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Abstract

The attachment of flux tubes to electrons by a Chern—Simons (CS) singular gauge transformation of the wavefunction opened
up the field theoretical description of the fractional quantum Hall effect (FQHE). Nevertheless, in Jain’s composite fermion
(CF) theory, quasiparticles are believed to be vortices carrying a fractional charge in addition to the winding phase of the CS
flux tubes. The different structure of the wavefunction in these two cases directly affects the excitation energy gaps. By using a
simple ansatz we were able to evaluate analytically the Coulomb excitation energies for the mean-field level CS wavefunction,
thus allowing a direct comparison with corresponding numerical results obtained from Jain’s CF picture. The considerable
difference between the excitation energies found in these two cases demonstrates in quantitative terms the very different impact
that the internal structure of the wavefunction has in these two approaches, often used interchangeably to describe the FQHE.
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1. Introduction

Two-dimensional electronic systems (2DES) subject to a
strong perpendicular magnetic field display remarkable
phenomena, reflecting the great importance of electronic
correlations. The most important among them is the frac-
tional quantum Hall effect (FQHE) [1,2] which results from
a strongly correlated incompressible liquid state [3,4]
formed at special densities of the 2DES. The basic physics
of FQHE is well understood: the kinetic energy of the elec-
trons is quenched by the strong perpendicular magnetic field
and the Coulomb interaction dominates the physics of the
highly degenerate partially filled Landau level.

The dominant sequence of FQHE states occurs when the
filling factor of the lowest Landau level (LLL) is v=
p/2mp + 1), wherep = 1,2,... andm = 1,2, ... are integers.
By definition v is the ratio of the number of electrons to the
degeneracy of each Landau level: the electron density is
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given by p(v) = V/[Z’lTl()(B)z], where [y(B) = /h/(eB) is
the magnetic length. At these filling factors the electrons
condense into a strongly correlated incompressible quantum
liquid, giving rise to quantized Hall resistivity and thermally
activated longitudinal resistivity.

Much of the theoretical work on FQHE is based on the
study of the properties of a 2D fully spin-polarized (effec-
tively spinless) system of N interacting electrons embedded
in a uniform positive neutralizing background. The electrons
with charge —e (e > 0) and mass m, are assumed to be
confined in the xy-plane and subject to a strong perpendicu-
lar magnetic field B = (0,0, B). Normally, the symmetric
gauge is adopted and the vector potential is A(r) =
(—By/2,Bx/2,0). We will consider the thermodynamic
limit N — oo and (2 — co, while N/{2 = p(v); where N is
the number of electrons and {2 is the area of the 2D sample.
The many-electron system is described by the Hamiltonian
A =K + V, where K is the kinetic energy operator.
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and V is the potential energy operator representing the
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electron—electron, electron—background and background—
background interaction potentials

V= Zv(|r —r)) - (V)Z szw(|r )

Jj<k

+ P(V)2 &2 &2
- r "2V(|r1

where v(|r; — 1)) = (e*/4meyelz; — zf) is the Coulomb
potential, z; = x; + iy; is the location of the jth electron in
complex coordinates and € is medium’s dielectric constant.

It has become clear in recent years that many features of
the FQHE can be understood in terms of a new kind of
particle called a composite fermion (CF), which is a
bound state of an electron and 2m vortices of the many-
body quantum wavefunction [5,6]. The basic property of
the CFs is that they experience a reduced effective magnetic
field B* = B(1 — 2mv). Since the degeneracy of each
Landau level N; is proportional to the magnetic field, the
degeneracy N, of each CF Landau level will be N =
N,(1 —2mv). As a result, at filling factors corresponding
to the main sequence of FQHE states, v = p/Q2mp + 1)
(with p an integer), the effective filling factor of CFs will
be v* = p, that is, an integer number of CF LLs. In other
words, this transformation maps the FQHE of electrons onto
an integer QHE of CFs.

There are two calculational schemes based on the intui-
tive physics presented earlier. The first constructs explicit
wavefunctions [5] while the second method employs a
Chern—Simons (CS) field theory [7] approach to investigate
the CF state. Although the two schemes are based on the
same physics, a precise quantitative relationship between
them has not been made clear. In the CS approach proposed
by Halperin, Lee and Read [7] (HLR) to describe even-
denominator-filled states, the electron system is subjected
to a (mathematical) singular gauge transformation which
converts it into a new system of fermions interacting with
a CS magnetic-like field b(r) in addition to the original
magnetic field. The transformation can be thought of as
the binding of 2m fictitious magnetic flux quanta to an elec-
tron. If ¥, is a solution of the Schrédinger equation AW, =
EW, it will be related by

@
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to the wavefunction ¥’ which is a solution of the Schrodinger

equation A’ ¥ = EW', with Hamiltonian A’ = K’ + V and

transformed kinetic energy operator,

. N

K' = — > { —ihV; + e[A(r) — a@)]}’, )
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where a(r) is the CS vector potential, b(r) = VX a(r) =

2mepop(r)e, is the fictitious CS magnetic field, p(r) is the

local particle density, ¢, = h/e is the magnetic field flux
quantum and e, is a unit vector perpendicular to the plane.

In a translationally invariant system, the mean-field
Hamiltonian may be obtained by replacing b(r) by its
mean value (b) = 2m¢yp(v)e,, where p(v) is the uniform
electronic density. This reduces the magnetic field to B* =
B(1 — 2mv), thus increasing the effective filling factor v for
the CFs. When v* = p(v)¢y/B* = p with p an integer, the
corresponding electron filling factor is v = p(v)¢o/B =
p/(2mp + 1), which is precisely the Jain’s series of FQHE
states. In other words, at the mean-field level, the system can
be described as a system of fermions subject to a reduced
magnetic field B* = B/(2mp + 1). Therefore the CS field
theory solution (at the mean-field level) will be the follow-
ing CS CF wavefunction.

)Zm

v, =2 e, )
J<k ‘Zj

where <15,,(B*) is the Slater determinant of p filled CF
Landau levels evaluated at the magnetic field shown in the
argument.

Such singular gauge transformation of the wavefunction
corresponds to attaching 2m magnetic flux tubes to each
electron. Flux tubes are neither charged, nor low-energy
excitations, so in reality it is not clear how electrons can
bind to them. In the CF theory, the quasiparticle is believed
to be an electron bound to 2m vortices, instead of 2m flux
tubes. Differently from a flux tube, a vortex brings a zero
into the wavefunction, is therefore charged and, as a result,
the attachment of vortices (instead of flux tubes) brings a
significantly different physics. In fact, attachment of
vortices forms the basis of the Jain’s CF wavefunction
theory [S]. Under general circumstances, however, Jain’s
CF wavefunction also needs a complete LLL projection in
order to generate results directly comparable with experi-
ments. The LLL projection is quite far from being a trivial
operation and after projection it is not clear how to associate
electrons and vortices in an unambiguous way. Neverthe-
less, both projected and unprojected Jain’s CF wavefunc-
tions describe binding of vortices to electrons and a
significant amount of work concerning both groundstate
and excited state properties of these wavefunctions has
been reported in the literature [§—11].

On the other hand, based on field-theoretical grounds [12]
the attachment of flux tubes, as in the CS CF wavefunction,
precedes the attachment of vortices. Although it is expected
that the attachment of flux tubes to the wavefunction does
not capture the complete physics obtained by attachment of
vortices, a detailed quantitative comparison of the two
processes is highly desirable from a theoretical point of
view and has not yet been realized. Since the nature of
quasiparticles in the FQHE crucially depends on whether
flux tubes or vortices are attached to electrons, a study of
the low-energy excitations and excited state properties on
both cases seems to be quite appealing on its own.
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Fig. 1. The characteristic integral C(p) (Eq. (11)) plotted in a loga-

rithmic scale as a function of p. The fit corresponds to C(p) oc
-038
p .

The intent of this work is to provide a comparison
between the excitation energies of flux-bound CFs described
by the mean-field level CS CF wavefunction of Eq. (5) and
those obtained for wavefunctions where vortices instead of
fluxes are attached. We provide analytical expressions for
the Coulomb excitation energy gaps corresponding to a
specific CS CF wavefunction that incorporates the idea of
flux binding to electrons and discuss the results in the
context of the HLR theory. We compare our analytic results
with corresponding numerical results obtained using Jain’s
picture of CFs where vortices bind to electrons. We show in
quantitative terms how the excitation energy gaps are
affected by the internal structure of the wavefunction.

2. Coulomb excitation energies

The excitation energy gap is defined as the energy to add
one quasiparticle and one quasihole far away from each
other (we will neglect exciton effects) to the FQHE ground-
state at the given filling factor. In the CF language, the
excitation energy gap corresponds to the quasiparticle—
quasihole excitation obtained by promoting a single CF
from the uppermost filled CF Landau level to the next higher
CF Landau level.

The excited state wavefunction constructed using CFs
(whether we have flux tubes or vortices bound to electrons)
is not entirely in the LLL. Such intrinsic Landau level
mixing in the wavefunction brings in some kinetic energy
contribution into the excitation energy gap. In general, the
energy gap can be written as A(v) = Eq(v) + Agg(v), where
E,(v) is due to Coulomb correlation effects and Agg(v) =
O(hw,) is related to the kinetic energy associated with the
Landau level mixing. In the present work, we consider only
intra-LL excitations consistent with the (generally used)
assumption hw. — 0. In this case only the Coulomb corre-
lation energies are significant and A(v) = Eg(v) [9].

Exact calculations using Jain’s CF approach have only
been possible in systems with a small number of electrons
[8]. However, for flux-bound electrons as in the CS CF
picture, we point out that calculations can be readily
performed by adopting a technique firstly introduced by
Friedman and Pandharipande [13] in the context of nuclear
matter. Suppose we are studying the FQHE state with filling
v=p/(2mp + 1) having p CF Landau levels filled. The
uppermost filled CF Landau level is the one with quantum
index (p — 1). The promotion of a CF from the CF Landau
level with quantum index (p — 1) to the one with quantum
index p produces a correlated wavefunction W’,jh that
describes the quasiparticle—quasihole excitation. Instead
of promoting a single CF from the uppermost filled CF
Landau level to the next empty one, we choose to promote
a fraction AN = xN(< N;) of such CFs. By consequence
the quasiparticle—quasihole excitation energy will be given
by:

. a
Ey(v) = Al}}}r_r}l mAU(x, N), (6)

where the change on the total correlation energy due to this
process is AU(x, N) and x is the small fraction of displaced
CFs. Eq. (6) may be rewritten as

Ey(v) = lim -

ad AU(x,N)]
x—0 X N ’

AUGLN) _ 1 (P V[#' ) 1 (V%)
N N (@) N BT

where ¥”"(x) denotes the quasiparticle—quasihole wave-
function for xN quasiparticle—quasihole excitations (by
construction WP (x = 0) = W,). Only the first term in Eq.
(7) is dependent on the fraction x, therefore one can write the
quasiparticle—quasihole excitation energy as

0
Ey(v) = Tim = u,(x), ®)

where u,(x) is the correlation energy per particle corre-
sponding to the quasiparticle—quasihole wavefunction,

1 (W@ )

. 9
N (W o) W (x)) ®

uy(x) =

The mathematical details of the calculation of u,(x) are
given in Appendix A (see Eq. (A10)). The final result is
that the quasiparticle—quasihole Coulomb energy gap
corresponding to the CS CF wavefunction (Eq. (5)) is
given by:

& C(p)
dmepely(B) 2mp +1°

Ey(») = (10)
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Fig. 2. Exact excitation energy gaps, E,(v) corresponding to the
flux-bound CS CF wavefunction ¥, obtained at the mean-field
level of the CS field theory for filling factors v = p/(2mp + 1) as
function of p for m = 1 and 2 and p = 1, see Eq. (10). The results
are compared to corresponding values for energy gaps [8] obtained
for the LLL projected Jain’s CF wavefunction, where vortices
instead of flux tubes are bound to electrons. All energies are in
units of ez/[41'reoelo(8)]. For large p: Eg(v) oc p_o.gs.

where the m-independent C(p) is given by

Cp) = ood *fzszl i L i —L i
(p) - o re ‘p—1 2 p—1 2 ‘D > >
(11)

and L;(x) are associated Laguerre polynomials [14].

In what follows, we calculated exactly the integrals
appearing in Eq. (11) for increasing values of p up to
2000. The dependence of C(p) on p is shown in Fig. 1. In
the large-p limit C(p) o< p~ %%,

InFig. 2, we show the dependence of E4(v) on p for filling
factors v = p/(2mp + 1) for m = 1 and 2 with the excitation
energy values expressed in units of &/ [4meyely(B)]. A strik-
ing feature of the results is the fact that the excitation energy
gaps decrease very slowly as we approach the even-
denominator-filled states v = 1/2 (m = 1) and v= 1/4 (m =
2) where, as expected, they vanish. To give a quantitative
estimate of how the energy excitation gap is affected when
we switch from flux attachment to vortex attachment, we
compare our analytic results for flux-bound CFs to Monte
Carlo results [8,15,16,] based on Jain’s CF wavefunctions
where vortex attachment is considered. One notes that the
energy gaps for flux-bound CFs are considerably above the
energy gaps obtained in the vortex-bound case. Our analytic
results for flux-bound CFs are based on a mean-field wave-
function, so we have to expect an overestimation of the
energy gaps since we are neglecting fluctuations, however,
the large difference was not completely anticipated.

The wavefunction ¥, obtained at the mean-field level of
the CS theory (Eq. (5)) has a high occupation of higher LLs

(is not projected) and has no special short-distance correla-
tions when compared to Jain’s CF wavefunction [5],
obtained by throwing away the denominators in Eq. (5)
and performing a projection onto the LLL [8,17]. In parti-
cular, the mean-field CS CF formalism does not lead to
screening of the quasiparticles’ or quasiholes’ charge, differ-
ently from the fractionalization of charge which occurs
beyond mean-field. Nevertheless both Jain’s and the
mean-field CS wavefunctions describe at some level CFs,
and these have been generally assumed to be equivalent to a
first degree of approximation. The results presented in this
paper show how these assumptions can be misleading in
some circumstances.

3. Asymptotic behavior of the gap

As the filling factor of the main sequence of FQHE states
approaches the even denominator fractions 1/2 and 1/4
(obtained as p — o and m =1 and 2, respectively) it is
expected that the quasiparticle—quasihole excitation gap
should vanish. From the behavior of C(p) shown in Fig. 1
and Eq. (10), it is evident that this is, indeed, the case: our
analysis of the exact CS excitation energies shows that F,(v)
decays as [f()'88 to a very good approximation for 50 < p <
2000.

These results can be compared to the HLR theory at both
mean-field [7] and beyond [18]. At the mean-field level, the
HLR theory [7] predicts

2

p 1 1 e
Elv= ~ R 12
g(v 2mp + 1 ) Qmp + 1) 4mey €lo(B) 2

as p — oo. This behavior is consistent with the fact that
within this mean-field theory the effective mass m" is
unrenormalized by the fluctuations of the CS gauge field
(see Eq. (4)) and should be p-independent. Since our
approach neglects all fluctuation effects, the resulting
large p energy gaps should decay at most as fast as 1/p.
Our results are consistent with this argument.

When interactions beyond the mean-field and/or RPA
level are included and fluctuations in the transverse CS
gauge field are considered, a considerable renormalization
of the effective mass is to be expected. In fact, using a
fermionic CS approach, Stern and Halperin [18] considered
these fluctuations and found a divergent renormalization of
m” as p — oo. Therefore in this limit, the low energy excita-
tions vanish faster as

ay 1 1 &

E, = . 13
&€ 2mym 2mp + DInQRmp + 1) 4me, €ly(B) a3

At present time, a fully exact calculation of energy gaps,
starting from a microscopic wavefunction that incorporates
effects beyond mean-field theory appears to be a very diffi-
cult task.

Quite recently, a sophisticated calculation for the FQHE
energy gaps has been performed by Shankar [19] using the
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Hamiltonian theory of CFs that he and Murthy developed
[20]. In their Hamiltonian approach one firstly performs a
2m-fold flux attachment by a CS transformation, and then
attaches the necessary number of zeros to transform the
fluxes into full vortices [20]. In this approach, the Hamil-
tonian contains complicated expressions for the charge and
other operators, while the wavefunction remains quite
simple (this treatment seems complimentary to Jain’s
approach, where the Hamiltonian is simple, but the wave-
function is very complicated because of the LLL projection
operator). The formalism was then used to compute activa-
tion gaps for FQHE states and analytic expressions were
derived for all fractions of the form v = p/2mp + 1).
Based on this approach various quantities of interest were
calculated to a reasonable accuracy: in particular it was
shown that for the Zhang—Das Sarma [21] (ZDS) interaction
potential, v(r) = e + A2), the gap energies were
accurate to within 10-20% as compared to Monte Carlo
work [22] for A > 1. Favorable electronic correlations in
the LLL are build up only through vortex attachment, as a
result the energy gaps derived from the Hamiltonian theory
are in better agreement and directly comparable to experi-
mental and/or Monte Carlo results.

On the other hand, we limited ourselves to a mean-field
model with a specific choice of the wavefunction incorpor-
ating attachment of 2m-fold flux tubes to electrons. We were
thus able to provide analytical results strictly valid for the
specific choice of the mean-field derived CS CF wavefunc-
tion, without intending to directly compare the obtained
energy gap values to realistic calculations where 2m-fold
vortices are attached to the electrons and full projection
into the LLL is performed. The objective of this calculation
was to demonstrate the significant effect that the lack of
vortex attachment has on the excitation properties of the
system. This is important due to the generalized impression
that most of the physics of the FQHE is contained in the
simple CS mean-field model.

4. Conclusions

In summary, by using a simple ansatz we were able to
calculate analytically the excitation energy gaps for a mean-
field CS CF wavefunction where 2m-fold flux tubes are
attached to electrons. This provides a direct quantitative
comparison with corresponding numerical results for energy
gaps where vortices, and not flux tubes, are bound to elec-
trons as in Jain’s CF wavefunction case. Based on these
analytical results, we can directly estimate in quantitative
terms the sizeable effect that the internal structure of CFs
has on FQHE energy gaps, when switching from flux attach-
ment to vortex attachment. The large discrepancy in the
excitation energies thus obtained clearly shows the limita-
tions of the commonly held belief that most of the important
physics of the FQHE is contained in the simple mean-field
approximation of the CS CF picture.
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Appendix A

For convenience we list here the calculation of the
Coulomb correlation energy per electron u,(x) (Eq. (9))
which is given by

oy L PP
TN (o)

=2 jdzm[gy(x, i) = (), (A1)

where the radial distribution function g,(x, r,) is defined in
terms of ¥¥(x) by

NN = 1) [ drye-dry| "0
P [ Ay d2ry | W )]

gv(x7 r12) = (A2)

In the thermodynamic limit, the above quantity depends on
the 2D interparticle distance r;, = |r; — r,| and the quasi-
particle—quasihole fraction parameter x. In our case, one
observes that |WF'(x)]* = |P,(x, BY)*, where the latter
term corresponds to a squared Slater determinant represent-
ing (p — 1) fully filled CF Landau levels, the pth CF Landau
level (with CF Landau level index (p — 1)) filled except for
AN = xN(< N;) CF holes, and the (p + 1)th CF Landau
level (with CF Landau level index p) having the AN CFs
that were removed from the underlying level. As a standard
result, it follows that for fully spin-polarized electrons (CFs)

2 (A3)

gulxrp)=1~— |lp(X, r2)

where the ‘statistical exchange’ factor is computed from
I,(x,r12) = pp(x, 1y, 12)/p(v). The (reduced) one-body
density matrix p,(x,r;,r,) which corresponds to the dyna-
mically uncorrelated state @,(x, B") is given by

p—1 N, —1

Prxz2) = D D @) euiz2)

n=0 [=0

AN N, -1 .
N*[ > @@ 9pilz)
s L iz

+

N —1
- Z ¢a1),l(21)'¢@1),l(22)], (A4)

1=0

where AN/N; = xp is the average occupancy of a quantum
state in the partially filled CF Landau level with index p. The
symmetric gauge single-particle eigenstates for magnetic
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field B" are

@ = 1 ox "
(Pn,l /—Znn' p 410(3*)2

s 0" "
x (210(3 )a—z) {GDO,Z(Z)GXP[ - T ]} (AS)

where

1 z 7T el
©0,(2) = [ ; ]exp — = | (A6)
W 2wl B L lo(BY) 414(B*)?
where n = 0, 1, ... denotes the index of various CF Landau
levels and [ =0, 1,... (N; — 1) is their angular momentum
quantum number. Noting that

N, —1 2 N -1
A 5 5V ¢
= L —_— . 5
l:§0 @n,1(21)¢,1(22) "(210(3*)2) I:EO ©0,1(21)®0,(22)

(A7)

one finds that

N -1 2
A o « 1 "2
prx.zz) = > ¢O,I(Z1)¢O,I(Z2){Lpl(zlo(3*)2)

=0

B S T N (O
2@y ) 7\ 27 ) ]f
(A8)

where L, (x) = (¢"/n!)(d"/dx")(x" e ™) are the Laguerre poly-
nomials of order n =0, 1,... and L*(x) = (= D¥(d"/dx*) x
[L,+x(x)] are the generalized Laguerre polynomials of
order n =0, 1,... and degree k =0, 1,...

In the thermodynamic limit [23], both density and filling
factor v = N/Nj are kept constant as the number of electrons
N and the Landau level degeneracy N, go to infinity. Since
the degeneracy N; of each CF Landau level is directly
proportional to N, then also (N; — 1) goes to infinity in
this limit. At this point the summation over / in Eq. (A8)
is extended from O to o and one obtains the one-body
density matrix p,(x,z,2,) that no longer depends on N;.
The statistical exchange term [,(x, z;,2) = p(x, 21, 22)/p(V)
is a complex quantity, but since the radial distribution func-
tion is found by squaring it (see Eq. (A3)), the phase factor
of [,(x,zy,2,) vanishes and we obtain

2 2
12 | 2
. =1- - —L, | ——=
84(%:112) exp[ ZZO(B"‘)2 ]{p l 1(210(3*)2 )

7%2 rfz 2
Aelsi) o i)

(A9)

The calculation of u,(x) follows from Eq. (Al). After writ-
ing p(v) = p/[Zwlo(B*)z], we introduce the dimensionless
variable t = r,/1,(B"), and by rescaling the magnetic length
I,(B*)? = I,(B)*(2mp + 1) we obtain

L p 00 B l2 1 . t2
M,,(x) = W J’O dr eXp( 2){pr_|(2)
r AN 1+ &
* X[LP<5) - LP‘(E)]} 4re, €ly(B)’

The results in Eqgs. (10) and (11) follow immediately.

(A10)
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