[BIOL 1015 General Biology]
[Summer 2020]

Instructor: Dr. George E. Brown
Section # and CRN: Z01 32122

Office Location: 430F New Science
Office Phone: 936-261-3161
Email Address: gebrown@pvamu.edu

Office Hours: 7:30p.m.-7:59p.m. by course e-course and zoom meetings MTWRF before 8:00a.m. class meetings, and 4:31p.m.-5:00p.m. MTWRF. Students may schedule a tutorial session time with the instructor for 8:00p.m. on Monday, Tuesday, Wednesday, Thursday or Friday by e-course and zoom meetings. Tutorials are also conducted at student request on Saturdays and Sundays 8:00a.m. by e-course and zoom meetings. Please make your request by 6:00p.m. by e-mail to gebrown@pvamu.edu on Fridays so that the instructor may announce the session to the entire class.

Mode of Instruction: [Remote distance learning instruction]

Course Location: e-course and zoom meetings

Class Days & Times: MTWRF zoom Lecture at 8:00a.m.-11:50 a.m. and Laboratory at 1:30p.m.-4:30p.m. MTWRF

Catalog Description: [Basis of life, cell theory, cell structure, energy transformation, reproduction, genetic variability and origins of diversity of organisms]

Prerequisites: [Access to compatible technology for using e-course and zoom. College level reading skills. Students must have passed TSI requirements for reading, and mathematics. Academic success in this 5 semester credit hours course requires reading the course textbook, reading chapter study guides before each of the (pvpanther.zoom.us) 9:00a.m. lecture meetings, and 1:30 p.m. laboratory meetings.]

Co-requisites: It is required that students be enrolled in BIOL 1015 Z61 (32140) laboratory section as well as BIOL 1015 Z01 because BIOL 1015 is a 5 semester credit hour, combined lecture-laboratory course. Students must be enrolled in both the lecture section and a laboratory section[]

Recommended Texts: Supplements: (Optional)
1. Students are required to learn concepts described in the textbook and Student Study Guides for each chapter posted on e-course for this course.
2. (Optional) Website to accompany Campbell Biology, Eleventh edition; “Mastering Biology”, Learn More at www.masteringbiology.com It is an online learning tool that contains pretest, narrated animations, and tutorials on basic math, chemistry, study skills, and word roots. It provides access to quizzes, glossary, exercises, internet activities, and annotated web links. Access to this website is provided with the purchase of a new textbook from a university bookstore. The publisher charges a fee for access if you do not purchase a new textbook. Therefore the use of this web site is optional for this course.

Materials needed to enhance learning biology:
1. Required Course Textbook (Students must read the chapters in the textbook prior to class and be prepared to be quizzed by the instructor)
2. Students are encouraged to maintain a notebook of chapter concepts.
3. Compatible technology to participate in zoom lectures and laboratories, and exams.

Student Learning Outcomes:

<table>
<thead>
<tr>
<th>Program Learning Outcome # Alignment</th>
<th>Core Curriculum Outcome Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.Critical Thinking</td>
</tr>
<tr>
<td></td>
<td>2.Communication</td>
</tr>
<tr>
<td></td>
<td>3.Problem Solving</td>
</tr>
<tr>
<td></td>
<td>4.Personal and Social Responsibility</td>
</tr>
</tbody>
</table>

Upon successful completion of this course, students will be able to:

<table>
<thead>
<tr>
<th>[NOTE: Begin each outcome with a verb]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Upon successful completion of this course, students will be able to demonstrate on class exams how to conduct laboratory investigations using safe, environmentally appropriate, and ethical practices.</td>
</tr>
<tr>
<td>Outcome # Alignment: 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Upon successful completion of this course, students will be able to demonstrate on class exams the use of the scientific method during laboratory investigations in the following ways:

1. Plan and implement investigative procedures including asking questions, formulating testable hypotheses, and selecting instruments and technology.
2. Collect data, organize it, analyze it, evaluate, make inferences, and predict trends.
3. Communicate valid conclusions.

| Outcome # Alignment: 1, 2, 3, 4 |

Upon successful completion of this course, students will be able to demonstrate on class exams how to use critical thinking and scientific problem solving to make informed decisions in the following ways:

1. Analyze, review, and critique scientific explanations, including hypotheses and theories using scientific evidence and information.
2. Draw inferences based on data.

| Outcome # Alignment: 1, 2, 3, 4 |

Upon successful completion of this course, students will be able to demonstrate on class exams the characteristics of living things that distinguish them from non-living things in the following ways:

1. Describe the hierarchy of biological organization.
2. Contrast the six kingdoms of living things and know examples of each.
3. Summarize the role and examples of producers, consumers, and decomposers.

| Outcome # Alignment: 1, 2, 3, 4 |
Upon successful completion of this course, students will be able to demonstrate on class exams understanding of the chemical basis of life in the following ways:

| a. Name the principle elements in living things and provide a function of each. |
| b. Learn the mass, charge, and arrangement of electrons, protons and neutrons in the principle atoms of living things to include the electron orbitals, energy levels, and electron shells. |
| c. Distinguish between atomic number and atomic mass. |
| d. Explain how the number of valence electrons of an atom is related to its chemical properties. |
| e. Compare the mechanisms by which ionic bonds, covalent bonds, and hydrogen bonds are formed. |
| f. Explain how cations and anions form and how they interact. |
| g. Distinguish between oxidation and reduction. |
| h. Show how hydrogen bonds are formed between water molecules and explain how they are responsible for the various properties of water that are essential for life. |
| i. Convert the hydrogen ion concentration (moles/liter) of a solution to a pH value. |
| j. Contrast acids, bases, and salts. Describe the composition of salts and why they are important to organisms. |

Outcome # 1, 2, 3, 4
- Critical Thinking
- Communication
- Problem Solving
- Personal and Social Responsibility

Upon successful completion of this course, students will be able to demonstrate on class exams understanding of the four types of organic molecules in the following ways:

| a. Distinguish between organic molecules and inorganic compounds. |
| b. Describe the properties of carbon that make it the central atoms of organic compounds. |
| c. Distinguish between the three types of isomers. |
| d. Identify the major functional groups that present in certain organic molecules. |
| e. Learn the function and draw the structures of the carbohydrates, lipids, proteins, and nucleic acids to include the building block molecules: monosaccharaides, glycerol, fatty acids, amino acids, phosphates, and nucleotides. |
| f. Understand biological function of each type of organic molecules organic molecules studied. |
| g. Draw the structures of amino acids, explain how they are grouped according to their radical, group, and explain the levels of protein structure. |
| h. Draw the chemical structures of ribonucleotides and deoxy-ribonucleotides to include the purines, pyrimidines, pentoses, and phosphate groups. |
| i. Draw the structure of DNA and RNA. |

Outcome # 1, 2, 3, 4
- Critical Thinking
- Communication
- Problem Solving
- Personal and Social Responsibility

Upon successful completion of this course, students will be able to demonstrate on class exams how the cell is the basic unit of life and describe the cell theory in the following ways:

| a. Compare and contrast the characteristics of prokaryotic and eukaryotic cell. |

Outcome # 1, 2, 3, 4
- Critical Thinking
- Communication
- Problem Solving
| | b. Explain why the relationship between surface area and volume of a cell determines its efficiency and entrance into cell division.
c. Describe the structure and function of the various bacterial cell structures.
d. Describe the structure and function of eukaryotic cell structures and organelles
e. Explain the methods used to study cells.
f. Trace the path of proteins synthesized in the rough endoplasmic reticulum as they are processed, modified and transported to specific destinations.
g. Compare the functions of mitochondria and chloroplasts.
h. Explain the structure and function of microtubules, intermediate filaments, and actin filaments and their importance to cells and animal tissues.
i. Describe how flagella, cilia, pseudopods, actin and myosin function in cellular and animal movement. | 4. Personal and Social Responsibility |
|---|---|---|
| 8 | Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of the phospholipids bilayer structure and function of biological membranes in the following ways:
a. Explain the importance of cellular membranes and their functions.
b. Explain how the various classes of membrane proteins associate with phospholipids bilayer and discuss the role of each class of proteins.
c. Describe the passage of materials through the membranes by diffusion, osmosis, facilitated diffusion, active transport, endocytosis, and exocytosis.
d. Understand how cells communicate by cell signaling.
e. Demonstrate how cell form tissues and how the various cell junctions connect cells. | Outcome # Alignment 1, 2, 3, 4
1. Critical Thinking
2. Communication
3. Problem Solving
4. Personal and Social Responsibility |
| 9 | Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of the laws of thermodynamics that apply energy transformations in living systems in the following ways:
a. Know how ATP and GTP are the energy currency of cells.
b. Understand how organic catalyst such as enzymes and ribozymes speed up specific chemical reactions in cells.
c. Know how the various enzymes function and how they are regulated. | Outcome # Alignment 1, 2, 3, 4
1. Critical Thinking
2. Communication
3. Problem Solving
4. Personal and Social Responsibility |
| 10 | Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of the four stages of aerobic respiration in the following ways:
a. Know the enzyme catalyzed reaction steps in stage I of glycolysis and stage II of glycolysis.
b. Draw the substrates and products of each step of glycolysis.
c. Draw the enzyme, substrate and products of the conversion of pyruvate to acetyl CoA.
d. Draw the enzymes, substrates, and products of each step of the citric acid cycle. | Outcome # Alignment 1, 2, 3, 4
1. Critical Thinking
2. Communication
3. Problem Solving
4. Personal and Social Responsibility |
e. Conceptualize the energy conversions of each step of the electron transport chains and the coupled oxidative phosphorylation.

<table>
<thead>
<tr>
<th>11</th>
<th>Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of photosynthesis in the following ways:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Know how covalent bonds of water are disrupted during the light dependent reaction and the three products are produced.</td>
</tr>
<tr>
<td></td>
<td>b. Know how ATP is formed by chemiosmosis.</td>
</tr>
<tr>
<td></td>
<td>c. Demonstrate by drawing the enzyme catalyzed steps of the Calvin Cycle to include the substrates and products.</td>
</tr>
<tr>
<td></td>
<td>d. Draw the substrates and products of each step of the synthesis of alpha glucose from two glyceraldehydes 3-phosphate (G3P) molecules.</td>
</tr>
<tr>
<td></td>
<td>Outcome # Alignment 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of cell communication and regulation of the cell cycle in the following ways:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Understand the structure and functions of cellular receptors.</td>
</tr>
<tr>
<td></td>
<td>b. Describe signal transduction and the cellular response.</td>
</tr>
<tr>
<td></td>
<td>c. Explain how the cell cycle is regulated.</td>
</tr>
<tr>
<td></td>
<td>Outcome # Alignment 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of chromosomes, mitosis, and meiosis in the following ways:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Explain chromosomes in terms of genes, loci, heterochromatin, euchromatin, and species number of chromosomes, sister chromatids, centromeres, and kinetochores.</td>
</tr>
<tr>
<td></td>
<td>b. Describe the principle events of the stages of the eukaryotic cell cycle and how it is controlled.</td>
</tr>
<tr>
<td></td>
<td>c. Diagram the process of mitosis.</td>
</tr>
<tr>
<td></td>
<td>d. Draw the process of both stages of meiosis.</td>
</tr>
<tr>
<td></td>
<td>e. Distinguish between asexual reproduction and sexual reproduction.</td>
</tr>
<tr>
<td></td>
<td>f. Distinguish between haploid cells and diploid cells.</td>
</tr>
<tr>
<td></td>
<td>g. Define homologous chromosomes.</td>
</tr>
<tr>
<td></td>
<td>Outcome # Alignment 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of the basic principles of heredity in the following ways:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Define and use correctly the terms allele, locus, genotype, phenotype, dominant, recessive, homozygous, heterozygous, monohybrid cross, dihybrid cross, trihybrid cross, and test cross.</td>
</tr>
<tr>
<td></td>
<td>b. Apply the product rule and sum rule when predicting the outcomes of genetic crosses.</td>
</tr>
<tr>
<td></td>
<td>c. Solve genetic problems involving complete dominance, incomplete dominance, epistasis, polygenes, multiple alleles, and X-linked inheritance.</td>
</tr>
<tr>
<td></td>
<td>d. Explain some of the ways that genes may interact to affect the phenotype.</td>
</tr>
<tr>
<td></td>
<td>e. Explain the genetic determination of sex.</td>
</tr>
<tr>
<td></td>
<td>Outcome # Alignment 1, 2, 3, 4</td>
</tr>
</tbody>
</table>
| 15 | Upon successful completion of this course, students will be able to demonstrate on class exams understanding of how the structure of DNA forms the genetic codes for genes in the following ways:
 a. Summarize the evidence observed in the 1950’s demonstrating that DNA is the genetic material.
 b. Draw how the four types of deoxyribo-nucleotide subunits are bonded together to form the structure of DNA. State the base pairing rule for DNA.
 c. Draw how the ribo-nucleotide subunits are bonded together to form RNA.
 d. Understand DNA transformation of bacteria, and bacteriophage DNA transduction of bacteria.
 e. Summarize the evidence that demonstrated semi-conservative replication of DNA.
 f. Explain the steps of DNA replication.
 g. Know each enzyme involved in DNA replication and its function.
 h. Compare the organization of DNA in prokaryotic and eukaryotic cells. | Outcome # | 1.Critical Thinking
 2.Communication
 3.Problem Solving
 4.Personal and Social Responsibility |
| --- | --- | --- |
| 16 | Upon successful completion of this course, students will be able to demonstrate on class exams by drawings an understanding of gene expression (transcription) in the following ways:
 a. Summarize the early evidence that most genes code for proteins.
 b. Outline the flow genetic information (central dogma) from DNA to Protein.
 c. Know the various types of RNA polymerases and how they catalyze the synthesis of RNA.
 d. Know the substrates and products of transcription | Outcome # | 1.Critical Thinking
 2.Communication
 3.Problem Solving
 4.Personal and Social Responsibility |
| 17 | Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of the substrates, products, enzymes and ribozymes involved in the steps of translation in the following ways:
 a. Identify the features of tRNA that function in decoding the genetic information during translation.
 b. Explain how ribosomes function in protein synthesis.
 c. Diagram the processes of initiation, chain elongation, and chain termination in protein synthesis.
 d. Compare mRNA synthesis, modifications, and ribosome recognition sites in prokaryotes and eukaryotes. | Outcome # | 1.Critical Thinking
 2.Communication
 3.Problem Solving
 4.Personal and Social Responsibility |
| 18 | Upon successful completion of this course, students will be able to demonstrate on class exams knowledge of regulation of gene expression in the following ways:
 a. Explain the organization of bacterial genes into operons. Explain the function of each gene.
 b. Explain why some operons are inducible and others are repressible.
 c. Explain the role of repressors in the regulation of gene expression.
 d. Differentiate between positive and negative control of operon gene expression.
 e. Draw the components of a eukaryotic gene and the DNA sequences that are involved in the regulation of transcription of that gene. | Outcome # | 1.Critical Thinking
 2.Communication
 3.Problem Solving
 4.Personal and Social Responsibility |
f. Provide examples of DNA binding proteins and describe how they bind to DNA.
g. Explain how transcriptional factors (proteins) facilitate transcription.
h. Describe how a change in chromosomal structure affects which genes are expressed.
i. Explain how one gene in a multicellular eukaryote might be able to produce different products in different types of cells.
j. Describe types of regulatory controls that can be exerted in eukaryotes after the mature mRNA is formed.

<table>
<thead>
<tr>
<th>19</th>
<th>Upon successful completion of this course, students will be able to demonstrate on class exams knowledge of DNA technologies and genetic engineering in the following ways:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Demonstrate how restriction enzymes cut DNA molecules and provide examples of how these restriction endonucleases are used in recombinant DNA technology.</td>
</tr>
<tr>
<td>b.</td>
<td>Summarize the properties of plasmids cloning vectors.</td>
</tr>
<tr>
<td>c.</td>
<td>Distinguish between a genomic library and a cDNA library.</td>
</tr>
<tr>
<td>d.</td>
<td>Describe uses for DNA hybridization probes.</td>
</tr>
<tr>
<td>e.</td>
<td>Explain how specific primers are used to amplify (replicate) specific genes from mixture genomic DNA or cDNA.</td>
</tr>
<tr>
<td>f.</td>
<td>Diagram the dideoxyribo-nucleotide triphosphates method of sequencing DNA.</td>
</tr>
<tr>
<td>g.</td>
<td>Provide a list of important proteins that have been produced by genetic engineering.</td>
</tr>
<tr>
<td>h.</td>
<td>Describe some transgenic plants and animals that been produced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>Upon successful completion of this course, students will be able to demonstrate on class exams knowledge of the human genome and human genetics in the following ways:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Define human genetics, human genome, bioinformatics, and pharmacogenomics.</td>
</tr>
<tr>
<td>b.</td>
<td>Determine the probable genotypes of the individuals in a pedigree.</td>
</tr>
<tr>
<td>c.</td>
<td>Distinguish between chromosomal abnormalities and single gene defects.</td>
</tr>
<tr>
<td>d.</td>
<td>Draw how non-disjunction may occur during meiosis to cause Down’s syndrome, Klinefelter Syndrome, and Turner Syndrome.</td>
</tr>
<tr>
<td>e.</td>
<td>Explain how each of the following genetic defects is inherited: phenylketonuria, sickle cell anemia, cystic fibrosis, Tay-Sachs disease, Huntington disease, color blindness, and hemophilia A.</td>
</tr>
<tr>
<td>f.</td>
<td>Describe how prenatal diagnosis is made by amniocentesis, chorionic villus sampling and ultrasound imaging.</td>
</tr>
</tbody>
</table>

| 21 | Upon successful completion of this course, students will be able to demonstrate on class exams an understanding of how the regulation of gene expression controls development of multicellular organisms in the | Outcome # Alignment 1, 2, 3, 4 1. Critical Thinking 2. Communication 3. Problem Solving 4. Personal and Social Responsibility |
following ways:

a. Distinguish between cell determination and cell differentiation.

b. Describe evidence that demonstrated totipotency (nuclear equivalence) of some differentiated plant and animal cells.

c. Explain the vertebrate cell lineage from zygote to germ layers to adult structures, organs and systems.

d. Distinguish between the function of maternal effect genes, segmentation (zygotic) genes, and homeotic genes of animals.

e. Explain how cell signaling and transcription factors control the order in which genes are expressed during development. Provide some examples of genes that are known to function as genetic switches in development.

f. Define induction and programmed cell death and give examples of the roles they play in development.
Major Course Requirements

Method of Determining Final Course Grade

<table>
<thead>
<tr>
<th>Course Grade Requirement</th>
<th>Value</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Exam 1, Thursday, 5/28/2020 Chapters 1-2</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>2) Exam 2, Monday, 6/01/2020 Chapters 1-3</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>3) Exam 3, Thursday, 6/04/2020 Chapters 1-5</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>4) Exam 4, Monday, 6/08/2020 Chapters 1-6</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>5) Exam 5, Thursday, 6/11/2020 Chapters 1-7</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>6) Exam 6, Monday, 6/15/2020 Chapters 1-9</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>7) Exam 7, Thursday, 6/18/2020 Chapters 1-10</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>8) Exam 8, Monday, 6/22/2020 Chapters 1-11</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>9) Exam 9, Thursday, 6/25/2020 Chapters 1-14</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
<tr>
<td>10) Grade Average for Assignments and quizzes</td>
<td>7.5%</td>
<td>7.5</td>
</tr>
</tbody>
</table>

9) FINAL EXAM Monday, 6/29/2020 (Covers chapters 1-15) 25.00% 25.00

Total: 100% 100

Grading Criteria and Conversion:

A = 90% to 100%
B = 80% to 89%
C = 70% to 79%
D = 60% to 69%
F = 0% to 59%

Detailed Description of Major Assignments:

[Demonstrate on the cumulative final exam that they can earn scores of 70% to 100%. Therefore students can earn up to 25% of the semester grade from their score on the final exam.]

Assignment Title or Grade Requirement

Score 70%-100% Standardized Cumulative Final Exam test knowledge of all chapters taught during the semester which should be chapters 1 through 15.

Course Procedures or Additional Instructor Policies

I. Course Purpose and Objectives:
The purpose of this course is to provide first year biology majors with a detailed knowledge of general biology that satisfies the prerequisites for entry into health profession schools and graduate biomedical programs. The outcome expectations for learners are listed below. This course is part one of a comprehensive introduction of the concepts of modern Biology for students majoring in Biology. It covers the chemical basis of life, organization of cells, biological membranes, cell communication, system, energy and metabolism, how cells make ATP, energy releasing pathways, photosynthesis, and regulation of the
cell cycle, mitosis, meiosis, and principles of heredity, DNA, and regulation of gene expression. The second semester course, BIOL 1025, is Part Two. It covers the DNA replication, gene regulation, DNA technology, genomics, development genetics, diversity of life, evolution, viruses, prokaryotes, protists, fungi, structure and life processes in animals, and introduction to ecology.

II. Type of Course:

University Administration announced that all summer 2020 classes will be remote, conducted by e-course and pvpanther.zoom.us meetings. The class instructor conducts discussion type classes. These classes require student participation by answering audio questions, quizzes, and video demonstrations. The instructors will ask students questions, present problems to solve and use audiovisuals to demonstrate concepts. Students should be prepared to actively participate in class meetings by answering questions and demonstrating their knowledge of biological concepts. Therefore it is essential for students to read the assigned textbook chapters and write notes of what they have read before the instructor discusses that chapter in class zoom meetings. Grades are determined by student performance on exams that test knowledge of the study objectives for each chapter. Students should be prepared to ask questions at the beginning of each class about concepts or questions that they were not able to comprehend during their individual studies. Zoom tutorials are conducted upon request by students to academically enhance their learning. Students may request appointments for evening tutorial meetings on zoom by e-mailing the instructor. These support activities should enhance student’s performance of the outcome expectations for learners.

Students are required to bring their BIOL1015 textbook and course materials to each zoom class meeting and when they meet with the instructor for office conferences, study sessions, tutorials, laboratories or any part of the course except during exams. In recent years some students have misunderstood the purposes of office hours and committed inappropriate request for higher grades than they have earned. This instructor will not discuss such inappropriate request.

III. EXAMS

All exams are cumulative. The cumulative final exam is scheduled for 9:00a.m. – 12:01p.m., Monday, July 29, 2020 accessed by e-course instructions and message announcements. Final exams are required to be given only at the times and dates announced in the Summer 2020 University Final Exam Schedule. Students must arrange their schedule and activities so that they are prepared and present for the final exam. Students are strongly advised to take all exams at the scheduled time. During the past 44 years, only four students have passed make-up exams in this class. Plan and schedule your activities so that you can be present to take all exams at the scheduled time.

IV. Class Attendance:

Learning is a voluntary act. The University Attendance Policy requires students to be present for each scheduled class meeting.

V. Conduct That Is Not Allowed:

a. No cheating on exams, quizzes, reports, or any graded activity.
Semester Calendar

Week One:

Topic Description

Readings:

Tuesday 6/26/2020 **Lecture 8:00a.m. to 11:50a.m.: Read** Characteristics of life in chapter 1 and Unit 1 THE CHEMISTRY OF LIFE, Chapter 2 before the 8:00a.m. lecture
Lab: 1:30p.m. to 4:30p.m. Safety/Pre Exam, Scientific Method, Chapter 2 The Chemistry of Life

Wednesday, **Lecture: Read** Chapter 2 before the 8:00a.m. lecture
Lab: 1:30p.m. Chapter 2 Text Book, Essential Elements, compounds, atomic mass, bonds, molecular shape, chemical reactions

Thursday (R) **Lecture: Read** Chapters 3 before 8:00a.m.
Exam 1, 8:00a.m. to 9:45a.m.
Lecture 10:00a.m. to 11:50a.m.
Lab: 1:30p.m. to 4:30p.m. Acids and bases, pH scale, buffers, properties of water, Functional groups, formation of bonds, valence electrons, hydrocarbons, isomers, ATP

Friday **Lecture and Lab: 1:30p.m. to 4:30p.m.** Read Chapter 3 “Water and Life” before lecture and Lab on Properties of water

Assignment (s):

T Study Chapters 1 and 2 study guide posted on e-course
W Study chapter 2 study guide and take Quiz 1 for Chapters 2 on e-course
R Take exam 1 on e-course
F Study chapter 3 study guide and e-course quiz 2 on chapter 3

Week Two:

Topic Description

Readings:

Unit 3; The Chemistry of Life

M **Lecture: Exam 2 at 8:00a.m. to 9:30a.m. (Covers chapter 1-3)** Read Chapter 3 before 9:45a.m. lecture
Lab: 1:30p.m. to 4:30p.m. Read Chapter 3 study guide before 1:30p.m. Lab.

T **Lecture:** Read Chapter 4 “Carbon and the Diversity of Life” before 8:00a.m. lecture
Lab: 1:30p.m. Chapter 5 “The structure and function of large Large biological molecules”; Carbohydrates and Lipids

W **Lecture:** Read Chapter 5 before 8:00a.m. lecture
On proteins
Lab: 1:30p.m. Polypeptide structure and synthesis; Levels of protein structure

R **Lecture: Exam 3 at 8:00a.m to 9:30a.m. (Covers chapters 1-5)**
Read Chapter 5 (DNA and RNA) before 9:45 p.m. lecture
Lab: 1:30p.m. Structure and function of nucleic acids

F **Unit 2 The Cell**
Lecture: 8:00a.m. to 11:50a.m. Read Chapter 6 “A Tour of the Cell” before lecture at 8:00a.m.
Lab: 1:30p.m. to 4:30p.m. Read chapter 6 Tour of Prokaryotic cell structures and animal cell structures
Assignment(s):

M Exam 2 (Covers chapters 1-3) 8:00a.m. to 10:00a.m.
 Read study guide for chapter 3 before class
T Complete Chapter 4 study quiz 3
W Review chapter 5 study guide
R Complete Exam 3; Read chapter 6 study guide
F Read chapter 6 study tour of prokaryotic and animal cells

Week Three:

Unit 2; THE CELL

M Exam 4 at 8:00a.m to 9:59a.m. (covers chapters 1 to 6); Read chapter 6 before the lecture at 10:15a.m.
 Lecture: 10:15a.m. to 11:59a.m. Study structure and Function of plant cells, Chapter 6.
 Lab: 1:30p.m. to 4:30p.m. Read chapter 6 before lab
 Study tour of plant cell

Readings

T Lecture: 8:00a.m. to 11:50a.m. Read chapter 7 before lecture on "Membrane Structure and Function"
 Lab: 1:30p.m. to 4:30p.m. Osmosis, diffusion, and active Transport, chapter 7
W Lecture: 8:00a.m. to 11:50a.m. Read chapter 7 before lecture on function of membrane proteins
 Lab: 1:30p.m. to 4:30p.m. Chapter 7 Function of Membrane proteins
R Exam 5: 8:00a.m. to 10:00a.m. (Covers chapters 1-7)
 Lecture: 10:00a.m. to 11:50a.m. Read chapter 8 before Class on introduction to metabolisms.
 Lab: 1:30p.m. to 4:30p.m. on energy conversions
F Lecture: 8:00a.m. to 11a.m. on chapter 8 carbohydrate metabolism
 Lab: 1:30p.m. to 4:30p.m. Glycolysis. The enzyme catalyzed pathway that converts stored energy in covalent bonds of glucose to ATP and substrates for cellular respiration and fermentation.

Assignments

M Complete Exam 4. Review Study guide for chapter 6
T Complete Study quiz 3
W Review study guide for chapter 7
R Complete Exam 5. Review chapter 9 study guide
F Draw the molecular structures of the substrates and products of each enzyme catalyzed reaction of stage i of glycolysis

Week Four:

Readings

Unit 2 The Cell

M Exam 6: 8:00a.m. to 10:00a.m. (Covers chapters 1-8)
 Lecture: 10:15a.m. to 11:50a.m. on chapter 9
 Stage II of Glycolysis and cellular respiration
 Lab: 1:30p.m. to 4:30 p.m. Chapter 9 Cellular Respiration
T Lecture: 8:00a.m. to 11:50a.m. Read Chapter 10 before lecture on photosynthesis light reactions converting Sunlight energy to ATP and NADPH₂
 Lab: 1:30p.m. to 4:30p.m. Dark reaction of photosynthesis
W Lecture: Read Chapter 10 before lecture
 Lab: Photosynthesis
R Exam 7: 8:00a.m. to 10:00a.m. (Covers chapters 1-10).
 Read Chapter 11 Cell Communication before lecture
 Lecture: 10:15a.m. to 11:50a.m. chapter 11
Assignments

Week Five:

Readings

Lab: 1:30p.m. to 4:30p.m. Chapter 11
F Lecture: 8:00a.m. to 11:50a.m. Read Chapters 11 before lecture
Lab: Chapter 11 cell communication

M Complete Exam 6; Read chapter 9
T Complete Study quiz 4;
W Review chapter 10 study guide
R Complete Exam 7; Study chapter 11
F Study chapter 11

UNIT 3 Genetics

T Lecture: 8:00a.m. to 11:50a.m. Read chapter 13 (Meiosis and sexual life cycles) before lecture.
Lab: 1:30p.m. to 4:30p.m. Chapter 14 “Mendel and The Gene Idea”

W Lecture: 8:00a.m. to 11:50a.m. Read chapter 15 before lecture
Lab: 1:30p.m. to 4:30p.m. Chapter 14

R Exam 9: 8:00a.m. to 10:00a.m. (Covers chapters 1-14)
Lecture: 10:15a.m. to 11:50a.m. Read chapter 15
Lab: 1:30p.m. to 4:30p.m. Chapter 15

Friday June 26, Review for final exam.

Assignments

Course Outline:

Chapter

INTRODUCTION:

1. Evolution, the Themes of Biology, and Scientific Inquiry

Unit 1 THE CHEMISTRY OF LIFE

2. The Chemical Context of Life
3. Water and life
4. Carbon and the Molecular Diversity of Life
5. The Structure and Function of Large Biological Molecules

Unit 2 THE CELL

6. A Tour of the Cell
7. Membrane Structure and Function
8. An Introduction to Metabolism
9. Cellular Respiration and Fermentation
10. Photosynthesis
11. Cell Communication
12. The Cell Cycle

Unit 3 GENETICS

13. Meiosis and Sexual life Cycles
14. Mendel and the Gene Idea
15. The Chromosomal Basis of Inheritance

Student Support and Success

John B. Coleman Library
The library and its partners have as their mission "to provide resources and instructional material in support of the evolving curriculum, as a partner in Prairie View A&M University's mission of teaching, research, and service" and to support the University's core values of "access and quality, diversity, leadership, relevance, and social responsibility" through emphasis on ten key areas of service. It maintains library collections and access both on campus, online, and through local agreements to further the educational goals of students and faculty.

Center for Academic Support
The Center for Academic Support (CAS) offers Tutoring via peer tutoring. The services include workshops (i.e., Save My Semester, Recalculate Your Route), seminars (i.e., Tools You Can Use: TI-84), group review sessions (i.e., College Algebra Topic Reviews, GRE Preparation), group study opportunities (i.e., TSIA, HESI, Study Break, Exam Cram), and test-taking strategies (How to take Notes, Study Buddy, 5 Day Study Guide). The Tutoring Center is a nationally certified tutoring program through the National Tutoring Association. The peer tutors are trained and certified by the coordinator each semester. Location: J.B. Coleman Library

COMPASS
The Center for the Oversight and Management of Personalized Academic Student Success (COMPASS) is designed to help Prairie View students in their second year and beyond navigate towards graduation by providing the following services: Academic Advisement, Targeted Tutorials for Personalized Learning, Campus-Wide Referrals, and Academic & Social Workshops. Location: J.B. Coleman Library

Writing Center
The Writing Center provides student consultants on all aspects of the writing process and a variety of writing assignments. Writing Center consultations assist students in such areas as prewriting, brainstorming, audience awareness, organization, research, and citation. Location: Hilliard Hall 121

University Rules and Procedures

Disability statement (See Student Handbook): Students with disabilities, including learning disabilities, who wish to request accommodations in class should register with the Services for Students with Disabilities (SSD) early in the semester so that appropriate arrangements may be made. In accordance with federal laws, a student requesting special accommodations must provide documentation of their disability to the SSD coordinator.

Academic misconduct (See Student Handbook): You are expected to practice academic honesty in every aspect of this course and all other courses. Make sure you are familiar with your Student Handbook, especially the section on academic misconduct. Students who engage in academic misconduct are subject to university disciplinary procedures.

Forms of academic dishonesty:
1. Cheating: deception in which a student misrepresents that he/she has mastered information on an academic exercise that he/she has not mastered; giving or receiving aid unauthorized by the instructor on assignments or examinations.
2. Academic misconduct: tampering with grades or taking part in obtaining or distributing any part of a scheduled test.
3. Fabrication: use of invented information or falsified research.
4. Plagiarism: unacknowledged quotation and/or paraphrase of someone else's words, ideas, or data as one's own in work submitted for credit. Failure to identify information or essays from the Internet and submitting them as one's own work also constitutes plagiarism.

Nonacademic misconduct (See Student Handbook) The university respects the rights of instructors to teach and students to learn. Maintenance of these rights requires campus conditions that do not impede their exercise. Campus behavior that interferes with either (1) the instructor's ability to conduct the class, (2) the inability of other students to profit from the instructional program, or (3) campus behavior that interferes with the rights of others will not be tolerated. An individual engaging in such disruptive behavior may be subject to disciplinary action. Such incidents will be adjudicated by the Dean of Students under nonacademic procedures.

Sexual misconduct (See Student Handbook): Sexual harassment of students and employers at Prairie View A&M University is unacceptable and will not be tolerated. Any member of the university community violating this policy will be subject to disciplinary action.

Attendance Policy
Prairie View A&M University requires regular class attendance. Excessive absences will result in lowered grades. Excessive absenteeism, whether excused or unexcused, may result in a student's course grade being reduced or in assignment of a grade of "F". Absences are accumulated beginning with the first day of class.

Student Academic Appeals Process Authority and responsibility for assigning grades to students rests with the faculty. However, in those instances where students believe that miscommunication, errors, or unfairness of any kind may have adversely affected the instructor's assessment of their academic performance, the student has a right to appeal by the procedure listed in
the Undergraduate Catalog and by doing so within thirty days of receiving the grade or experiencing any other problematic academic event that prompted the complaint.

Disability statement (See Student Handbook):
Students with disabilities, including learning disabilities, who wish to request accommodations in class should register with the Services for Students with Disabilities (SSD) early in the semester so that appropriate arrangements may be made. In accordance with federal laws, a student requesting special accommodations must provide documentation of their disability to the SSD coordinator.

TECHNICAL CONSIDERATIONS

Minimum Recommended Hardware and Software:
- Intel PC or Laptop with Windows 7; Mac with OS X; Smartphone or iPad/Tablet with Wi-Fi
- High speed Internet access
- 8 GB Memory
- Hard drive with 320 GB storage space
- 15” monitor, 800x600, color or 16 bit
- Sound card w/speakers
- Microphone and recording software
- Keyboard & mouse
- Most current version of Google Chrome, Safari, Internet Explorer or Firefox

Note: Be sure to enable Java & pop-ups

Participants should have a basic proficiency of the following computer skills:
- Sending and receiving email
- A working knowledge of the Internet
- Proficiency in Microsoft Word (or a program convertible to Word)
- Proficiency in the Acrobat PDF Reader
- Basic knowledge of Windows or Mac O.S.

Netiquette (online etiquette):
Students are expected to participate in all discussions and virtual classroom chats as directed. Students are to be respectful and courteous to others on discussions boards. Foul or abusive language will not be tolerated.

Technical Support:
Students should go to https://mypassword.pvamu.edu/ if they have password issues. The page will provide instructions for resetting passwords and contact information if login issues persist. For other technical questions regarding eCourses, call the Office of Distance Learning at 936-261-3283

Communication Expectations and Standards:
Emails or discussion postings will receive a response from the instructor, usually in less than 48 hours. Urgent emails should be marked as such. Check regularly for responses.

Discussion Requirement:
Online courses often require minimal to no face-to-face meetings. However, conversations about the readings, lectures, materials, and other aspects of the course can take place in a seminar fashion. This will be accomplish by the use of the discussion board. The exact use of discussion will be determined by the instructor.

It is strongly suggested that students type their discussion postings in a word processing application and save it to their PC or a removable drive before posting to the discussion board. This is important for two reasons: 1) If for some reason your discussion responses are lost in your online course, you will have another copy; 2) Grammatical errors can be greatly minimized by the use of the spell-and-grammar check functions in word processing applications. Once the post(s) have been typed and corrected in the word processing application, it should be copied and pasted to the discussion board.