher order solution 
easily and it does not require linearization, perturbation or any other restrictive assumption. 
 
The intent of the present theoretical study is to investigate the thin film flow due to the drainage 
of Sisko fluid down a vertical belt. We extend the work of Siddiqiui et al. (2007) for the drainage 
problem and present its analytic solution using PM and ADM. Comparison of the solutions 
obtained by these methods will be provided. We shall find the physical quantities such as 
velocity profile, volume flow rate, average film velocity, shear stress exerted by the belt on fluid 
film, force exerted by the fluid film on belt surface and the vorticity vector. Physical insights to 
these physical quantities will also be given. 
 
The rest of paper is organized in 6 sections: the governing equations of motion and the 
constitutive equation for incompressible Sisko fluid model are presented in section 2, problem is 
formulated in section 3, section 4 contains the solution of the problem using PM and ADM and 
includes physical quantities such as volume flow rate, average film velocity, shear stress exerted 
by the belt on fluid film, force exerted by the fluid film on belt surface and the vorticity vector, 
influences of fluid behaviour index n, Sisko fluid parameter  and Stokes number 

tS are discussed 

through tables and graphs in section 5 and finally concluding remarks are given in section 6. 
 

 
2.    Basic Equations 
 
 The basic equations governing the motion of an incompressible fluid neglecting the thermal 
effects are  
 

= 0,divV                                                                                                                                (1) 
 

= ,
D

p div
Dt

   
V

f S                                                                                                         (2)   

    
where V  is the velocity vector,   is the constant density, f  is the body force per unit mass, p  is 

the dynamic pressure, S  is the extra stress tensor and 
Dt

D  is the material time derivative. The 

constitutive equation for incompressible Sisko fluid Sisko (1958), Siddiqiui et al. (2009), 
Mekheimer and El Kot (2012) is given by  
 

1

2
1 1

1
=

2

n

a b tr

  
       

S A A  ,                                                                                                                   (3) 

 

 where 1A  is the Rivlin-Ericksen tensor:  
 

1 , = ,T grad A L L L V                                                                                                 (4) 
 

ba,  are material constants and n  is the fluid behaviour index. If 0=a  the equations for the 
power law fluid model and if 0=b  for Newtonian fluid are obtained. 
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3.    Problem Formulation 
 
Consider steady, parallel, laminar flow of an incompressible Sisko fluid slowly flowing down an 
infinite vertical belt. As a result, a thin uniform fluid film of thickness   is formed in contact 
with stationary air. The geometry of the problem is shown in the Figure 1. We choose an xz -
coordinate system such that x -axis is normal to the belt and z -axis along the belt in downward 
direction. We assume that the fluid completely wets the belt, there is no applied (force) pressure 
driving the flow and fluid fall under the action of gravity. Therefore, the only velocity 
component is in z -direction. Accordingly we assume that  
 

= [0,0, ( )], = ( ).w x xV S S                                                                                                 (5) 
 
Equation of continuity (1) is identically satisfied by profile (5). Equation (3) upon using equation 
(4) and profile (5)  
 

1

0 0

= 0 0 0 ,

0 0

n

dw

dx
dw

a b
dx

dw

dx



 
 

        
     

 
 

S  

 
which, in turn provides the following non zero component  
 

.==
1

xz

n

zx S
dx

dw

dx

dw
baS






















                                                                                                                  (6) 

 
The momentum equation (2) with the help of profile (5) and assumptions we made leads to  
 

,xz

d
S g

dx
                                                                                                                                                    (7)  

                                                       
 along with the associated boundary conditions  
 

),(0=0= slipnoxatw                                                                                                       (8) 

 
and 
 

= 0 = ( ).xzS at x free surface                                                                                         (9) 
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Figure  1.  The geometry of the problem 
 
   

Equation (7) on integration with respect to x  and its subjection on boundary condition (9) gives  
 

( ),xzS g x                                                                                                                      (10) 

                                               
which upon using equation (6) yields 
 

 = .
n

dw b dw g
x

dx a dx a

    
 

                                                                                                                  (11) 

 
Introduce the following dimensionless parameters  
 

,=,=

x

x
g

w
w   

 
after dropping ̀ ', equation (11) and boundary condition (8) become:  
 

 = 1 ,
n

t

dw dw
S x

dx dx
    
 

                                                                                                                        (12) 

  
0,=0= xatw                                                                                                                              (13) 

                                                           

 where 


ga

g
St

2

=  is the Stokes number and 
1)(

=
n

g
a

b


  is the Sisko fluid parameter.   

 
Equation (12) is a first order nonlinear ordinary differential equation whose exact solution seems 
to be impossible. In the next section, we will apply PM and ADM to solve equation (12) subject 
to boundary condition (13).  
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4.   Solution of the Problem 
 
4.1.    Solution using PM 
 
 Assuming   1)<(0 =  to be a small parameter in equation (12), we expand )(xw  in a series 
of the form  
 

.=)(=)( 3
3

2
2

10
0=




wwwwxwxw k
k

k

                                                                         (14) 

  
Substituting series (14) into equation (12) and boundary condition (13), then equating the equal 
powers of   we obtain system of equations along with their boundary conditions  
 

0
0

0

= (1 ),
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(0) = 0.

t

dw
S x

O dx
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                                                                                                                            (15) 
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Solving above system of equations subject to their corresponding boundary conditions, we obtain 
the following set of solutions  
 

2
0 ( ) = 1 (1 ) ,

2
tS

w x x                                                                                                                                (19)                           

 

1
1( ) = 1 (1 ) ,

1

n
ntS

w x x
n

    
                                                                                                                  (20) 
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                                                                                                                      (21) 

 
3 2
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2
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w x x



                                                                                                                (22) 

  
 

Thus, upon substituting these components ( )(),(),( 210 xwxwxw  and )(3 xw ) from equations (19)-

(22) into the series (14), we obtain  
 

   12 )(11
1

)(11
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=)( 


 n
n
tt x
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S
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2

13

233
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x
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                                                    (23) 

 
which is the velocity profile for the drainage of Sisko fluid film down a vertical belt. 
 
Remark:  
 
If we put 0=  in equation (23), we recover the solution for Newtonian fluid film [Van Rossum 
(1958)]. 

 
 
4.2.     Solution using ADM 
 
We rewrite equation (12) as 
  

  .1=
n

t dx

dw
xS

dx

dw






                                                                                                                          (24) 

  
In operator form, as suggested by [Adomian (1987)], equation (24) can be written as  
 
 

  ),(1=)( wNxSwL tx                                                                                                                        (25) 

 

where 
dx

d
Lx =  is a one fold linear differential operator, which is easily invertible. The nonlinear 

term 
n

dx

dw






  is represented by )(wN  i.e.,  

 

.=)(
n

dx

dw
wN 
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Since xL  is invertible, then we defined the inverse operator 1
xL  as  

 

.(*)=(*)
0

1 dxL
x

x   

 

Applying 1
xL  on both sides of equation (25), we obtain  

 

  ),(1=)( 111 wNLxLSwLL xxtxx
    

 
implies  
 

  ).()(11
2

(0)=)( 12 wNLx
S

wxw x
t                                                                                              (26) 

 
Following the ADM [for reference see Adomian (1987), Siddiqui (2010), and Wazwaz (2009)], 
we decompose the unknown )(xw  in a series, known as decomposition series:  

 

),(=)(
0=

xwxw k
k



                                                                                                                                          (27) 

 
 and present the expansion of nonlinear term )(wN  into an infinite series of Adomian 

polynomials kA  
  

,=)(
0=

k
k

AwN 


                                                                                                                      (28) 

  

where the components 0),( kxwk  and the Adomian polynomials kA  can easily be computed. 

Using equations (27) , (28) and boundary condition (13) into equation (26), one obtains  
 

  ,)(11
2

=)(
0=

12

0=









 






k
k

x
t

k
k

ALx
S

xw                                                                                              (29) 

  
which follows  
 

 ,)(11
2

=)( 2
0 x

S
xw t                                                                                                          (30) 

 
0.),(=)( 1

1  
 kALxw kxk                                                                                             (31) 

  
Substituting the decomposition series (27) into equation (28), then using binomial expansion, we 
obtain 
  

  ,)(= 00

n' xwA                                                                                                                       (32) 
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            , 
 
where `dash’ over w  reprents the derivative with respect to x . The recursive relation (31), after 
making use of equation (30) and Adomian polynomials 0, kAk  from equations (32)-(34), will 

result the following components of )(xw :  
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 . 
  

Putting the components )(),(),( 210 xwxwxw  and )(3 xw  from equations ((30), (35)-(37)) into the 

decomposition series (27), we get the ADM solution of equation (12) of the form:  
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                                             (38)         
 

 
which represents the velocity profile for the drainage of Sisko fluid film down the vertical belt.  
 
We observed that the velocity profiles (23) and (38) obtained by PM and ADM, respectively are 
the same. In dimensionless form, the volume flow rate Q  and average film velocity w  are 
defined by  
 

,)(==
1

0

dxxwwQ                                                                                                                   (39) 

  
which with the help of (38) yields  
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 For 0= , we retrieve Newtonian case [Van Rossum (1958)]. In dimensionless form, the shear 
stress exerted by the belt on fluid film is given by  
 

,=
n

XZ dx

dw

dx

dw
S 






                                                                                                             (41) 

 

 where 


g

a

S
S xz

XZ = . By invoking velocity profile (38) into (41), one gets  
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which at 0=x  provides shear stress exerted by the belt on fluid film at the belt surface:  
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In dimensionless form, the force exerted by fluid film on the belt surface during drainage of 
Sisko fluid film is defined by  
 

1

=00
= | .z XZ xF S dx                                                                                                                

(44) 

  
Equation (44), after making use of (43) yields 
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which provides the force exerted by the fluid film on the belt surface. 
 
The vorticity vector   (in dimensionless form) is calculated as  
 

 12122 )(1)(1)(1=   nn
t

nn
tt xSnxSxS   
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            3 3 2 3 2(3 1)
(1 ) ,

2
n n

t

n n
S x      

j                                                                                (46) 

  
in which j  is the unit vector in the y -direction.  

 

 
5.   Results and Discussion  
 
In the previous section, we have obtained the physical quantities like velocity profile, shear stress 
exerted by the belt on fluid film, volume flow rate, force exerted by the fluid film on the belt 
surface and the vorticity vector for the drainage of Sisko fluid film down a vertical belt. In this 
section, we shall give some physical insight to these physical quantities via Tables 1-3 (velocity 
profile, shear stress and vorticity vector) and graphs 2-5 (velocity profile and volume flow rate). 
 
Table 1 represents the velocity distribution of Sisko fluid film (38), draining from a vertical belt 
for fluid behaviour index n , Sisko fluid parameter   and Stokes number 

tS . From this table we 

depicts that, as we proceed in our domain the velocity )(xw  increases, i.e., [0,1]xє  the velocity 
increases. This increase in velocity is more for Newtonian fluid film as compared to Sisko fluid 
film. Shear thickening fluid film showed more increase in velocity as compared to the shear 
thinning fluid film. 

 
Table 2 shows the shear stress distribution of Sisko fluid film (42), draining from a vertical belt 
for fluid behaviour index n , Sisko fluid parameter   and Stokes number 

tS . This table shows 

that shear stress is positive which indicates the fact that the it is applied from a region of lower 
velocity to a higher one. We delineate that shear stress XZS  being the function of x  decreases, 

i.e., decreases [0,1]xє . Furthermore, we also noted that the decrease in shear stress for Sisko 
fluid film is more as compared to Newtonian fluid film and belt exert less shear stress on the 
Sisko fluid film than that of the Newtonian fluid film. Shear thinning fluid film bears more shear 
stress as compared to the shear thickening fluid film. 

 
We present the vorticity vector distribution of Sisko fluid film (46), draining from a vertical belt 
for fluid behaviour index n , Sisko fluid parameter   and Stokes number 

tS  through table 3. 

This table shows that vorticity vector is negative, which indicates that fluid film has clockwise 
rotational effects. Being function of x , the vorticity effect decreases [0,1]xє , i.e., maximum 
near the belt and minimum near the free surface. Newtonian fluid film show more clockwise 
rotation when we compared it with the Sisko fluid film. Furthermore, comparison of the shear 
thinning fluid film and the shear thickening fluid film showed that the shear thickening fluid film 
has greater rotational effects. 
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Table 1. Velocity distribution of thin film flow of Sisko fluid when 0.6=tS  
 Newtonian fluid film Shear thinning fluid film Shear thickening fluid film 
 ( 0= ) ( 0.4=0.7,= n ) ( 0.4=1.3,= n ) 

x  )(xw  )(xw  )(xw  

 0.0   0.00  0.000000  0.000000 
0.1   0.06  0.036629   0.042050 
0.2   0.11  0.068916   0.080104 
0.3   0.15  0.096909   0.114087 
0.4   0.19  0.120662   0.143917 
0.5   0.22  0.140241   0.169509 
0.6   0.25  0.155721   0.190771 
0.7   0.27  0.167201   0.207597 
0.8   0.29  0.174814   0.219866 
0.9   0.30  0.178752   0.227426 
1.0   0.31  0.179374   0.230046 

 
Table 2. Shear stress distribution of thin film flow of Sisko fluid when 0.6=tS  

 Newtonian fluid film Shear thinning fluid film Shear thickening fluid film 
 ( 0= ) ( 0.4=0.7,= n ) ( 0.4=1.3,= n ) 

x   XZS    XZS    XZS   

 0.0   0.60  0.594372  0.577928 
0.1   0.54  0.534223   0.522448 
0.2   0.48  0.474051   0.466415 
0.3   0.42  0.413847   0.409841 
0.4   0.36  0.353601   0.352738 
0.5   0.30  0.293295   0.295118 
0.6   0.24  0.232894   0.236998 
0.7   0.18  0.172332   0.178397 
0.8   0.12  0.111436   0.119338 
0.9   0.06  0.049528   0.059854 
1.0   0.00  0.000000   0.000000 

 
Table 3: Vorticity vector distribution of thin film flow of Sisko fluid when 0.6=tS  

 Newtonian fluid film Shear thinning fluid film Shear thickening fluid film 
 ( 0= ) ( 0.4=0.7,= n ) ( 0.4=1.3,= n ) 

x            

 0.0   -0.60  -0.388141   -0.943462 
0.1   -0.54  -0.344508   -0.834565 
0.2   -0.48  -0.301317   -0.728243 
0.3   -0.42  -0.258631   -0.624625 
0.4   -0.36  -0.216535   -0.523869 
0.5   -0.30  -0.175144   -0.426169 
0.6   -0.24  -0.134621   -0.331783 
0.7   -0.18  -0.095214   -0.241065 
0.8   -0.12  -0.057354   -0.154551 
0.9   -0.06  -0.021933   -0.073202 
1.0   0.00  0.000000   0.000000 
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Figures 2-4 are drawn to observe the effects of parameters n ,   and 

tS  on velocity profile of the 

Sisko fluid film. Figure 2 shows that the velocity increases with the increase in fluid behaviour 
index n . It is observed that the velocity of the thin film is strongly dependent upon the Sisko 
fluid parameter  , which can be seen in Figure 3. The decrease in velocity with increasing   is 
evident. We also see that there is considerable decrease in magnitude of thin film velocity from 
Newtonian fluid film to Sisko fluid  film. Figure 4 depicts that the velocity increases with 
increasing 

tS . 
 

In order to observe the effect of   on  volume flow rate, figure 5 is drawn. It delineates that for 
any particular value of  , the volume flow rate increases with increasing 

tS  and decreases with 

the increase in  . 

    
        Figure 2. Profiles of the Sisko fluid film velocity, for various values of fluid  
  behaviour index n  when 0.6=tS  and 0.4= . 
 

 
             Figure 3.  Profiles of the velocity, for various values of Sisko fluid parameter  

                                      when 0.6=tS , (a) 0.7=n  and (b) 1.3=n  
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Figure 4.  Profiles of the velocity, for various values of Stokes number tS  when  

                                      0.4= , (a) 0.7=n  and (b) 1.3=n . 
 

 
Figure 5. Profiles of the flow rate, for various values of Sisko fluid parameter  

                                                 when (a) 0.7=n  and (b) 1.3=n  
   

 
6.  Concluding Remarks 
 
In the present work, the drainage of a Sisko fluid film down the vertical belt is modeled. The 
governing nonlinear inhomogeneous ordinary differential equation is solved using PM and 
ADM. The results obtained (using PM and ADM) are found identical. Though, PM is well 
known and widely used approximate method which relies on the existence of a relatively small 
parameter but ADM is very simple and convenient method. ADM can be used to get any higher 
order solution recursively and with great accuracy. ADM does not require linearization, 
perturbation or any other such restrictive assumptions. The influences of fluid behaviour index 
n , Sisko fluid parameter   and Stokes number 

tS  on velocity of the Sisko fluid film, shear 

stress, volume flow rate and vorticity vector have been observed. We concluded that : 
 



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                    479                               
          

   

   Velocity of the Sisko fluid film increases with the increase in n  and 
tS  and decreases with 

increasing  . The drainage of Sisko fluid film is slower as compared to the Newtonian fluid 
film. 

 
   Shear stress experienced by the Sisko fluid film decreases in the domain and Sisko fluid film 

experienced less magnitude of shear stress as compared to the Newtonian fluid film. 
 
   Volume flow rate of the Sisko fluid film increases with increase in the n  and 

tS  and 

decreases with increasing  . 
 
   Vorticity effect is maximum near the belt and minimum near the free surface and the 

Newtonian fluid film has more vorticity effect as compared to the Sisko fluid film.  
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