General Course Information

<table>
<thead>
<tr>
<th>Information Item</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor:</td>
<td>Dr. Michael Gyamerah</td>
</tr>
<tr>
<td>Section # and CRN:</td>
<td>Y02 CRN 16918</td>
</tr>
<tr>
<td>Office Location:</td>
<td>C.L. Wilson 200A</td>
</tr>
<tr>
<td>Office Phone:</td>
<td>936-261-9408</td>
</tr>
<tr>
<td>Email Address:</td>
<td>migyamerah@pvamu.edu</td>
</tr>
<tr>
<td>Office Hours:</td>
<td>MWF 10:00 A.M. - 11:30 A.M. & 2:00 P.M. – 3:00 P.M.; F 2:00 P.M. - 4:00 P.M.</td>
</tr>
<tr>
<td>Mode of Instruction:</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Course Location:</td>
<td>S. R. Collins Eng. Tech Bldg. 331</td>
</tr>
<tr>
<td>Class Days & Times:</td>
<td>MW: 3:30 – 4:50 pm</td>
</tr>
<tr>
<td>Catalog Description:</td>
<td>(3-0) Credit 3 semester hours. Macroscopic and differential balances for heat, mass, and momentum. Energy balances and mechanical energy balances. Ideal and Newtonian and non-Newtonian fluid behavior. Comparison of the transport processes in laminar and turbulent flow. Dimensional analysis.</td>
</tr>
<tr>
<td>Prerequisites:</td>
<td>CHEG 2053 and MATH 2043</td>
</tr>
</tbody>
</table>

Student Learning Outcomes:

<table>
<thead>
<tr>
<th>Upon successful completion of this course, students will be able to:</th>
<th>Program Learning Outcome Alignment</th>
<th>Core Curriculum Outcome Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apply differential and integral calculus and the basic laws of mass and energy to model or quantitatively describe heat, mass and momentum transfer processes.</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>2. Sketch the physical situation, identify the subject area and concepts(s), and applicable system of units of an engineering problem.</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>3. Formulate engineering problems by defining known and unknown variables, state relevant laws and applicable equations, and list and apply relevant assumptions to the applicable equations to obtain equations specific to the problem.</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>4. Solve engineering problems by implementing a strategy, showing the use of consistent units throughout, and evaluating and interpreting the result.</td>
<td>D1</td>
<td></td>
</tr>
</tbody>
</table>
CHEG PROGRAM STUDENT LEARNING OUTCOME:

This course will evaluate the competence of students in the CHEG Department student learning outcome D1 (an ability to identify, formulate, and solve fundamental engineering problems by applying principles of engineering, science, and mathematics). This student learning outcome is a modification of the ABET of the ABET student learning outcome 1: an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics.

The three performance criteria used to assess the student learning outcome D1 are:

1. **Identify fundamental engineering problems.** Given a problem, the student is able to:
 - understand the given problem and identify the subject/topic area and concepts involved,
 - convert the problem into a well labeled sketch (such as free body diagram, flow chart, functional block diagram, schematic diagram, and
 - identify the system of units applicable to the problem

2. **Formulate/analyze fundamental engineering problems by applying principles of mathematics.** Given a problem, the student is able to:
 - define the known and the unknown variables in the problem,
 - state relevant laws and equations needed for the problem, and
 - list and apply assumptions to the relevant laws and equations to obtain the specific equations appropriate to the problem

3. **Solve fundamental engineering problems by applying principles of mathematics (differential and integral calculus).** Given a problem, the student is able to:
 - implement strategy to solve the problem,
 - solve the problem (showing consistent units throughout), and
 - evaluate and interpret the result

Major Course Requirements

Method of Determining Final Course Grade

<table>
<thead>
<tr>
<th>Course Grade Requirement</th>
<th>Value</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Homework Assignments (2)</td>
<td>5 points each</td>
<td>10</td>
</tr>
<tr>
<td>2. Online Quiz (4)</td>
<td>2.5 points each</td>
<td>10</td>
</tr>
<tr>
<td>3. Midterm</td>
<td>15 points</td>
<td>15</td>
</tr>
<tr>
<td>4. Exams (2)</td>
<td>20 points each</td>
<td>40</td>
</tr>
<tr>
<td>5. Final Exam</td>
<td>25 points</td>
<td>25</td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Grading Criteria and Conversion:
A = 100 – 90pts
B = 89 – 80pts
C = 70 – 79pts
D = 60 – 69pts
F = 59pts or below

A signifies that the student has mastered the subject matter and understands all concepts covered.
B signifies that the student has a good understanding of the subject matter with few exceptions.
C signifies that the student has an adequate understanding of the material and can follow most concepts.
D signifies that the student does not understand important class concepts needed to be successful in future courses.
F signifies that the student has missed significant assignments or does not understand several concepts.
Detailed Description of Major Assignments:

<table>
<thead>
<tr>
<th>Assignment Title or Grade Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Homework Assignments</td>
<td>The assignments will assess the ability of the students to apply (i) knowledge differential and integral calculus, and material and energy balances, prerequisites of the course, and (ii) momentum balance using English engineering units</td>
</tr>
<tr>
<td>2. Online Quiz</td>
<td>The online quiz covers concept tests from the Chemical Engineering Concept Warehouse covering heat, mass and momentum transport</td>
</tr>
<tr>
<td>3. Midterm Exam</td>
<td>The midterm exam will cover topics taught during the first half of the semester</td>
</tr>
<tr>
<td>4. Exams</td>
<td>Exam 1 will cover momentum transport and introduction to heat transfer including heat transfer through walls in series. Exam 2 will cover heat transfer through cylindrical pipes and mass transfer</td>
</tr>
<tr>
<td>5. Final Exam</td>
<td>This is a comprehensive exam that covers all materials covered during the semester</td>
</tr>
</tbody>
</table>

Course Procedures or Additional Instructor Policies

Taskstream
Taskstream is a tool that Prairie View A&M University uses for assessment purposes. One of your assignments may be required to be submitted as an “artifact,” an item of coursework that serves as evidence that course objectives are met. If applicable, more information will be provided during the semester by your department, but for general information, you can visit Taskstream via the link in eCourses.

Tests & Testing Policy
All tests are closed book and closed notes. Make-up exams are only available for students with university excused absences. In most cases, the make-up exam is given BEFORE the student misses the exam. No electronic devices will be allowed including iPads and eReaders. No graphing or programmable calculators are allowed for any test or quiz. Students must purchase a small scientific calculator to use on exams. A cell phone cannot be used as a replacement for a calculator on an exam. Doing so will result in a zero. No bathroom breaks are allowed during a test. If a student leaves the room during this time, their exam/quiz will be collected and considered finished by the student. Any act of cheating will result in a grade of zero for that student, and the student will be referred to the department head. Such meetings must take place within a week of the violation.

Homework Policy & Guidelines
This course involves the usage of computer software. **Students must submit these assignments BEFORE the beginning of class.** If a student chooses to disobey the university’s honor code and copy the solution manual instead of submitting the student’s own independent work, the student will receive a grade of zero on the assignment and will be referred to the department head. Such meetings must take place within a week of the infraction. **All homework assignments must be submitted with the cover sheet provided.** Write only on the front of the paper and number your pages. Staple assignment if it is more than one page. Write your name, date, and assignment number on cover sheet. Homework is due at the beginning of the class period. **Late homework assignments will NOT be accepted!**

Class Activities And Participation
Students are expected to attend class on a regular basis and are expected to participate in classroom discussions. Class lab activities are mandatory for this course. **There are zero opportunities to makeup a class activity.** Students must submit these assignments during a given time frame.
<table>
<thead>
<tr>
<th>Modules</th>
<th>Topic</th>
<th>Assignment/Activity (Online)</th>
<th>Assignment/Activity (Face-to-Face[F2F])</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1:</td>
<td>Course Introduction</td>
<td>• Read the syllabus and posted Lectures 0 & 1 on eCourse</td>
<td></td>
<td>August 24, 2020</td>
</tr>
<tr>
<td></td>
<td>Introduction to transport phenomena</td>
<td>• Review course prerequisites and concept questions and to address misconceptions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 2:</td>
<td>Fluids and Fluid Statics</td>
<td>• Read Chapter 1(1.1A & 1.1B) and Chapter 2 (2.1 & 2.2) and posted Lecture notes 2 & 3 on ecourse</td>
<td></td>
<td>August 26, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Homework 1</td>
<td></td>
<td>August 31, 2020</td>
</tr>
<tr>
<td>Module 3:</td>
<td>Fluid Properties and Fluid Flows</td>
<td>• Read chapters 3 (3.1A – 3.1C & 3.2) and chapter 9 (9.1) and posted Lecture notes 2 & 3 on ecourse</td>
<td></td>
<td>September 2, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ConcepTest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 4:</td>
<td>Macroscopic or integral balances for mass and momentum balances</td>
<td>• Read chapter 4 (4.2 & 4.3) and Lecture notes 4 posted on ecourse</td>
<td></td>
<td>September 7, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ConcepTest</td>
<td></td>
<td>September 16, 2020</td>
</tr>
<tr>
<td>Module 5:</td>
<td>Microscopic or differential balances for mass and momentum</td>
<td>• Read chapter 8 (8.1C) for mass balance; and chapter 4 (4.4A & 4.4B) and chapter 8 (8.2) for momentum balance and Lecture notes 5 posted on ecourse</td>
<td></td>
<td>September 16, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• concept questions and in class activities by students to address misconceptions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 6:</td>
<td>Macroscopic or integral balance for energy</td>
<td>• Read chapters 4 (4.2) and posted Lecture notes 6 on ecourse</td>
<td></td>
<td>September 23, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In-class activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 7:</td>
<td>Incompressible flows in pipes</td>
<td>• Read chapters 5 (5.1) and posted Lecture notes 7 on ecourse</td>
<td>Exam 1</td>
<td>September 30, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ConcepTest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 8:</td>
<td>Introduction to Heat Transfer and</td>
<td>• Read chapter 12 (12.3 – 12.5) and Lecture notes 8 on ecourse</td>
<td></td>
<td>October 5, 2020</td>
</tr>
<tr>
<td>Module 9:</td>
<td>October 12 & 14, 2020</td>
<td>Microscopic balance or differential equation of heat transfer & Steady-state heat conduction through composite walls</td>
<td>Read chapter 12 (12.3A) & chapter 13 (13.1A & 13.2A) and posted Lecture notes 9 on ecourse</td>
<td>Review concept questions before class and in class interactive exercises</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>F2F Meeting on</td>
<td>October 14, 2020</td>
<td></td>
<td>In-class activity</td>
<td>Midterm</td>
</tr>
<tr>
<td>Module 10:</td>
<td>October 19 & 21, 2020</td>
<td>Steady-state heat conduction & unsteady state heat transfer</td>
<td>Read Chapter 13 (13.1B, 13.1C & 13.2A) and Chapter 14 (14.1B, 14.2 & 14.6) and posted Lecture notes 10, 11, & 12 on ecourse</td>
<td>Review concept questions before class and in class interactive exercises</td>
</tr>
<tr>
<td>Module 11:</td>
<td>October 26 & 28, 2020</td>
<td>Introduction to mass transfer & modes of mass transfer</td>
<td>Read chapter 18 ((18.1C, 18.2A & 18.2B)) and posted Lecture notes 13 on ecourse</td>
<td>In-class activity</td>
</tr>
<tr>
<td>Module 12:</td>
<td>November 2 & 4, 2020</td>
<td>Microscopic (shell) or differential balance for mass transfer & Steady-state molecular diffusion and diffusion through a stagnant film</td>
<td>Read chapters 18 (18.4) and chapter 19 (19.1), and posted Lecture notes 14 and 15 on ecourse</td>
<td>ConcepTest</td>
</tr>
<tr>
<td>Module 13:</td>
<td>November 9 & 11, 2020</td>
<td>Convective mass transfer, mass transfer coefficients & and analogy between momentum, heat and mass transfer</td>
<td>Read chapter 18 (18.1A) & chapter 21.3B, and chapter 21 (21.1 – 21.3)</td>
<td>Review concept questions and in class activities by students to address misconceptions</td>
</tr>
<tr>
<td>F2F Meeting on</td>
<td>November 11, 2020</td>
<td></td>
<td></td>
<td>Exam 2</td>
</tr>
<tr>
<td>Module 14:</td>
<td>November 16 & 18, 2020</td>
<td>Dimensional analysis; dimensional homogeneity; the Buckingham pi method;</td>
<td>Read chapter 15 (15.1A & 15.1C) and chapter 21 (21.2B)</td>
<td>In-class activity</td>
</tr>
</tbody>
</table>
Module 15:
November 23 & 25, 2020
Kinematic and dynamic similarity: Use of scaling laws to design physical models based on concept of similarity.
- Read chapter 15 (15.1A & 15.1C) and chapter 21 (21.2B)
- Review concept questions and class activities by students to address misconceptions
November 25, 2020

Module 16:
- Review all chapters
- Course Review
- ConcepTest
F2F Meeting on December 5, 2020
December 2, 2020
Final Exam
November 30 & December 2, 2020
ConcepTest
Final Exam
2020

Student Support and Success

John B. Coleman Library
The library and its partners have as their mission to provide resources and instructional material in support of the evolving curriculum, as a partner in Prairie View A&M University's mission of teaching, research, and service and to support the University's core values of access and quality, diversity, leadership, relevance, and social responsibility through emphasis on ten key areas of service. It maintains library collections and access both on campus, online, and through local agreements to further the educational goals of students and faculty. Phone: 936-261-1500; Website: J. B. Coleman Library.

Academic Advising Services
Academic Advising Services offers students a variety of services that contributes to student success and leads towards graduation. We assist students with understanding university policies and procedures that affect academic progress. We support the early alert program to help students get connected to success early in the semester. We help refer students to the appropriate academic support services when the student is unsure of the best resource for their needs. Some students are supported by faculty advisors in their respective colleges. Your faculty advisor can be identified in PantherTracks. Advisors with Academic Advising Services are available to all students. We are located across campus. You can find your advisor’s location by academic major at the Academic Advising Website. Phone: 936-261-5911.

The University Tutoring Center
The University Tutoring Center (UTC) offers free tutoring and academic support to all registered PVAMU students. The mission of the UTC is to help provide a solid academic foundation that enables students to become confident, capable, independent learners. Competent and caring staff and peer tutors guide students in identifying, acquiring, and enhancing the knowledge, skills, and attitudes needed to reach their desired goals. Tutoring and academic support is offered face-to-face in the UTC, in virtual face-to-face sessions, and through online sessions at PVPlace. Other support services available for students include Supplemental Instruction, Study Break, Academic Success Workshops, and Algebra Study Jam. Location: J. B. Coleman Library, Rm. 307; Phone: 936-261-1561; Email: pvtutoring@pvamu.edu; Website: University Tutoring Center.

The Writing Center
The Writing Center provides well-trained peer tutors that assist students with writing assignments at any stage of the writing process. Tutors help students with various writing tasks from understanding assignments, brainstorming, drafting, revising, editing, researching, and integrating sources. Students have free access to Grammarly online writing assistance. Grammarly is an automated proofreading and plagiarism detection tool. Student must register for Grammarly by using their student email address. In addition, students have access to face-to-face as well as virtual tutoring services either asynchronously via email or synchronously via Zoom. Location: J. B. Coleman Library, Rm. 209; Phone: 936-261-3724; Website: The Writing Center; Grammarly Registration.
Academic Early Alert
Academic Early Alert is a proactive system of communication and collaboration between faculty, academic advisors, and PVAMU students that is designed to support student success by promptly identifying issues and allowing for intervention. Academic Early Alert helps students by providing a central location to schedule advising appointments, view advisor contact information, and request assistance. Students who recognize that they have a problem that is negatively affecting their academic performance or ability to continue school may self-refer an Academic Early Alert. To do so, students will log in to PVPlace and click on Academic Early Alert on the left sidebar. Phone: 936-261-5902; Website: Academic Early Alert.

Student Counseling Services
The Student Counseling Services unit offers a range of services and programs to assist students in maximizing their potential for success: short-term individual, couples, and group counseling, as well as crisis intervention, outreach, consultation, and referral services. The staff is licensed by the State of Texas and provides assistance to students who are dealing with academic skills concerns, situational crises, adjustment problems, and emotional difficulties. Information shared with the staff is treated confidentially and in accordance with Texas State Law. Location: Hobart Taylor, 2nd floor; Phone: 936-261-3564; Website: Student Counseling Services.

Office of Testing Services
Testing Services serves to create opportunities by offering suite of exams that aid in the students’ academic and professional success. Currently we administer entrance (HESI A2), college readiness (TSI assessment), Prior Learning (CLEP, DSST), and proctored exams. Location: Wilhelmina Delco, 3rd Floor, Rm. 305; Phone: 936-261-3627; Email: aetesting@pvamu.edu; Website: Testing Services.

Office of Diagnostic Testing and Disability Services
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, contact the Office of Disability Services. As a federally-mandated educational support unit, the Office of Disability Services serves as the repository for confidential disability files for faculty, staff, and students. For persons with a disability, the Office develops individualized ADA letters of request for accommodations. Other services include: learning style inventories, awareness workshops, accessibility pathways, webinars, computer laboratory with adapted hardware and software, adapted furniture, proctoring of non-standardized test administrations, ASL interpreters, ALDs, digital recorders, livescribe, and a comprehensive referral network across campus and the broader community. Location: Hobart Taylor, Rm. 1D128; Phone: 936-261-3583; Website: Disability Services.

Center for Instructional Innovation and Technology Services (CIITS)
Distance Learning, also referred to as Distance Education, is the employment of alternative instructional delivery methods to extend programs and services to persons unable to attend college in the traditional manner. The Center for Instructional Innovation and Technology Services (CIITS) supports student learning through online, hybrid, web-assisted and 2-way video course delivery. For more details and contact information, visit: CIITS Student Webpage; Phone: 936-261-3283.

Veteran Affairs
Veteran Services works with student veterans, current military and military dependents to support their transition to the college environment and continued persistence to graduation. The Office coordinates and certifies benefits for both the G.I. Bill and the Texas Hazlewood Act. Location: Evans Hall, Rm. 102; Phone: 936-261-3563; Website: Veteran Affairs.

Office for Student Engagement
The Office for Student Engagement delivers comprehensive programs and services designed to meet the curricular needs of students. The Office implements inclusive and accessible programs and services that enhance student development through exposure to and participation in diverse and relevant social, cultural, intellectual, recreational, community service, leadership development and campus governance. Location: Memorial Student Center, Rm. 221; Phone: 936-261-1340; Website: Office for Student Engagement.
Career Services
Career Services supports students through professional development, career readiness, and placement and employment assistance. The Office provides one-on-one career coaching, interview preparation, resume and letter writing, and career exploration workshops and seminars. Services are provided for students at the Northwest Houston Center and College of Nursing in the Medical Center twice a month or on a requested basis. Distance Learning students are encouraged to visit the Career Services website for information regarding services provided. Location: Anderson Hall, 2nd floor; Phone: 936-261-3570; Website: Career Services.

University Rules and Procedures

Academic Misconduct (See Student Planner)
You are expected to practice academic honesty in every aspect of this course and all other courses. Make sure you are familiar with your Student Planner, especially the section on academic misconduct (see University Administrative Guidelines on Academic Integrity). Students who engage in academic misconduct are subject to university disciplinary procedures. As listed in the PVAMU Undergraduate Catalog, Graduate Catalog, and the Student Planner, the following are examples of prohibited conduct. This list is not designed to be all-inclusive or exhaustive. In addition to academic sanctions, any student found to have committed or to have attempted to commit the following academic misconduct may also be subject to disciplinary review and action as outlined in the PVAMU Student Planner.

Forms of Academic Dishonesty:

1. **Cheating:** Deception in which a student misrepresents that he/she has mastered information on an academic exercise that he/she has not learned, giving or receiving aid unauthorized by the instructor on assignments or examinations. Examples: unauthorized use of notes for a test; using a “cheat sheet” on a quiz or exam; any alteration made on a graded test or exam which is then resubmitted to the teacher.

2. **Plagiarism:** Careless or deliberate use of the work or the ideas of another; representation of another’s work, words, ideas, or data as your own without permission or appropriate acknowledgment. Examples: copying another’s paper or answers, failure to identify information or essays from the Internet and submitting or representing it as your own; submitting an assignment which has been partially or wholly done by another and claiming it as yours; not properly acknowledging a source which has been summarized or paraphrased in your work; failure to acknowledge the use of another’s words with quotation marks.

3. **Multiple Submission:** Submission of work from one course to satisfy a requirement in another course without explicit permission. Example: using a paper prepared and graded for credit in one course to fulfill a requirement and receive credit in a different course.

4. **Conspiracy:** Agreeing with one or more persons to commit an act of academic/scholastic dishonesty.

5. **Fabrication of Information/Forgery:** Use or submission of contrived, invented, forged, or altered information in any assignment, laboratory exercise, or test; tampering with or production of a counterfeit document, particularly documents which make up the student’s academic record. Examples: making up a source or citing nonexistent publication or article; representing made up data as real for an experiment in a science laboratory class; forging a change of grade or student withdrawal record; falsifying any document related to a student academic exercise.

Nonacademic Misconduct (See Student Planner)
The University respects the rights of instructors to teach and students to learn. Maintenance of these rights requires campus conditions that do not impede their exercise. Campus behavior that interferes with either (1) the instructor’s ability to conduct the class, or (2) the ability of students to benefit from the instructional program, or (3) the rights of others will not be tolerated. An individual engaging in such disruptive behavior may be subject to disciplinary action. Such incidents will be adjudicated by the Office for Student Conduct under nonacademic procedures.

Sexual Misconduct
Sexual harassment of students and employees at Prairie View A&M University is unacceptable and will not be tolerated. Any member of the university community violating the university's sexual harassment policy will be subject to disciplinary action. In accordance with the Texas A&M University System guidelines, your instructor is obligated to report to the Office of Title IX Compliance (titleixteam@pvamu.edu) any instance of sexual misconduct involving a student, which includes sexual assault, stalking, dating violence, domestic violence, and sexual harassment, about which the instructor becomes aware during this course through writing, discussion, or personal disclosure. The faculty
and staff of PVAMU actively strive to provide a learning, working, and living environment that promotes respect that is free from sexual misconduct, discrimination, and all forms of violence. If students, faculty, or staff would like assistance, or have questions, they may contact the Title IX Coordinator at 936-261-2144 or titleixteam@pvamu.edu. More information can be found at the Title IX Webpage including confidential resources available on campus.

Pregnancy, Pregnancy-related, and Parenting Accommodations
Title IX of the Education Amendments of 1972 prohibits sex discrimination, which includes discrimination based on pregnancy, marital status, or parental status. Students seeking accommodations related to pregnancy, pregnancy-related condition, or parenting (reasonably immediate postpartum period) are encouraged to contact Student Disability Services or the Dean of Students' Office for additional information and to request accommodations. More information can be found at this webpage.

Non-Discrimination Statement
Prairie View A&M University does not discriminate on the basis of race, color, sex, religion, national origin, age, disability, genetic information, veteran status, sexual orientation or gender identity in its programs and activities. The University is committed to supporting students and complying with the Texas A&M University System non-discrimination policy. It seeks to establish an environment that is free of bias, discrimination, and harassment. If you experience an incident of discrimination or harassment, we encourage you to report it. If you would like to speak with someone who may be able to afford you privacy or confidentiality, there are individuals who can meet with you. The Director of Equal Opportunity & Diversity has been designated to handle inquiries regarding the non-discrimination policies, and can be reached at Harrington Science Building, Suite 109 or by phone 936-261-1744 or 1792.

Class Attendance Policy (See Catalog for Full Attendance Policy)
Prairie View A&M University requires regular class attendance. Attending all classes supports full academic development of each learner whether classes are taught with the instructor physically present or via distance learning technologies such as interactive video and/or internet. Excessive absenteeism, whether excused or unexcused, may result in a student’s course grade being reduced or in assignment of a grade of “F”. Absences are accumulated beginning with the first day of class during regular semesters and summer terms. Each faculty member will include the University's attendance policy in each course syllabus.

Student Academic Appeals Process
Authority and responsibility for assigning grades to students rests with the faculty. However, in those instances where students believe that miscommunication, errors, or unfairness of any kind may have adversely affected the instructor's assessment of their academic performance, the student has a right to appeal by the procedure listed in the University Catalog and by doing so within thirty days of receiving the grade or experiencing any other problematic academic event that prompted the complaint. Students can file Academic Complaints and/or Grade Appeals at this webpage.

Technical Considerations

Minimum Recommended Hardware and Software:
- Intel PC or Laptop with Windows 10 or later version; Mac with OS High Sierra*
- Smartphone or iPad/Tablet with Wi-Fi*
- High speed Internet access
- 8 GB Memory
- Hard drive with 320 GB storage space
- 15" monitor, 800x600, color or 16 bit
- Sound card w/speakers
- Microphone and recording software
- Keyboard & mouse
- Most current version of Google Chrome, Safari or Firefox

*Smartphone, Google Chrome books and Android tablets may not be supported. iPads are the only tablets supported.

Note: Be sure to enable Java & pop-ups in the Web browser preferences

Participants should have a basic proficiency of the following computer skills:
- Sending and receiving emails
- A working knowledge of the Internet
- Microsoft Word (or a program convertible to Word)
- Acrobat PDF Reader
- Windows or Mac OS
- Video conferencing software

Netiquette (online etiquette)
Students are expected to participate in all discussions and virtual classroom chats as directed. Students are to be respectful and courteous to others on discussions boards. Foul or abusive language will not be tolerated. Do not use ALL CAPS for communicating to others AS IT CAN BE INTERPRETED AS YELLING. Avoid slang terms such as “wassup?” and texting abbreviations such as “u” instead of “you.” Limit and possibly avoid the use of emoticons. Be cautious when using humor or sarcasm as tone is sometimes lost in an email or discussion post and the message might be taken seriously or sound offensive.

Video Conferencing Etiquette
When using Zoom, WebEx or other video conferencing tools, confirm the visible area is tidy, clear of background clutter, inappropriate or offensive posters, and other distractions. Ensure you dress appropriately and avoid using high traffic or noisy areas. Stay muted when you are not speaking and avoid eating/drinking during session. Before class session begins, test audio, video and lighting to alleviate technology issues.

Technical Support
Students should go to the Password Reset Tool if they have password issues. The page will provide instructions for resetting passwords and contact information if login issues persist. For other technical questions regarding eCourses, call the Center for Instructional Innovation and Technology Services (CIITS) at 936-261-3283 or email ciits@pvamu.edu.

Communication Expectations and Standards
Emails or discussion postings will receive a response from the instructor, usually in less than 48 hours. Urgent emails should be marked as such. Check regularly for responses.

Discussion Requirement
Online courses often require minimal to no face-to-face meetings. However, conversations about the readings, lectures, materials, and other aspects of the course can take place in a seminar fashion. This will be accomplished by the use of the discussion board. The exact use of discussion will be determined by the instructor.

It is strongly suggested that students type their discussion postings in a word processing application such as Word and save it to their PC or a removable drive before posting to the discussion board. This is important for two reasons: 1) If for some reason your discussion responses are lost in your online course, you will have another copy; 2) Grammatical errors can be greatly minimized by the use of the spell-and-grammar check functions in word processing applications. Once the post(s) have been typed and corrected in the word processing application, copy and paste to the discussion board.

COVID-19 Campus Safety Measures [NOTE: Delete this section when the COVID-19 pandemic is over]
To promote public safety and protect students, faculty, and staff during the COVID-19 pandemic, Prairie View A&M University has adopted policies and practices for the Fall 2020 academic term to limit virus transmission. Students must observe the following practices while participating in face-to-face courses and course-related activities (office hours, help sessions, transitioning to and between classes, study spaces, academic services, etc.):

- Self-monitoring - Students should follow CDC recommendations for self-monitoring. Students who have a fever or exhibit symptoms of COVID-19 should participate in class remotely and should not participate in face-to-face instruction.
- Face Coverings - Face coverings (cloth face covering, surgical mask, etc.) must be properly worn in all non-private spaces including classrooms, teaching laboratories, common spaces such as lobbies and hallways, public study spaces, libraries, academic resource and support offices, and outdoor spaces where 6 feet of physical distancing is difficult to reliably maintain.
• **Physical Distancing** - Physical distancing must be maintained between students, instructors, and others in course and course-related activities.

• **Classroom Ingress/Egress** - Students must follow marked pathways for entering and exiting classrooms and other teaching spaces. Students should leave classrooms promptly after course activities have concluded, should not congregate in hallways and should maintain 6-foot physical distancing when waiting to enter classrooms and other instructional spaces.

• **Face-to-face Class** - To attend a face-to-face class, students must wear a face covering (or a face shield if they have an exemption letter). If a student refuses to wear a face covering, the instructor should ask the student to leave and join the class remotely. If the student does not leave the class, the faculty member should report that student to the Office for Student Conduct for adjudication. Additionally, the faculty member may choose to teach that day’s class remotely for all students.

• **COVID-19 Guidelines for Student Conduct Adjudication** - The mandatory COVID-19 Training/Certification taken by all students serves as the 1st Warning for violation of COVID-19 Guidelines.

 o 1st incident: upon review of Incident Report and finding of responsibility — Conduct Probation

 o 2nd incident: upon review of Incident Report and finding of responsibility — Suspension

 o Consult the Code of Student Conduct in the Student Planner or [Student Conduct website](#) for additional information on Conduct Probation and Suspension.

• **Personal Illness and Quarantine** - Students required to quarantine must participate in courses and course-related activities remotely and must not attend face-to-face course activities. Students should notify their instructors of the quarantine requirement. Students under quarantine are expected to participate in courses and complete graded work unless they have symptoms that are too severe to participate in course activities. Students experiencing personal injury or illness that is too severe for the student to attend class qualify for an excused absence. To receive an excused absence, students must provide appropriate documentation to the Office for Student Conduct, studentconduct@pvamu.edu.