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Problem 1: Consider the one-dimensional (1D) harmonic oscillators described by the

Hamiltonian:

Ĥ =
p̂2

x

2m
+

1

2
mω2x2 , (1)

where m is the mass of the particle, ω is the angular frequency and p̂x is the linear momentum

operator in the x direction. The allowed energy eigenvalues are: En = h̄ω(n + 1/2) where

n = 0, 1, 2, . . . The normalized eigenfunctions are:

Φn(x) = Nn exp

(
−α2x2

2

)
Hn(α x) ; Nn =

√
α√

π 2n n!
, (2)

where Nn is the normalization constant, α =
√

mω/h̄ is a parameter with the dimensionality

of an inverse length and Hn(α x) are Hermite polynomials. Calculate (∆x)2 = 〈x2〉 − (〈x〉)2

and (∆px)
2 = 〈p̂2

x〉 − (〈p̂x〉)2 for an arbitrary quantum state Φn(x). Verify whether the

Heisenberg uncertainty principle, (∆x)2 (∆px)
2 ≥ (h̄/2)2 is satisfied. Hint: Recall that

〈x〉 = 0 and 〈p̂x〉 = 0, so you need to calculate only 〈x2〉 and 〈p̂2
x〉. The final result should

be: (∆x)2 (∆px)
2 = h̄2(n + 1/2)2.



Problem 2: Consider the displaced one-dimensional (1D) harmonic oscillator:

Ĥ =
p̂2

x

2m
+

1

2
mω2(x− x0)

2 , (3)

where m is the mass of the particle, ω is the angular frequency, p̂x is the linear momentum

operator in the x direction and x0 is the coordinate of the center of the 1D oscillator. Prove

that the allowed energy eigenvalues are: En = h̄ω(n + 1/2) where n = 0, 1, 2, . . . and the

normalized eigenfunctions are:

Φn(x− x0) = Nn exp

(
−α2(x− x0)

2

2

)
Hn[α (x− x0)] ; Nn =

√
α√

π 2n n!
, (4)

where Nn is a normalization constant that has been previously defined, α =
√

mω/h̄ is a pa-

rameter with the dimensionality of an inverse length and Hn(z) are the Hermite polynomials

with z as argument.



Problem 3: Consider a two-dimensional (2D) isotropic harmonic oscillator described

by the Hamiltonian:

Ĥ =
p̂2

x

2m
+

p̂2
y

2m
+

1

2
mω2(x2 + y2) , (5)

where m is the mass of the particle, ω is the angular frequency, and p̂x, p̂y are the respective

linear momentum operators in the x and y direction. Prove that the allowed energy eigen-

values are of the form: Enxny = h̄ω(nx + ny + 1) where nx = 0, 1, 2, . . . and ny = 0, 1, 2, . . .

Note n = nx + ny = 0, 1, 2, . . . Find the degeneracy of any given energy eiegenvalue, Enxnynz

in terms of quantum number, n. Verify that the degeneracy of any given energy eigenvalue

Enxny in terms of number n is: Dn = (n + 1). Note: If degeneracy is one, that means that

the energy eigenvalue is non degenerate.



Problem 4: Consider a three-dimensional (3D) isotropic harmonic oscillator described

by the Hamiltonian:

Ĥ =
p̂2

x

2m
+

p̂2
y

2m
+

p̂2
z

2m
+

1

2
mω2(x2 + y2 + z2) , (6)

where m is the mass of the particle, ω is the angular frequency, and p̂x, p̂y, p̂z are the

respective linear momentum operators in the x, y and z direction. Prove that the allowed

energy eigenvalues are of the form: Enxnynz = h̄ω(nx +ny +nz +3/2) where nx = 0, 1, 2, . . .,

ny = 0, 1, 2, . . . and nz = 0, 1, 2, . . .. Note n = nx+ny+nz = 0, 1, 2, . . . Find the degeneracy of

any given energy eiegenvalue, Enxnynz in terms of quantum number, n. Note: If degeneracy

is one, that means that the energy eigenvalue is non degenerate.



Problem 5: Consider two identical one-dimensional (1D) harmonic oscillators. The

Hamiltonian of the two particles in oscillatory motion is:

Ĥ =
p̂2

x1

2m
+

1

2
mω2x2

1 +
p̂2

x2

2m
+

1

2
mω2x2

2 , (7)

where the indexes 1 and 2 refer respectively to particle 1 and 2. The energy eigenvalues

are: En1n2 = h̄ω(n1 + n2 + 1) where n1 = 0, 1, . . . and n2 = 0, 1, . . . The eigenfunctions

corresponding to those eigenvalues are: Ψn1n2(x1, x2) = Φn1(x1) Φn2(x2) where Φni
(xi) are

the normalized eigenfunctions for the 1D oscillator for particle i = 1, 2 respectively. The

groundstate wave function is: Ψ00(x1, x2) and corresponds to the lowest energy E00 = h̄ω.

Find the “average relative distance” between particle 1 and 2 in the groundstate:

〈|x1 − x2|〉 =
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 Ψ00(x1, x2)
∗ |x1 − x2|Ψ00(x1, x2) (8)


