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Abstract 

A general model for the mixed correlated negative binomial and continuous responses is 
proposed. It is shown how to construct parameter of the models, using the maximization of the 
full likelihood. Influence of a small perturbation of correlation parameter of the model on the 
likelihood displacement is also studied. The model is applied to a medical data, obtained from an 
observational study on women, where the correlated responses are the negative binomial 
response of joint damage and continuous responses of body mass index. Simultaneous effects of 
some covariates on both responses are investigated.  
 
Keywords:  Latent variable models, Factorization Models, Mixed Correlated Responses,   

Likelihood Displacement, Body Mass Index, Joint Damage.  
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1. Introduction 

Some medical science data include correlated discrete and continuous outcomes. The example is 
in the study of the effect of type of accommodation on body mass index as continuous response 
and joint damage as negative binomial response (vide, our application in Section 4), where body 
mass index (BMI) and joint damage are correlated responses in an observational study on 
women. Furthermore, separate analyses give biased estimates for the parameters and misleading 
inference. Consequently, we need to consider a method in which these variables can be modeled 
jointly, for example one may use the factorization of the joint distribution of the outcomes or 
introduce an unobserved (latent) variable to model the correlation among the multiple outcomes. 
Many researchers have investigated the mixed correlated data, for example, Olkin and Tate 
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(1961), Heckman (1978), Poon and Lee (1987), Catalano and Ryan (1992), Fitzmaurice and 
Laird (1995), Sammel et al. (1997), Lin et al. (2000), Gueorguieva and Agresti (2001), 
Gueorguieva and Sancora (2006), McClluch (2007), Deleon and Carrier (2007) Yang et al. 
(2007) and Bahrami Samani et al. (2008).  
 
The main idea of the factorization method is to write the likelihood as the product of the 
marginal distribution of one outcome and conditional distribution of the second outcome given 
the first outcomes. Cox and Wermuth (1992), Fitzmaurice and Laird (1995) and Catalano and 
Ryan (1992) discussed and extended two possible factorizations for modeling a continuous and 
binary outcome as functions of covariates.  
 
Several models using latent variables have been proposed to analyze multiple non- 
commensurate outcomes as functions of covariates. Sammel et al. (1997) discussed a model 
where the outcomes are assumed to be a physical manifestation of a latent variable and 
conditional on this latent variable. Another approach based on latent variables was proposed by 
Dunson (2000). A major difference between this approach and Sammel’s approach relates to the 
association between the responses and the covariates. In Dunson’s approach, the covariates are 
not included in the model through the latent variable but rather introduced separately. Pinto and 
Normand (2009) used an idea similar to the scaled multivariate mixed model proposed by Lin et 
al. (2000). They introduced a new latent variable model by constraining the parameters of latent 
model proposed by Dunson (2000) for identifiability without restrictions on the correlation. 
Yang and Kang (2011) investigate the inferential method for mixed Poisson and continuous 
longitudinal data with non-ignorable missing values.  
 
The aim of this paper is to use and extend an approach similar to that of Sammel et al. (1997) 
and Dunson (2000), for modeling of a negative binominal and a continuous variable, by 
factorization of the joint distribution and the use of latent modeling of bivariate negative 
binomial and continuous outcomes.  
 
In Section 2, the models and likelihoods are given. In Section 3, simulation studies are used to 
compare consistency, efficiency and coverage of the multivariate approach with those of the 
univariate approach. In Section 4, the models are used on a medical data set where joint damage 
and body mass index (BMI) are correlated responses in an observational study on women. In 
these models joint damage is a negative binomial response and BMI is continuous response and 
age, the amount of total body calcium (Ca), job status (employee or housekeeper) and type of 
accommodation (house or apartment) are explanatory variables. We shall investigate the effects 
of these explanatory variables on responses simultaneously. The influence of a small 
perturbation of correlation parameter of the model on the likelihood displacement is also studied. 
Finally, in Section 5, the paper concludes with some remarks.  
 

2.  Models for Mixed Correlated Negative Binomial and Continuous       
Responses 

Let ௖ܻ೔ denote a continuous response and ௡ܻ௕೔ denote a negative binomial response for the ݅th of 
݊ individuals and ܺ௖೔  and ܺ௡௕೔  denote ݎ௖ ൈ 1 and ݎ௡௕ ൈ 1 vectors of covariates associated with 
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each response, respectively.  
 
 2.1. Univariate Models 
 
One common approach to model multiple responses as functions of covariates is to ignorable the 
correlation between the responses and fit a separate model to each response variable. We are 
using a linear regression model for continuous response and a negative binomial regression 
,௜ߤሺܤܰ)   ,ሻ) modelߪ
 

௖ܻ೔ ൌ ܺ௖೔
ᇱߚ௖ ൅ ,௜ߝ

ܲሺ ௡ܻ௕೔ ൌ ௡௕೔ሻݕ ൌ
௡௕೔ݕ൫߁ ൅ ൯ߪ

௡௕೔ݕ൫߁ሻߪሺ߁ ൅ 1൯
 ሺ

௜ߤ
௜ߤ ൅ ߪ

ሻ௬೙್೔ሺ1 െ
௜ߤ

௜ߤ ൅ ߪ
ሻఙ, 																																													ሺ1ሻ

	log	 ௜ߤ ൌ ܺ௡௕೔
ᇱߚ௡௕,

௜ߝ ∼ ܰሺ0, ,௖ଶሻߪ

 

 
where ߚ௖ ൌ ሺߚ௖ଵ, . . . , ௖௥೎ሻߚ

ᇱ, ߚ௡௕ ൌ ሺߚ௡௕ଵ, . . . , ௡௕௥೙್ሻߚ
ᇱ and σ ൐ 0 is a dispersion parameter.  

 

2.2. A Factorization Models   

We proposed a model for a correlated negative binomial and a continuous responses based on the 
factorization of the joint distribution of the responses, ݂ሺݕ௡௕, ௖ሻݕ ൌ ݂ሺݕ௡௕|ݕ௖ሻ݂ሺݕ௖ሻ. The model 
for the two responses is written as:  
 

	

௖ܻ೔ ൌ ܺ௖೔
ᇱߚ௖ ൅ ,௜ߝ 																																																																																																																																	ሺ2ሻ

௡ܻ௕೔| ௖ܻ೔ , ,௖೔ݔ ௡௕೔ݔ ∼ ,௜ߤሺܤܰ ,ሻߪ

	݃݋݈ ௜ߤ ൌ ܺ௡௕೔
ᇱߚ௡௕ ൅ ሺߟ ௖ܻ೔ െ ܺ௖೔

ᇱߚ௖ሻ,

௜ߝ ∼ ܰሺ0, ,௖ଶሻߪ

 

 
where ߟ is the parameter for the regression coefficient of ௡ܻ௕೔ on ௖ܻ೔. Large absolute values of ߟ 
indicate a strong correlation between the two responses. if ߟ ൌ 0 , the two responses are 
independent given the covariates.  
 
Maximum likelihood estimates for the parameters of the factorization method can be obtained 
with commonly used algorithms for maximizing the likelihood. The log-likelihood function 
under the factorization model (2) is  
 

 
 

       

,

,





n
l y , y ൌ ሼlogfሺy | y , x , x ሻ൅ logfሺy | x ሻሽc c c c cnb nb nbiൌ1 i i i ii i

Γ y ൅σnbn iൌ ሼlnሾ ‐ y ൅σ ln σ ൅ μinbiൌ1 iΓ σ Γ y ൅1nbi
൅σlnσ ൅ y lnμ ൅ lnfሺy | x ሻሽ.i c cnb i ii
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The vector of parameters ߚ௖ and ߚ௡௕ , the parameters of ߪ௖ଶ and ߟ should be estimated.  
 
The factorization of the joint distribution of ݕ௡௕ and ݕ௖ can also be consider in reverse order: 
݂ሺݕ௡௕, ௖ሻݕ ൌ ݂ሺݕ௖|ݕ௡௕ሻ݂ሺݕ௡௕ሻ. The model for the two responses is written as:  
 

	 ௖ܻ೔| ௡ܻ௕೔, ,௖೔ݔ ௡௕೔ݔ ൌ ܺ௖೔
ᇱߚ௖ ൅ ሺߦ ௡ܻ௕೔ െ ܺ௡௕೔

ᇱߚ௡௕ሻ ൅ ሺ2ᇱሻ																																																															௜ߝ

ேܻ஻೔ ∼ ,௜ߤሺܤܰ ,ሻߪ

	݃݋݈ ௜ߤ ൌ ܺ௡௕೔
ᇱߚ௡௕,

௜ߝ ∼ ܰሺ0, ,௖ଶሻߪ

 

 
where ߦ is the parameter for the regression coefficient of ௖ܻ೔ on ௡ܻ௕೔.  

2.3. A Latent Variable Model  

We presented a latent variable model where it is assumed that the observed responses are 
physical manifestations of a latent variable. Conditional on this latent variable, the responses are 
assumed to be independent and are modeled as functions of fixed covariates and a subject- 
specific latent variable. Let ܾ௜ denote the latent variable. The responses are modeled as function 
of the latent variable  
 

								

	 ௖ܻ೔|ܾ௜, ௖೔ݔ ൌ ܺ௖೔
ᇱߚ௖ ൅ ௖ܾ௜ߣ ൅ ሺ3ᇱሻ																																																																																																								௜ߝ

	 ௡ܻ௕೔|ܾ௜, ௡௕೔ݔ ∼ ,௜ߤሺܤܰ ,ሻߪ

	݃݋݈	 ௜ߤ ൌ ܺ௡௕೔
ᇱߚ௡௕ ൅ ,௕ܾ௜ߣ

௜ߝ ∼ ܰሺ0, ,௖ଶሻߪ
	ܾ௜ ∼ ܰሺ0, ௕ߪ

ଶሻ,

 

 
where ܾ௜  is a subject -specific latent vatiable. The latent variable shared by both responses 
induces the correlation and it is assumed that given the latent variable, the two responses are 
independent. Also ܾ௜ is independent of ܺ௖೔ and ܺ௡௕೔.  
 
However, ߣ௕, ,௖ߣ ௕ߪ

ଶ and ߪ௖ଶ are not identifiable. There are four parameters to be estimated but 
only information from the ܸܽݎሺ ௖ܻሻ, ሺݎܸܽ ௡ܻ௕ሻ and ݒ݋ܥሺ ௖ܻ, ௡ܻ௕ሻ. We have to restrict at least two 
parameters to obtain an identifiable model. Here, we assume ߪ௕

ଶ ൌ 1 and ߣ௕ ൌ ௖ߣ ൌ   .ߣ
 
We can rewrite ሺ3ᇱሻ and obtain the final expression for a latent model for two responses: 
 

 

௖ܻ೔|ܾ௜, ௖೔ݔ ൌ ܺ௖೔
ᇱߚ௖ ൅ ௜ܾߣ ൅ ,௜ߝ 																																																																																																									ሺ3ሻ

	 ௡ܻ௕೔|ܾ௜, ௡௕೔ݔ ∼ ,௜ߤሺܤܰ ,ሻߪ

	݃݋݈ ௜ߤ ൌ ܺ௡௕೔
ᇱߚ௡௕ ൅ ,௜ܾߣ

ܾ௜ ∼ ܰሺ0,1ሻ,
௜ߝ ∼ ܰሺ0, .௖ଶሻߪ

 

 
The log likelihood for the model is written as:  
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The vector of parameters ߚ௖ and ߚ௡௕ , the parameters of ߪ௖ଶ, ߣ and ߪ should be estimated.  
 

3. Simulation Study 

We used a simulation study to investigate estimates obtained by the univariate model, 
factorization model and latent variable model. In this section, simulation study is used to 
illustrate the application of our proposed models. In this simulation, ε, Y୬ୠ and ܾ were generated 
from a normal distribution, negative binomial distribution and a normal distribution. We thus 
generated data sets with different cases (1, 2 and 3). For each case, we generated 1000 samples. 
The data generated from the following cases:  
 
Case 1: 

 

  

 
 

Y ൌ β ൅ β X ൅ β X ൅ β X ൅ β X ൅ ε,c 4c 4c0c 1c 1c 2c 2c 3c 3c
Y | Y NB μ,0.66 ,cnb
logሺμሻ ൌ β ൅ β X ൅ β X ൅ β X ൅ β X ൅ η Y ‐ E Y ,c cb0 b1 1nb b2 2nb b3 3nb b4 4nb
E Y ൌ β ൅ β X ൅ β X ൅ β X ൅ β X ,c 4c 4c0c 1c 1c 2c 2c 3c 3c
ε N 0,5 .

∼

∼

 

 
Case 2:  

  
 

 

 

Y | Y ൌ β ൅ β X ൅ β X ൅ β X ൅ β X ൅ ξ Y ‐ E Y ൅ ε,c 4c 4c0c 1c 1c 2c 2c 3c 3cnb nb nb

E Y ൌ μ,nb
Y NB μ,0.66 ,nb
logሺμሻ ൌ β ൅ β X ൅ β X ൅ β X ൅ β X ,b0 b1 1nb b2 2nb b3 3nb b4 4nb
ε N 0,5 .

∼

∼
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Case 3:  

 

 
 

∼

∼
∼

Y ൌ β ൅ β X ൅ β X ൅ β X ൅ β X ൅ λb൅ ε,c 4c 4c0c 1c 1c 2c 2c 3c 3c
Y NB μ,0.66 ,nb
logሺμሻ ൌ β ൅ β X ൅ β X ൅ β X ൅ β X ൅ λb,b0 b1 1nb b2 2nb b3 3nb b4 4nb
ε N 0,5 ,
b N 0,1 .

 

 
Also ଵܺ௖	 and ଵܺ௡௕	  are generated from ݃ܽ݉݉ܽሺ100,2ሻ , ܺଶ௖  and ܺଶ௡௕  are generated from 
gammaሺ2,2ሻ and ܺଷ௖, ܺସ௖, ܺଷ௡௕ and ܺସ௡௕ are generated from Bernilliሺ0.5ሻ.  
 
The vector of coefficients associated with the covariate was chosen ሺߚ଴௖, ,ଵ௖ߚ ,ଶ௖ߚ ,ଷ௖ߚ ସ௖ሻߚ ൌ
ሺ30,0.1,െ0.130,1.715,0.981ሻ  , ሺߚ଴௕, ,ଵ௕ߚ ,ଶ௕ߚ ,ଷ௕ߚ ସ௕ሻߚ ൌ ሺ2,0.003,െ0.223,0.39,െ0.437ሻ  and 
ሺߪ௖ଶ, ,ߪ ,ߣ ,ߦ ሻߟ ൌ ሺ5,0.66,0.435,0.305,0.25ሻ.  
 
The data generated from each case is modeled using that case and univariate approach (ignoring 
the correlation between the outcomes)  
 

௖ܻ ൌ ଴௖ߚ ൅ ଵ௖ߚ ଵܺ௖ ൅ ଶ௖ܺଶ௖ߚ ൅ ଷ௖ܺଷ௖ߚ ൅ ସ௖ܺସ௖ߚ ൅ ,ߝ
௡ܻ௕ ∼ ,ߤሺܤܰ 0.66ሻ,
ሺ	݃݋݈ ሻߤ ൌ ௕଴ߚ ൅ ௕ଵߚ ଵܺ௡௕ ൅ ௕ଶܺଶ௡௕ߚ ൅ ௕ଷܺଷ௡௕ߚ ൅ ,௕ସܺସ௡௕ߚ
ߝ ∼ ܰሺ0,5ሻ.

 

 
The models were fitted using nlminb from R to assure that the same numerical algorithms were 
used to maximize the likelihoods.  
 

Table 1. Results of the simulations study for case 1 
Case 1  Model (2)  Uni. model   

Parameter Real value  Est. S.E Est. S.E. 
NJ       

Constant  2 2.513 0.470  -0.957 0.291   
Age 0.003 -0.008 0.009 0.006 0.006  
Ca -0.223  - 0.323  0.071 0.015 0.046   
Job  0.039 0.112 0.089  0 0.054   
TA -0.437 -0.517 0.086 0.051 0.065  
  0.010 0.078 0.029 0.647 0.66 ߪ

BMI       
Constant  30 32.074 1.669 36.737 1.642   

Age 0.100  0.057 0.033 -0.012 0.032   
Ca -0.130 -0.45 0.261 -0.082 0.219  
Job  1.715 1.930 0.33 -0.508 0.331   
TA 0.981   0.744 0.318 0.165 0.319   
  ௖ଶ 5 5.054 0.110  5.173 0.108ߪ
  - - 0.003 0.249 0.250 ߟ
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Table 2. Results of the simulations study for case 2 
Case 2  Model (2’)  Uni. model  

Parameter Real value  Estimate S.E. Este S.E.   
NJ       

Constant  2 2.001 0.289  1.458 0.189   
Age 0.003 0.003 0.004 -0.001 0.004  
Ca -0.223  - 0.239  0.034  0.037 0.027   
Job  0.039 0.049 0.044  0.001  0.044   
TA -0.437 -0.487 0.045 -0.099 0.037   
  0.073 0.578 0.045 0.666 0.66 ߪ

BMI       
Constant  30 30.41 1.727 33.645 1.612   

Age 0.100  0.103 0.032 0.032 0.32   
Ca -0.130 -0.289 0.251 0.148 0.227  
Job  1.715 2.186 0.327 -0.294 0.328   
TA 0.981   0.659 0.367 0.145 0.319   
   ௖ଶ 5 5.009 0.112  5.271 0.105ߪ
  - - 0.077 0.469 0.305 ߦ

 
 

Table 3. Results of the simulations study for case 3  
Case 3  Model (3)  Uni. model   

Parameter Real value Est. S.E. Est. S.E. 
NJ       

Constant  2 1.649 0.386 1.141 0.272   
Age 0.003 0.006 0.005 -0.007 0.005  
Ca -0.223  - 0.204  0.039 0.018 0.038   
Job  0.039 0.083 0.052 -0.088  0.046   
TA -0.437 -0.468 0.052 0.019  0.049  
  0.023 0.392 0.064 0.612 0.66 ߪ

BMI       
Constant  30 27.186 1.672 34.356 1.649  

Age 0.100  0.158 0.032 0.039 0.32   
Ca -0.130 -0.219 0.242 -0.026 0.231  
Job  1.715 1.998 0.318 0.288  0.323   
TA 0.981   0.833 0.319 -0.339 0.322   
  ௖ଶ 5 5.115 0.109  5.295 0.104ߪ
  - - 0.058 0.407 0.435 ߣ

 
Tables 1-3 contains the average estimated values of 
 

ሺߚ଴௖, ,ଵ௖ߚ ,ଶ௖ߚ ,ଷ௖ߚ ,଴௕ߚସ௖ሻ, ሺߚ ,ଵ௕ߚ ,ଶ௕ߚ ,ଷ௕ߚ  ,ସ௕ሻߚ
2
cσ ,σ  

 
and  (for model (3)),   (for model (2’)) and  (for model (2)) for n = 1000. The results are 
summarized as follows. The parameter estimates by the model (2), model (2’) and model (3) are 
close to the true values of the parameters.  
 

4. Application and Sensitivity Analysis 

 

4.1. Application 

In this section, we use the Mixed correlated models in (2) and (3) for the medical data set 
describe in the following subsection. The medical data set is obtained from an observational 
study on women in the Taleghani hospital of Tehran, Iran. These data record the number of joint 
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damage (NJ) as negative binomial responses and body mass index (BMI) as continuous 
responses for 163 patients. These patients are heavy body.   
 
Joint damage is a disease of bone in which the bone mineral density (BMD) is reduced, bone 
micro architecture is disrupted and the amount and variety of non-collage nous proteins in bone 
is altered. BMI is a statistical measure of the weight of body mass index. A person body mass 

index may be accurately calculated using any of the formulas such as ܫܯܤ ൌ ௐ

ுమ where W is 

weight and H is height. Also, The heavy body can result in damages to joints of knee and ankle, 
etc. These two variables, joint damage and BMI correlated variables, and they have to be 
modeled. Explanatory variables which affect these variables are: (1) amount of total body 
calcium (Ca), (2) job status (Job, employee or housekeeper), (3) type of the accommodation (Ta, 
house or apartment) and (4) age.  
 
We used a test to investigate over dispersion for count response. Deviance and Pearson Chi-
Square divided by the degrees of freedom are used to detect over dispersion or under dispersion 
in the Poisson regression. Values greater than 1 indicate over dispersion, that is, the true variance 
is bigger than the mean, values smaller than 1 indicate under dispersion, the true variance is 
smaller than the mean. Evidence of under dispersion or over dispersion indicates inadequate fit 
of the Poisson model. We can test for over dispersion with a likelihood ratio test based on 
Poisson and negative binomial distributions. This test tests equality of the mean and the variance 
imposed by the Poisson distribution against the alternative that the variance exceeds the mean.  
 
For the negative binomial distribution, the variance of count response ( ௖ܻ௢௨௡௧) is  
 

      ,2
count count countVar Y ൌ E Y ൅ kE Y

 
 

where ݇ ൐ 0 , the negative binomial distribution reduces to Poisson when ݇ ൌ 0 . The null 
hypothesis is ܪ଴: ݇ ൌ 0 and the alternative hypothesis is ܪଵ: ݇ ൐ 0). Use the ܴܮ(likelihood ratio) 
test, that is, compute ܴܮ  statistic, -2( L L (Poisson) - LL (negative binomial)), where LL is 
log(likelihood). The asymptotic distribution of the LR statistic has probability mass of one half at 
zero and one half Chi-sq distribution with 1 df (see Cameron and Trivedi, 1998). To test the null 
hypothesis at the significance level ߙ, use the critical value of Chi-sq distribution corresponding 
to significance level ߙ , that is reject H0 if ܴܮ statistic ൐ ߯ଵିଶఈ,ଵ

ଶ .  
 
In this data, we calculated LL (Poisson for NJ)=533.513, LL (negative binomial for NJ) = 
541.701 and -2(LL (Poisson) - LL (negative binomial)) = -16.376 (with 1 d.f. and P-
value=0.003). So, NJ has over dispersion and NJ is negative binomial distribution.  
 
Results of using three models (model 1, 2 and 3) are given in Table 4. We used the univariate 
model (model 1), the factorization model (model 2) and the latent variable model (model 3) as 
described Section 2.4) to estimate the parameters of the models.  
 
Univariate model (model 1) shows significant no effect of covariates on BMI and the number of 
joint damage. For the factorization models (model 2) shows significant effect of amount of total 
body calcium and job status on the frequency of joint damage. From these effects we can infer 
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that the amount of total body calcium have a negative impact on the frequency of number of joint 
damage. Job status has a positive impact on the frequency of number of joint damage. ߪො indicates 
that the increase of dispersion has a  positive impact on the frequency of number of joint damage. 
In these models, correlation parameter ̂ߟ is strongly significant. It shows a positive correlation 
between BMI and the number of joint damage. The estimated variance of BMI (ߪො௖ଶ obtained by 
the factorization model is less than those of univariate model. The factorization model (model 2) 
gives the same results as the latent variable model (model 3). In the latent variable model, 
correlation parameter ߣመ  is strongly significant. The better performance of the latent variable 
model over the factorization model.  
 

Table 4. Estimation results of the four models (NJ: Negative Binomial Response and BMI: 
Continuous Response) of real data, parameter estimates highlighted in bold are 
significant at 5 % level.)  

Model           Model (1)         Model (2)        Model (3)  
Parameter Est.  S.E. Est. S.E. Est. S.E.   

NJ        
Constant  .432 .233 .805 .130 .731 .116   

Age 0.003 0.016 0.002 0.011 0.002 0.010   
Ca -0.223  0.517  -0.977 .401 -0.952 .391  
Job  0.039 0.031 .057 .020 .055 .017   
TA -0.437 0.441 -0.405 0.333 -0.404 0.333   
  090. 240. 015. 243. 029. 250. ߪ

BMI        
Constant  .526 .231 .517 .665 .437 .570   

Age 0.100  0.131 0.101 0.140 0.101 0.130  
Ca -0.130 0.085 -0.104 0.074 -0.089 0.069  
Job  1.715 2.168 1.721 2.421 1.712 2.420   
TA 0.981   0.775 0.980 0.773 0.978 0.765   
  ௖ଶ .524 .588 .919  .588 .341  .522ߪ
  - - 070.  251. - - ߟ
  055.  435. - - - - ߣ

-loglike             1156.013    1047.013        1037.311  

 

4.2. Sensitivity Analysis 

Likelihood displacement is a very important concept as it provides a general approach to study 
the problem of influence. The method of local influence was introduced by Cook (1986) and 
modified by Billor and Loynes (1993) as a general tool for assessing the influence of local 
departures from the assumptions underlying the statistical models.  
 
Perturbations of the model influence key results of the analysis are to compare the results derived 
from the original and perturbed models. The influence graphs introduced in this Section are 
simply devices to facilitate such comparisons when the behavior of the parameter estimates is of 
interest. This article shows that local-influence analysis of perturbations of the correlation 
parameters of models. The log-likelihood for the unperturbed and perturbed models are denoted 
by ܮሺߠሻ and ܮሺߠ|߱ሻ, respectively. The perturbed likelihood ܮሺߠ|߱ሻobtained after the likelihood 
have been perturbed by an amount   where  is a q ×1  vector which is restricted to some open 
subset ߗ of ܴ௤.  
 
Then the likelihood displacement LDሺωሻ is defined by 
 

ሺ߱ሻܦܮ ൌ 2ሾܮሺߠ෠ሻ െ .෠ఠሻሿߠሺܮ 																																																																																																											ሺ4.1ሻ 
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Generally, one introduce perturbations into the model through the qൈ 1  vector   which is 

restricted to some open subset ߗ  of qR  and θ is pൈ 1 vector of unknown parameters. Cook 
(1986) proposed the maximum normal curvature ܥ௠௔௫. The ܥ௠௔௫ is defined by  

 

max l lC ൌ max C ,  
 
where ܥ௟ is the lifted line in the direction l  can be easily calculated by  
 

 T T ‐1
l	 							 				C ൌ 2 l Δ ሺLሻ Δl ,	 				 		 		 4.2  

 

where ˆ

∂
∂ ∂ i

2
i i

i θൌθ,ω ൌ0
i

l ሺθ | ω ሻ
	Δ ൌ

ω η
 and define ߂ as the p n  matrix with iΔ  as its ith column 

and ܮሷ  denote the p p matrix of second-order derivatives of 0lሺθ | ω ሻ , where there is an ߱଴ in 

with respect to θ ,ߗ , also evaluated at ˆ  . Obviously, C୪ can be calculated for any direction l. 
One evident choice is the vector l୧  containing one in the ith position and zero elsewhere, 
corresponding to the perturbation of the ith weight only. The corresponding local influence 

measure, denoted by ܥ୪ , then becomes T ‐1
l i iC ൌ 2 Δ Lሻ Δሺ .  Another important direction is the 

direction ݈௠௔௫  of maximal normal curvature. ௠௔௫ܥ	  Also, ௠௔௫ܥ	  is the largest Eigen value of 
T ‐1

i iΔ Lሻ Δሺ  and l୫ୟ୶ is the corresponding eigenvector.  

 
 Let see how we can use this approach for our purposes. Condition for independent responses 

ߟ) ൌ 0) and condition for Poisson distribution for NJ is (ܫܦ ൌ ௏௔௥ሺே௃ሻ

ாሺே௃ሻ
ൌ 1) which gives the 

following condition for not having over dispersion ݄ ൌ ௏௔௥ሺே௃ሻ

ாሺே௃ሻ
െ 1 ൌ 0 in the model (3). We can 

use maximal normal curvature for the effect of perturbation from independent responses to 
correlated responses and the perturbation from Poisson distribution to negative binomial 
distribution (or over dispersion).  
 
Let ൌ ሺߟ, ݄ሻ . Here,	߱଴ ൌ ሺ0,0ሻ for each model and ݍ ൌ 2. Denote the log-likelihood function by 
 

ሻ߱|ߠሺܮ  ൌ ∑ ௜ܮ
௡
௜ୀଵ ሺߠ|߱ሻ, 

 
where ܮ௜ሺߠ|߱ሻ  is the contribution of the ith  individual to the log-likelihood and ߠ  is the 
parameter vector. Here, ܮሺߟ|߱ ൌ ߱଴ሻ  is the log-likelihood function which corresponds to 
independent responses. Suppose ߱ can be perturbed around 0. Let ߠ෠ be MLE estimator for ߠ 
obtained by maximizing ܮሺߠሻ ൌ ߱|ߠሺܮ ൌ ߱଴ሻ and let ߠ෠ఠ denote the MLE estimator for ߠ under 
 ෠ as local influence. Strongly different estimates show thatߠ ෠ఠ andߠ ሻ. Now one compare߱|ߠሺܮ
the estimation procedure is highly sensitive to such modification. We can quantify the 
differences using maximal normal curvature defined as (4.2).  
 
To search for Sensitivity analysis we find ܥ௠௔௫ . This is confirmed by the curvature ܥ௠௔௫ ൌ
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12.013. This curvature indicates extreme local sensivity. These curves show a high curvature 
aroundω଴, so that the differing values of ω affects the model (3) results, hence final results of the 
model (3), is highly sensitive to correlated responses and negative distribution for NJ.  
  

5. Conclusion 

We presented different approaches to model correlated negative binomial and continuous 
outcomes. We proposed new multivariate variable models. We also implemented likelihood 
approach based. Simulation results suggest that the four approaches lead to consistent estimates 
of the regression parameters. This suggests that the correlation between the outcomes will not be 
worse than the assumption of independence. In contrast to the factorization approach, the latent 
variable model presented is easily extended to several continuous and/or several negative 
binomial outcomes by including additional latent variables as long as the outcomes are positively 
correlated. However, some of the assumptions of the model, such as the distribution of the latent 
variables, are not easily assessed. In the presence of missing observations in one of the outcomes, 
the factorization approach only uses the complete cases or it requires the EM-algorithm to 
include all the cases in the analysis (Fitzmaurice and Laird, 1997). This is not the case with the 
latent model. If the missing data is missing at random or missing completely at random (Little 
and Schluchte, 1987), this situation can be easily accommodated due to the conditional 
independence of the outcomes given the latent variable. Furthermore, the latent variable model is 
easily fitted using standard software.  
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