Isolation of Nucleopolyhedrovirus (NPV) from the Beet armyworm *Spodoptera exigua* (Hübner) (*Spex*NPV)

Magda Khattab
Department of Cutworms and Mole Cricket, Plant Protection Research Institute, ARC, Dokki, Giza, Egypt

ARTICLE INFO

Article History
Received: Jun 23, 2013
Accepted: Sept. 18, 2013
Available online: Dec. 2013

Keywords
Isolation,
Nucleopolyhedrovirus (NPV),
Beet armyworm,
Spodoptera exigua (Hübner),
Light traps.

ABSTRACT
Primary isolation of Nucleopolyhedrovirus (NPV) from the beet armyworm, *Spodoptera exigua* (Hübner) (Lepidoptera: Noctuidae) was carried out in Dep. Cutworms and Mole Cricket, PPRI, ARC from a field-collected eggs mass, at Menofea Governorate, Egypt as described by Khattab (2003). Light microscope and Transmission Electron Microscope examinations as well as histopathological studies were directed. Light microscope examination (1000X) cleared that the polyhedral occlusion bodies (POBs) were isolated from infected dead larvae (hatched from the collected eggs mass) with an average of 1.5 µm (n= 20). In addition, Electron microscopy photos of tissues from infected larvae revealed multiple POBs in the nuclei of infected cells. POBs were seen to contain many virions, and multiple nucleocapsids were capsulated within the membrane of each virion, indicating that this virus is a multicapsid nuclear-polyhedrovirus (MNPV). The amplified and sequenced the partial polyhedrin sequence of the detected virus indicated that it is identical 100% to *Spodoptera litura* NPV. According to the potentiality and the high virulence of SeMNPV it could be considered as an alternative agent for control of *S. exigua*.

1. INTRODUCTION
The beet armyworm is one of the most important species of Noctuid moths whose larvae are called *Spodoptera exigua* (Hübner) (Lepidoptera: Noctuidae). It has a wide host range throughout tropical and subtropical regions of the world (Metcalf and Metcalf, 1992) and occurring as a serious pest of vegetable, field, and flower crops. Among susceptible vegetable crops are asparagus, bean, beet, broccoli, cabbage, cauliflower, celery, chickpea, eggplant, lettuce, onion, pea, pepper, potato, radish, spinach, sweet potato, tomato, and turnip. Field crops damaged include alfalfa, corn, cotton, sugar beet, etc. Weeds also are suitable for larval development (Smith, 1989). The larvae feed on the foliage of plants and attack flowers, buds and fruits of some crops. Difficulty of *S. exigua* Control with chemical insecticides may be due to differences in susceptibility of different populations and / or the development of resistance (Wang et al., 2006).
The beet armyworm *Spodoptera exigua* has also been shown to be susceptible to a number of nucleopolyhedroviruses including those of *Autographa californica* (Speyer) (Vail and Jay 1973) *Heliothis* armigera (Hübner) (Hamm, 1982), *Mamestra brassica* (MbMNPV) (Smits and Vlak 1987), *Anaglypha falcifera* (Kirby) (Hostetter and Puttler 1991) and *Spodoptera frugiperda* (SmNPV), *Spodoptera exigua* (SeMNPV) (Munä OZ and Caballero, 1999), among others. However, the NPV isolated from *S. exigua* (SeMNPV) has been demonstrated to be more pathogenic and to have shorter speed of kill than any other NPV that is infectious to *S. exigua*.

S. exigua multiple nucleopolyhedrovirus (SeMNPV) is commonly found in the environment and frequently causes a high prevalence of infection to the beet armyworm populations feeding on crop and natural plant hosts (Gelernter and Federici, 1986 and Caballero et al., 1992). Several *S. exigua* MNPV (SeMNPV) strains was isolated from collected larvae in different parts of the world as Egypt and the Netherlands (Murillo et al., 2001), Califorinia (Gelernter and Federici, 1986); Spain (Caballero et al., 1992), Florida (Kolodny-Hirsch et al., 1993), Japan and Thailand (Hara et al., 1994; Kondo et al., 1994 and Takatsuka &kuimi, 2002) and Uzbekistan (Murillo et al., 2001) MNPV of *S. exigua* differs than any other baculoviruses in that it is monospecific and highly virulent against first instars and older larvae (Hunter&Hall, 1968, Chautani and Rehnborg, 1971). However, the molecular mechanism associated with these properties is unknown (Smits, 1987). Certain isolation of SeMNPV has been marketed as a biological insecticide in several countries. The virus is commercially available in the USA, Thailand, Spain and the Netherlands (Moscardi, 1999).

The present study aimed to screen the presence of occluded viruses of *S. exigua* obtained from collected one eggs- mass in light trap at Monofea governorate.

2. MATERIALS AND METHODS

2.1 Experimental insect:

Fresh eggs- mass of the beet armyworm, *Spodoptera exigua* (Hübner) was collected from paper strips lay on glass cage of light trap at Monofia Governorate, in March, 2008. The eggs – mass was kept in glass container covered with muslin cloth and incubated at constant conditions (25±2°C & 65 ± 5% R.H.) until hatching. Newly hatching larvae was transferred individually on semi-synthetic diet - synthetic diet described by Shorey and Hale (1965) poured into glass tubes (3 x 10 cm) using a fine hair brush and then capped by a piece of cotton wool. All tubes were incubated at constant conditions (25±2°C & 65 ± 5% R.H.). Daily inspection was conducted until adult emergence to determine mortality percentage of larvae and inspect the subsequent stages. Some emerged adult moths were dissected and identified by a Professional Taxonomist in PPRI, ARC, Dokki, Giza, as beet armyworm *Spodoptera exigua* (Lepidoptera: Noctuidae). In addition, one pair of emerged moths was placed in glass cage fed on 20% sugar solution. The cage was examined daily to determine fecundity, larval mortality & % pupation and adult emergence (F1). A special bioassay plates (LICEFA, Bad-Salzuflen, Germany) were used to keep the diseased larvae due to virus infection (Khattab, 2007). All plates were incubated under the previous conditions.

2.2 Virus isolation:

Natural virus isolation, obtained from virus-dead larvae of the beet armyworm was triturated and occlusion bodies (OB's) were purified as described previously (Khattab, 2003).

Larvae were macerated in distilled water using a suitable mortar. The resulting suspension was filtered through two layers of muslin to remove the undesirable fragments and skin, followed by centrifugation at 4000 rpm for 20 minutes. Immediately, after centrifugation, the supernatant was stored while pellet was examined in a smear test using light microscope for the presence of
virus inclusion bodies (IBs) of nucleopolyhedrovirus (NPV) and consequently determine the size of present isolated polyhedral inclusion bodies (PIB). The occlusion bodies (OB’s) were suspended in distilled water, counted using a Neubauer improved chamber (Hawksly, Lancing, United Kingdom) and stored at 4°C prior to use.

2.3 Light microscope examination:

Moribund larvae showing distinct disease symptoms were individually examined for the presence of polyhedral inclusion bodies, using light microscope. A wet smear of the homogenized liquid using a drop of haemolymph or a small part of larval tissue was spread on a clean slide. The slide was then dipped in 10% Giemsa’s stain for 10 minutes. The excess stain was than washed with running water for 5-10 second (Wigley, 1976). The prepared smear was examined using the oil immersion of phase contrast microscope. The smear test would allow recognition of the occlusion bodies of nuclear or cytoplasmic polyhedrosis viruses (CPV or NPV). The detection of new viruses was largely depending on the number of naturally diseased larvae collected from natural populations.

2.4 Histopathology:

Tissues from infected larvae were dissected, fixed in 3% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3)-0.23M sucrose for 3hrs post fixation in 1% osmium tetroxide for 1hr, dehydrated through an ethanol-propylene oxide series, and embedded in Epon-Araldite resin at the Research Institute of Ophthalmology. Thin sections were stained and examined with the light microscope. Also, Transmission Electron Microscope (TEM) examination was directed to the thin tissues sections.

2.5 Transmission Electron Microscope examination:

Separated virus was fixed in buffered 4% glutaraldehyde for 1 hour then postfixed in 2% osmic acid for 1 hour, dehydrated in ascending alcohol, then embedded in epoxy resin. Ultrathin sections were performed using Leica Ultramicrotomie (Leica Microsystems GmbH, Ernst-Leitz-Strasse, Austria). The sections were stained with uranyl acetate and lead citrate and examined using Philips EM 208S (Eindhoven, The Netherlands) (Grimaud et al., 1980).

2.6 Polyhedrin sequence) attached in Appendix):

The partial polyhedrin sequence of the virus sample was identified by Prof. Doctor Johnnes A. Jehle (DLR Rheinpfaiiz Breitenweg 71, Germany).

3. RESULTS AND DISCUSSION

The initial source of virus – sample of Spodoptera exigua was obtained from only one eggs mass (about 18 eggs) collected from cage glass of light trap at Monofea governorate during March, 2008.

The collected eggs are greenish to white in color and covered with a layer of whitish scales that gives the egg mass cottony appearance. Eggs hatch in three days, after hatching the newly hatched larvae hanging by a thin thread on the surface of the cage glass like the cotton leaf worm Spodoptera littoralis. The life cycle and development of the different stages are identical to those described by Fye et al. (1972).

Data presented in Table (1) show larval mortality (%), (%) pupation & adult emergency (%) of S. exigua that collected as eggs mass from light trap at Monofea governorate during March, 2008.

The collected eggs are greenish to white in color and covered with a layer of whitish scales that gives the egg mass cottony appearance. Eggs hatch in three days, after hatching the newly hatched larvae hanging by a thin thread on the surface of the cage glass like the cotton leaf worm Spodoptera littoralis. The life cycle and development of the different stages are identical to those described by Fye et al. (1972).

Data presented in Table (1) show larval

mortality (%), (%) pupation & adult emergency (%) of S. exigua that collected as eggs mass from light trap. The respective % was 83.33%, 16.66% and 16.66%. Three days after pairing and feeding emerged moths egg- masses was laid, collected & incubated until hatching. Sixty newly hatching larvae were reared as described previously. Data in Table (1) demonstrate that larval mortality and (%) pupation was93.33%. and 6.66, respectively.

The present observations demonstrate that diseased larvae due to virus dead in the fifth instar, (about 91.02%), and the rest died during the pupal stage (6.66%).

Table 1: Response percentages of beet armyworm Spodoptera exigua (Hübner) collected and reared eggs by light trap at Monofea Governorate during 2008.
3.1 Biological activity:

The larval infected by *S. exigua* virus showed the typical symptom of nucleopolyhedrovirus (NPV) infection at a late stage of disease. The dead larvae have a characteristic shiny-oily appearance. They are extremely fragile to the touch, rupturing to release fluid filled with infective virus particles. At this time larvae are whiten creamy (Fig. 1 D).

3.2 Ultrastructural studies:

Light microscope examination of smears from individual maturely diseased larvae by phase contrast microscope revealed the presence of virus particles. The fluid inside the dead larva is composed largely of virus-particles- many billions are produced inside of one larva (Fig. 2).

The size of virus particles in the present isolation was 1.5\(\mu\)m (n=20) (Fig. 2).
3.3 **Electron microscopy** of tissues from larva infected with virus particles revealed multiple polyhedral occlusion bodies (POBs) with the nuclei of infected cells (Fig. 4). POBs were seen to contain many virions, and multiple nucleocapsids were capsulated within the membrane of each virion, indicating that this virus is a multicapsid nuclear- polyhedrovirus (MNPV) (Volkman *et al.*, 1995) (Fig. 5).
Similar results were observed during an epizootic of *S. exigua* in California. A multinucleocapsid nuclear polyhedrovirus (MNPV) was isolated from a single larva of beet armyworm. Occlusion bodies (OBs) produced by this virus isolate, measured 1.52 ± 0.11 µm in diameter and most contained virion, with two to four nucleocapsids per envelope. Additionally, *S. exigua* MNPV (*SeMNPV*) infects only a single insect species, *S. exigua* (Gelernter and Federici, 1986).

Amplified and sequenced the partial polyhedrin sequence of the virus sample showed that it is 100% identical *Spodoptera litura* NPV Appendix. These results are consistent with those reported previously for *S. exigua* NPV (*Se NPV*) and *S. litura* NPV (*Splt NPV*) (Feng et al., 2007), where in *SeMNPV* and *SpltNPV* are genetically similar, but the larvae of *S. exigua* are not susceptible to *SpltNPV*.

Senthil Kumar et al. (2005) reported that the biological activity of *S. exigua* (*SeNPV*) harvest from dead larvae was about 50% more active than live. On the other hand, Evans (1986) showed that the infected one large corn earworm larvae *Helicoverpa (=Heliothis) zea* (Boddie) can produce approximately 6×10^9 OBs. When these OBs contaminate feeding sites of susceptible larvae, the disease can spread rapidly through the host population.

Yu and Brown (1997) showed that, egg chorine of *S. exigua* consumed by a hatching larva averaged 5.7% of the egg surface area. They estimated that 18 OBs /egg were required to obtain LD$_{80}$ for hatching larvae. Scanning electron microcopy revealed that most treated eggs had some observed polyhedra on the chorion. Also, *SeMNPV* produced significantly higher mortality among F$_1$ progeny from mating pairs with both partners contaminated than from mating pairs with single partners contaminated. Male-contaminated parents were almost as effective in transovum transmission as female contaminated parents. *S. exigua* MNPV induced much higher mortality via horizontal transmission among cohorts when hatched larvae from the same egg mass were reared together. Additionally, *S. exigua* offers a good opportunity for an autodissemination–based control because its larvae are gregarious during first to third instars, thereby encouraging NPV
transmission. Death of those larvae will in turn create a reservoir of virus in the soil or plants and thatch that perpetuates control of insect through the growing season. The adults can be captured and contaminated easily using a light or pheromone trap with a contamination mechanism, possibly similar to that used by Jackson et al., (1992).

However, the author named the present isolate of *S. exigua* in Egypt of (SeMNPVEG).

The present results supported the view that the SeMNPV can survive on the surface of the eggs.

Further studies are required for the nucleotide sequence of the DNA genome of the present natural isolate of *S. exigua*. Also, field studies are needed to evaluate the natural incidence of nucleopolyhedrovirus among *S. exigua* population in Egypt. In addition, the population dynamics of *S. exigua* is also important, in order to determine the proper timing of application that would ensure control during the early instars of the larvae, when they are more exposed and susceptible to the virus.

4. ACKNOWLEDGMENT

The author wishes to appreciate Prof. Dr. Mostafa Badr (PPRI, ARC, Dokki, Giza, Egypt) for his kind help and assistance in identifying larvae hatched from the collected eggs mass of *S. exigua*. Deep thanks are also extended to Prof. Dr. Johannes A. Jehle (State Education and Research Center for Agriculture, Viticulture and Horticulture (SLFA), Germany, for providing the *S. exigua* polyhedrin sequence. I wish to express my deepest thanks to Prof. Dr. Amira Rashad (PPRI, ARC, Dokki, Giza, Egypt) for her valuable help in giving guidance and advice and reviewing the manuscript.

5. REFERENCES

Sentih Kumar,C.M., Sathiah, N., and Rabindra, R. J.(2005). Optimizing the time of harvest of nucleopolyhedrovirus infected Spodoptera litura (Fabricius) larvae under in vivo production systems.

APPENDIX

Additionally: Polyhedrin sequence of the virus isolation from S. exigua.
We have amplified and sequenced the partial polyhedrin sequence of the virus sample you sent to us. A Blast search showed that it is 100% identical to Spodoptera litura NPV. This does not mean that the host insect was S. litura but the virus is definitely SpltNPV.

Regards,
Johannes

Sequence amplified:

```
AAATCAaAAGTTGACTCTGTTCaAGGAGATCCGTAACGTGAAACCCGACACGATGAAGCT  60
TTTCTAGTGGTGAACATGCGTCCACTAGAGCAACCGAATGCTGTTTAGATTTTGGC CaACACGCGCTCCGA
TGGACCCAGTACGTTCACCGACACGATCGTCCGTAACCGCTCGTCCGGAACCCGACACGATGAAGCT
GATCGTCAACTGGAACGGCAAAGAGTTTCTCCGTGAGACTTGGACCCGTTTCATGGAAGA
CAGCTTCCCCATCGTGTACGTGGGCACCGATTCGGCCGAAGAGGAGGAGATCC
GAAGTGTCGCTCGTGTTCAAGATCAAAGA
```

<table>
<thead>
<tr>
<th>gb</th>
<th>D0152923.1</th>
<th>Spodoptera litura nucleopolyhedrovirus polyhedrin gene, complete cds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length=3173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score = 926 bits (501), Expect = 0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identities = 501/501 (100%), Gaps = 0/501 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strand=Plus/Plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query 1</td>
<td>AAATCAaAAGTTGACTCTGTTCaAGGAGATCCGTAACGTGAAACCCGACACGATGAAGCT 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1434</td>
<td>AAATCAaAAGTTGACTCTGTTCaAGGAGATCCGTAACGTGAAACCCGACACGATGAAGCT 1493</td>
<td></td>
</tr>
<tr>
<td>Query 61</td>
<td>GATCGTCAACTGGAACGGCAAAGAGTTTCTCCGTGAGACTTGGACCCGTTTCATGGAAGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1494</td>
<td>GATCGTCAACTGGAACGGCAAAGAGTTTCTCCGTGAGACTTGGACCCGTTTCATGGAAGA 1553</td>
<td></td>
</tr>
<tr>
<td>Query 121</td>
<td>CAGCTTCCCCATCGTGTACGTGGGCACCGATTCGGCCGAAGAGGAGGAGATCC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1554</td>
<td>CAGCTTCCCCATCGTGTACGTGGGCACCGATTCGGCCGAAGAGGAGGAGATCC 1613</td>
<td></td>
</tr>
<tr>
<td>Query 181</td>
<td>TCCCCACTAGACCGAACCCTGGCTTCTTCATGTTTGGCGCCCAACCGCGCTCCGATCGGACC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1614</td>
<td>TCCCCACTAGACCGAACCCTGGCTTCTTCATGTTTGGCGCCCAACCGCGCTCCGATCGGACC 1673</td>
<td></td>
</tr>
<tr>
<td>Query 241</td>
<td>CGAGTGACGTGATCCCGCTCCGATCCTTCCGCTCCGATCGGACC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1674</td>
<td>CGAGTGACGTGATCCCGCTCCGATCCTTCCGCTCCGATCGGACC 1733</td>
<td></td>
</tr>
<tr>
<td>Query 301</td>
<td>TGAATACCGCACCGAGAGGAGTTTGGCGCCCAACCGCGCTCCGATCGGACC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1734</td>
<td>TGAATACCGCACCGAGAGGAGTTTGGCGCCCAACCGCGCTCCGATCGGACC 1793</td>
<td></td>
</tr>
<tr>
<td>Query 361</td>
<td>CGGCGGTTGCATATTTGGATTTTGGCGCCCAACCGCGCTCCGATCGGACC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1794</td>
<td>CGGCGGTTGCATATTTGGATTTTGGCGCCCAACCGCGCTCCGATCGGACC 1853</td>
<td></td>
</tr>
<tr>
<td>Query 421</td>
<td>GCCGCACTCGGCTAGGCTGCAAGACGGAGGTATCCGCAAAAGGAGTTTGGCGCCCAACCGCGCTCCGATCGGACC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1854</td>
<td>GCCGCACTCGGCTAGGCTGCAAGACGGAGGTATCCGCAAAAGGAGTTTGGCGCCCAACCGCGCTCCGATCGGACC 1913</td>
<td></td>
</tr>
<tr>
<td>Query 481</td>
<td>GCTCGGTTGATCAAGATCCAAAGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbjct 1914</td>
<td>GCTCGGTTGATCAAGATCCAAAGA 1934</td>
<td></td>
</tr>
</tbody>
</table>