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Liquid crystalline states for two-dimensional electrons in strong magnetic fields
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Based on the Kosterlitz-Thouless-Halperin-Nelson-Young theory of two-dimensional melting and the anal-
ogy between Laughlin states and the two-dimensional one-component plasma, we investigate the possibility of
liquid crystalline states in a single Landau leveL ). We introduce many-body trial wave functions that are
translationally invariant but possess twofdiide., nematig, fourfold (tetratic), or sixfold (hexatig broken
rotational symmetry at respective filling factars-1/3, 1/5, and 1/7 of the valence LL. We find that the above
liquid crystalline states exhibit a soft charge-density wa@BW) which underlies the translationally invariant
state but which is destroyed by quantum fluctuations. By means of Monte Carlo simulations, we determine
that, for a considerable variety of interaction potentials, the anisotropic states are energetically unfavorable for
the lowest and first excited LL'éwith indexL=0,1), whereas the nematic is favorable at the second excited
LL (L=2).
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[. INTRODUCTION tirely characterized by and the freezing transition in this
case was located dt~140.1° Employing the analogy be-
In 1983 Laughlif introduced his famous trial-wave func- tween the temperature of the classical plasma and the filling

tion factor of the LLL, we should expect a freezing transition as
N N we decrease the electronic filling factor in the quantum Hall
1 . .
_ __\m L 2 regime. Because of the different quantum nature of the elec-
Y .EIJ (z=2) exp{ 12 2 12 } @ tronic correlations in the FQHE, it was found that such a

_ ) system is a Laughlin liquid for filling factors=1/3 and 1/5,
to describe the fractional quantum Hall effe®QHE  pt pecomes crystal for filling factors smaller than

_5 gy _
state$ f?]r filling factors »=1/m of the lowest La}ndau Ievﬁ! ~1/6.5 (this value is about an order of magnitude larger than
(LLL), wherem is an odd integer. Immediately after this that deduced from the classical 2DOCP anajogy

discovery, many attempts were done to compare the stability It is feasible that, in analogy to the classical freezing tran-

S\fIig;]ee?ecf;g:;ivsg?lgf;tg;h_%r Ai;n;t\:\é glgtrguzldros_t("ieos)’ R]/g'ca”gition realized by cooling down a 2DOCP, the transition to a

current theoretical understanding is that WC states are favoF‘-OIId (WC) state obtalngd by reducing the f|II|ng.factor n thgz

able for filing factors smaller than a critical value, electron case may be interpreted as a topological Kosterlitz-
¢ . Thouless-type transitiotf. This would be the correlated elec-

=1/6.5."® For larger filling factors of the LLL, the electrons .
are believed to form a quantum liquid state with Laughlintron system counterpart of the well-known 2D melting prob-

wave function being an excellent choice for=1/m (with ~ 1€M- Although the 2D melting is not fully understood, an

m=1,3,5)° Because of its translational and rotational in- €/€gant and reliable theory of melting has been proposed in
variance, Laughlin’s wave function can be used to describe 1€ 1970s by Kosterlitz, Thouless, Halperin, Nelson, and
liquid state of the electrons in the LLL, as can be seen byYoung (KTHNY).*>"**The KTHNY theory predicts that an

writing | ¥ 1|2 as a classical distribution functightt intermediatethird phasecalled hexatic will exist between
the hexagonal solid and the liquid phases in a certain portion
|W 4| oce™ P, of the phase diagrarfperhaps in a somewhat narrow range

of temperatures In the liquid phase there is no long-range
10 ) translational or rotational orddthe system is both transla-
where —BVzZmZ,j In|zi—zj|—? g’l 1zd* (2 tionally and rotationally invariant In the solid phase the
0 system has quasi-long-range translational and true long-
andV is the potential energy of a classical two-dimensionalrange rotational order. The hexatic phase in the KTHNY
one-component-plasm@DOCPB system. Using the formal theory is thought to have no true long-range translational
analogy between the Laughlin wave function and the 2DOCrder, but does retain quasi-long-range orientational order
we can identify a dimensionless coupling constdht Be? (the system is translationally invariant, but not rotationally
=e?/(kgT)=2m. An equilibrium state of the 2DOCP is en- invariant at least for short distangesThe intermediate

N
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hexatic phase is often considered most important since it has A class of such wave functions satisfying all these re-
a symmetry intermediate between the hexagonal solid anquirements are the so-called broken-rotational-symmetry
the liquid. (BRS) wave function&"18-2922that are systematically con-
Recent experiments in very high mobility x( structed by properly splitting the zeros of the Laughlin liquid
~10" m/Vs)GaAs/AlGa, _,As heterostructures have shown statelin essence, the idea is to place the vortices that perform
a variety of low-temperature phases with exotic propertiesthe composite fermiofiCF) transformatioft® aroundthe lo-
Since 1999 it has been known that in transitional regionsation of the electron, rather “on top” of thejnLet us con-
between QH plateaus for high LL&vith LL index L=2) sider the Laughlin wave function as given in Ed), where
either asmecticor nematicphase exist$®~?°In fact, one of  z,=x,+iy is kth electron position in they plane in com-
us calculated to a reasonable accuracy the anisotropi@lex notation, and,=[%/(eB)]"? is the magnetic length.
isotropic transition temperature as a topological protéss.  This wave function represents a gaped, uniform, and isotro-
2002 a melting transition from the WC state to a FQHE-likepic liquid, and is an excellent description of a liquid state at
state was observed at ca. 130 nfiRef. 21) and speculation filling factor v=1, 1/3, and 1/5 of the LLLfor v=1/7, the
mounted to suggest that possibly this transition occurs to &/C state prevails, see previous discussion, and Ref. 22
hexatic mesophas@. To build a liquid crystal(BRS state out of the liquid
On this grounds we investigate the possibility of variousstates we split the zeros of the wave function in a way that
liquid crystalline mesophases in a partially filled LL. Given conserves the antisymmetffFermi statistics and transla-
that two-dimensional liquid crystals may posses differentiional invariance, but breaks the rotational invariance of the
forms of rotational group symmetry, we select a set of poswave function. This is done by introducing a preferred set of
sible candidates, having, (nematid, C, (tetratig, andCg  direction€**8-292%nto the wave function creating a degree
(hexatig rotational group symmetrynote that, in principle, of anisotropy. A generalized liquid-crystal wave function for
higher symmetry groups are also possible for a liquid crystala filling factor v=1/m can then be easily written as
e.g., aliquid quasicrystalwith a C;, symmetry—we have
not explored, however such possibilities in this pApeOur N No[mt N
results indicate that the states studied exhibit a soft charge- 1m~ 1;[ Hl (zi—zj—a,) L (zi—z)
density wave(CDW) which underlies the translationally in- el Les =
variant state but which is destroyed by quantum fluctuations. p| 1 N ]
Xexp — ,

We perform Monte CarldMC) simulations and determine — > 1z 3)
that for a wide range of interactions the anisotropic states are 4l k=1

energetically unfavorable for the lowest and first excited

LL’Sh (with m%ex LdelziLv!hzereas the nematic is favorable opposite value in the complex plaf® satisfy Fermi statis-
attl essecol? exglte ib (_h ). f h tics). In this paper we focus on the states with the highest
n Sec. Il we describe the types of states that were ConI%evel of discrete symmetry possible at each filling factor,

sidered for our calculations. Section Il presents the types of \..p, i tpiag : : :
. . ; ; ; ich is set by distributing the:, symmetrically in a circle
interaction potential considered and explains the method y g nSY y

used to calculate the properties of the system. Section I\ground the origin,
contains the results obtained and a discussion of their mean-
ing. The underlying soft CDW is discussed in Sec. V. Finally,

the conclusions are presented in Sec. VI. Without loss of generalityr can be taken to be real. The
wave function in Eq.(3) represents a homogeneous liquid
crystalline state at filling factore=1/m, is antisymmetric,

lies entirely in the LLL, and is smoothly connected to the

In this paper we consider liquid crystalline phases with noisotropic Laughlin state for=0.
translational order but with quasi-long-range orientational or-
der with various rotational symmetry groug,, C,, and Ill. INTERACTION POTENTIALS AND MONTE CARLO
Ce; corresponding to aematic tetratic, andhexaticphase, SIMULATION
respectively. There are some basic requirements on how we . . . .
construct these state§) the states must obey Fermi statis- For our simulations we considét eIeptrqns in a charge
tics, i.e., they must have odd parity under the exchange Or]aeutrahzmg AbacAkgrcA)und. When considering the quantum
any pair of electrons(ii) the states must be translationally HamiltonianH=K+V, the strong magnetic field quantizes
invariant(at least far away from the boundaries of the systenthe kinetic energK so that single-LL wave functions have a

in case of a finite number of eleCtI’C)nQII) there must be a Constant(and thus irre'evamtkinetic energy,<k>/N_ The

broken rotational symmetry belonging to the proper symmepn|y relevant contribution comes, therefore, from the total
try group, (iv) the states must belong to a single LL to avoid potential-energy operator

the large cyclotron energy coftw.=heB/m,, whereB is

the magnetic fleld, and andm,, are the el_ectron charge anq V=Vt Vort Vb, (5)
mass, respectivelfalso note that as we will show later, vari-

ous properties aany LL can be readily obtained from prop- consisting of electron-electron, electron-background and
erties calculated in the LLL background-background, interactions.

where the complex directors,, are distributed in pairs of

a,=ae?m W DIM=1 e 12 . (m=-1)}. (4

Il. LIQUID CRYSTAL STATES
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It has been a common practice to work on the surface of a By definition, the pair-correlation functiog(r,,) is the
spheré in order to minimize boundary effects in the finite- conditional probabilityfnormalized so thag(s)=1] to find
size computations. However, due to the anisotropic nature cdn electron at position” given that another electron is found
the states under consideration this scheme would producgt positionr’ =r"—r,,
significant problems due to the need to have topological de-
fects at the “poles” of the sphere. We therefore work on a 1[N
simpler disk geometry, where the neutralizing positive back- g(ryp)= —2< E o(ri—r")o(rj—r") ), (8
ground has a uniform density,= v/(27l3) and is spread Po 7]
over a disk of radiusRy=1,(2N/v)¥? with an area(y
= wRﬁ, .

Our goal is to thoroughly investigate the possibility of a
liquid crystal state in the LLL for electrons interacting not
only with the usual bare Coulomb potential(rqy) _
=e?/(er,) but also for a variety of other reasonable effec- S(q)— 1=p0f d?r e 19 g(ry) —1]. 9
tive potentials that take into consideration the finite thickness
of the quasi-2D electron layer. As previously shown byNote that, because of the anisotropy of the wave function,
Zhang and Das Sarm@DS),”, the electron-electron inter- poth functions are explicity angie dependeng(r;,)
action in a quasi-2D system can be written as =9(r2,6) and S(q)=5(q,6,) for a#0. It is also worth
noting that the charge neutrality sum rule guarantees that
S(q)o(q2 for q_>0110,25,26

In the thermodynamic limit, the ground-state correlation
energy per particle can be easily computed ffom

wherepg= v/(27r|§) is the average bulk electron density. It
is also useful to define the static structure fa@6q), which
is given by the 2D Fourier transform of(r1»),

e’ (=
vzps(l12) = ?fo dqJy(qri)F(q,b),

2 -3
q
1+B , (6)

9q 3¢ N
=(1+2-+-— v
Fla.b)=| 1+ 55+ 5 12 _W o

E. N zjdzrlZU(rlz)[g(rlz)_l]a (10

wherer ,, is the 2D distance separating the two electrans,

. ) . . wherev (r{,) can have any reasonable form; in particular, it
is the average background dielectric constaly,is the (1) y P

can take the form of any of the potentials shown in EgS.

Bessel function of zeroth order, abds a parameter related o4 (7). Because the interaction potentials are centrally sym-
to the finite thickness of the 2D layeif we define the aver-  ayric  the above formula can be rewritten in the simpler

age thickness ag, thenb=3/Z). In addition, we also con- form
sider two other interaction potentials

2 e~ 2m [ Cdrariar) -1, ap

e
V(M) = — /75—,
1(r12) € m

wherea(r 12) Is the angle-averaged pair distribution function

12
o - _ e
bty N - 9(ro)= | 5 9(rsa). (12
€ rio

The two model potentials include the thickness effect >0[ ' v=1/'3,gfg ' ' ' _
phenomenologicalff through the length parameter=Z/2 e[ T vEs a0 §
=1.5b. All the above potentials have the same Coulomb gc.’ oo vEvhe=0. T
behavior for larger,, but differ from the bare Coulomb A 2f ‘ T
potential for smallr ;. ot o ‘ i

To consider the zero-temperature stability of the liquid- 08[
crystal states of Eq.3) with respect to the uniform isotropic | i
liquid state counterparts, we performed extensive MC simu- 041 ]
lations in order to compute the energy and other quantities 0.0 ! L 5
for the four different interaction potentials. Since the poten- ) 10 20 30 40 50 60
tials involved are merely single- and two-body interactions, -
we need to accurately determine all single- and double- 0
particle distribution functipns, i.e.,_ theden_sity p(r) FIG. 1. Angle-averaged single-particle densip(r), for N
=(={L,8(ri—r)), and thepair-correlation function gri»), =196 electrons and filling factors=1/3, 1/5, and 1/7. We show

respectively. The_ de’Fermination of SU.Ch functiqns a”OWS alihe results for the isotropic casea=£0) and, for a largex (the
accurate determination of all potential energies in e oscillations observed in this case are discussed in Sedd&ter is
— oo thermodynamic limif® the distance from the center of the disk.
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v=1/3

v=1/7

1 —g(x)y)

4.8 J : 20

2020

FIG. 2. Pair-correlation functiog(r) for v=1/3,«=2 (left pane), v=1/5a=3 (center pang| v=1/7,«¢=3 (right pane]. Note the
discrete rotational symmetry of each state.

For specific casefas for thev,pg(ri,) potential, which has  domain. If the probability ratioP(ria )/ P(r;) is larger than
strongly oscillatory behavior in real space, making the nua random number uniformly distributed in th8,1] range
merical calculations very unstable and precarjaaiorre-  then the move is accepted and werlgt; =ry,i5 , Otherwise
sponding formula that uses the static structure factor waghe move is rejected ang., ;=r;. We adjust the size of the
employed: domain over whichA;’s vary so that about half of the at-
11 tempted moves are accepted. Following standard practice,
_t e Py we denote a MC stefMCS) a sequence of steps described
=3 (2m) fo dagu(@)[S(a)—1]. (13 above so that every electron in the system has attempted a

move (and about half succegdifter a MCS the system is in
In this casev(q) is the 2D Fourier transform of the interac- a state essentially uncorrelated to the previous one and aver-
tion potential, and we also define the angle-averaged statigges are computed for the desired operatbie results we
structure factorS(q) = [ §”d0 /(2m)S(q). The use of the report were obtained after discarding 100000 “thermaliza-
static structure factor has the added advantage of allowingon” MCS’s and using between 210° and 4x 10’ MCS's
the calculation of the correlation energiesaith LL's from a  for averaging purposes on systems of 200—400 electrons.

single determination of the pair-correlation function in the
LLL, 18-20

2
=3, ‘”Mq
at filling factors,»=1/3, 1/5, and 1/7. A trial-wave function

whereL | (x) are Laguerre polynomials ardcorresponds to as in Eq.(3) was considered and various properties were
the LL index. analyzed as function of the anisotropic parameteWarious

As in any MC calculation using the the Metropolis interaction potentials were considered for the computation of
algorithm?® the expectation value of anposition depen- the correlation energiglsee Eqs(6), (7), (10), (11), (13),
dent, e.g.p(r)] operator can be computed by averaging the(14)], all have in common the fact that they incorporate the
local value of the operator over a large number of electronieffects of finite layer thickness into the quasi-2D electronic
configurations generated from the probability distribut®n system and are essentially identical to Coulomb’s for large
«|W{ 12 In a MC attempt, one electron is moved to a newdistances. This choice is motivated by the well-known fact
positionri, =r;i+A;, whereA, is a random vector in some that the finite layer thickness of a real 2D system leads to a

IV. MONTE CARLO RESULTS AND DISCUSSION

2 . . Sy
By using MC methods we studied the possibility of a
[Sa)-11, (14 el P 4

liquid-crystal state in the LLL for the leading candidate states

v=1/3 v=1/5 v=1/7

0.5

~ 0 ~ ~

I | I
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& & &
g0s §._0'5 §-os
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FIG. 3. Static structure fact@(q) for v=1/3,&«=2 (left pane), v=1/5,a= 3 (center pang] v=1/7,a«=3 (right pane). Note the discrete
rotational symmetry of each state.

logx
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FIG. 4. Angle-averaged pair-correlation functiE(r 19) for v=1/3, v=1/5, andv=1/7.

weakening and eventual collapse of the FQHiEherefore, propagates from the edges to the center making it very dif-
when the finite layer thicknegparametei\) increases as to ficult to identify a “bulk” region. The existence of this den-
become larger than the magnetic length, the short-range pasgity fluctuation is discussed in detail in Sec. V. We found that
of the Coulomb interaction softens and as a result the isotroyalues ofa acceptable for the purposes of calculating bulk-
pic FQHE liquid state may become unstable with respect tgike properties in reasonably sized systems are as follows:
another state of different natufe possible new candidate 4<3 for v=1/3, a<4 for both v=1/5 and 1/7, respec-
can be the liquid-crystal state considered here, and/or gyely.
Wigner crystal. In order to compare the energy of the isotropic Laughlin
In Fig. 1 we show a plot of the angle-averaged single-iquid state with that of an anisotropic liquid-crystal state, we
particle densityp(r) for states ofN=196 electrons and fill- first need an accurate computation of the pair distribution
ing factors of y=1/3, 1/5, and 1/7. The existence, far  function in terms of the parametes. For the smallest’s, a
=0 of a large region around the center of the disk=Q) number of N=196 electrons was sufficient to give a very
with constant density is an indication that there is bulklikeaccurate pair distribution function, whereas as many as 400
behavio?® Results for moderate values of are similar to  electrons were used whem's became large as to induce
those fora=0. For largera an apparent density fluctuation sizable oscillations in the density. Figure 2 shows results for

TABLE I. Correlation energy per particle in the LL({in units of e%/el,) for the liquid-crystal(BRS
states at filling factow=1/3 as a function of the anisotropy parameteand quasi-2D layer width. Three
forms of the interaction potential were used. The three potentials reduce to the standard Coulomb potential

for A=0.
Interaction potentialv (r,,)
a A=0.0 A=0.5 A=1.0 A=15 A=2.0 A=25 A=3.0
0 —0.4100 —0.3362 —0.2776 —0.2327 —0.1973 —0.1700 —0.1485
1 —0.4098 —0.3353 —0.2770 —0.2319 —0.1970 —0.1698 —0.1483
2 —0.3961 —0.3234 —0.2681 —0.2257 —0.1928 —0.1669 —0.1464
3 —0.3608 —0.2926 —0.2449 —0.2093 —0.1817 —0.1597 —0.1418
4 —0.3074 —0.2435 —0.2038 —0.1763 —0.1554 —0.1387 —0.1249
Interaction potentiab ,(r,,)
a A=0.0 A=0.5 A=1.0 A=15 A=2.0 A=25 A=3.0
0 —0.4100 —0.3286 —0.2598 —0.2107 —0.1760 —0.1507 —0.1315
1 —0.4098 -0.3277 —0.2593 —0.2104 —0.1758 —0.1505 —0.1314
2 —0.3961 —0.3162 —0.2519 —0.2058 -0.1727 —0.1483 —0.1297
3 —0.3608 —0.2859 —0.2324 —0.1936 —0.1650 —0.1433 —0.1264
4 —0.3074 —0.2370 —0.1950 —0.1661 —0.1439 —0.1265 —0.1125
Interaction potentialv zp<(r 12)

a A=0.0 A=0.5 A=1.0 A=15 A=2.0 A=25 A=3.0
0 —0.4100 —0.3279 —0.2748 —0.2381 -0.2112 —0.1904 —0.1738
1 —0.4098 —0.3270 -0.2741 —0.2376 —0.2107 —0.1900 —0.1735
2 —0.3961 —0.3160 —0.2657 —0.2310 —0.2053 —0.1854 —0.1696
3 —0.3608 —0.2873 —0.2439 —0.2138 —0.1914 —0.1739 —0.1597
4 —0.3074 —0.2408 —0.2054 —0.1813 —0.1633 —0.1491 —0.1375
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TABLE II. Correlation energy per particle in the LL{in units of €%/ely) for the liquid crystal(BRS)
states at filling factow=1/5 as a function of the anisotropy parameteand quasi-2D layer width. Three
forms of the interaction potential were used. The three potentials reduce to the standard Coulomb potential

for A=0.

Interaction potentialv 1(r 1)
a A=0.0 A=0.5 A=1.0 A=15 N=2.0 A=25 A=3.0
0 —0.3274 —0.2811 —0.2420 —0.2094 —0.1825 —0.1603 —0.1419
1 —0.3273 —0.2810 —0.2419 —0.2094 —0.1825 —0.1603 —0.1419
2 —0.3265 —0.2803 —0.2413 —0.2089 —0.1821 —0.1600 —0.1418
3 —0.3121 —0.2674 —0.2312 —0.2014 —0.1767 —0.1563 —0.1392
4 —0.2775 —0.2362 —0.2064 —0.1829 —0.1635 —0.1472 —0.1333
5 —0.2216 —0.1836 —0.1601 —0.1432 —0.1296 —0.1181 —0.1081

Interaction potentialv 5(r 1)
@ A=0.0 A=0.5 A=1.0 A=15 A=2.0 A=25 A=3.0
0 -0.3274 —0.2743 —0.2365 —0.2086 —0.1873 -0.1704 —0.1566
1 —0.3273 —0.2743 —0.2365 —0.2086 —0.1873 —0.1704 —0.1566
2 —0.3265 —0.2767 —0.2303 —0.1928 —0.1641 —0.1422 —0.1251
3 —0.3121 —0.2639 —0.2215 —0.1870 —0.1603 —0.1396 —0.1233
4 —0.2775 —0.2329 —0.1997 —0.1730 —0.1513 —0.1338 —0.1196
5 —0.2216 —0.1801 —0.1561 —0.1378 —0.1222 —0.1088 —0.0975

Interaction potentialv zp<(r 12)

a A=0.0 A=05 A=1.0 A=15 A=2.0 N=25 A=3.0
0 -0.3274 —0.2743 —0.2365 —0.2086 —-0.1873 -0.1704 —0.1566
1 —0.3273 —0.2743 —0.2365 —0.2086 —0.1873 —0.1704 —0.1566
2 —0.3265 —0.2736 —0.2359 —0.2082 —0.1869 —0.1701 —0.1563
3 —0.3121 —0.2615 —0.2265 —0.2006 —0.1807 —0.1648 —0.1519
4 —0.2775 —0.2324 —0.2037 —0.1825 —0.1659 —0.1525 —0.1414
5 —0.2216 —0.1819 —0.1598 —0.1439 —0.1313 —0.1211 —0.1124

the pair distribution functiong(r), for the v=1/3, =2  LLL correlation energies obtained by means of Edd) or
nematic, v=1/5, =3 tetratic, andv=1/7, @=3 hexatic. = (13), using the angle-averaged pair-correlation functirs
Each MC simulation involved % 10’ MCS’s and ca. 400 static structure factoysfor the three different forms of the
electrons. Figure 3 shows the corresponding static structuri@teraction potential for a variety of quasi-2D layer widths
factorsS(q) obtained fromg(r) using Eq.(9). [see Egs(6) and(7)]. When\ =0 all interaction potentials
Since the angle-averagedr ;,) is sufficient for the deter- reduce to the Coulomb potential and in the case of the
mination of the energy, we averagedat significant savings vzps(r'12) potential we note that=1.5A. Results for filling
in computer timg for various combinations of filling factor factors v=1/3, 1/5, and 1/7 of the LLLfor the potential
v, and anisotropy parametes. Figure 4 shows some of our v4(r4,)] are also presented in Fig. 5. The results suggest that,
results for 196—400 electrons. in the LLL, for all the interaction potentials under consider-
At all filling factors that we considered, we noted that ation, a uniform liquid state is energetically more favorable
g(r1») changes very little when parameteris small(e.g., than the liquid-crystal state. For small values @& (O,
1). Only for largera’s (=2) sizable changes take effect. In ~2], the liquid-crystal states have an energy only slightly
view of this behavior, we anticipate that the energy differ-above the Laughlin liquid statesxE&0), however for larger
ences between the isotropic liquid state<0) and the an- «’s this difference increases.
isotropic liquid-crystal state with small anisotropy param-  Similar results are obtained in the first excited [lL=1
eters @=1) will be quite small. In fact, the calculation of in Eq.(14), we omit the results for brevily For all forms of
energy differences between these states and the isotropilce interaction potential considered here, the correlation en-
state are comparable to the estimated accuracy of our energygy for anisotropic states is higher, once again leaving the
calculations. However, since the energy differences for largetaughlin state stable. However, it is interesting to note that
a's show a definite tendency in all cases, we believe that théor the second excited LLL(=2) the situation changes for
results are, significantly reliablgince the statistical uncer- the nematic states at=1/3 of the valence LL, where aniso-
tainty on any MC calculation is systematic, the energy dif-tropic states become energetically favorable. Table IV shows
ferences may be even more accurate than the absolute endlre results for the energiek, and energy differences,
gies. AE, =E_,—E, (also shown in Fig. between anisotropic
Tables I-Ill present the results for the calculation of thestates ¢+ 0) and the isotropic statex=0) for filling factor
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TABLE IlI. Correlation energy per particle in the LLLn units of %/ el ) for the liquid crystal(BRS)
states at filling factow=1/7 as a function of the anisotropy parameteand quasi-2D layer width. Three
forms of the interaction potential were used. The three potentials reduce to the standard Coulomb potential

for A=0.

Interaction potentialv 1(r 1)
a A=0.0 A=0.5 A=1.0 A=15 N=2.0 A=25 A=3.0
0 —0.2827 —0.2491 —0.2198 —0.1944 —-0.1727 —0.1541 —0.1383
1 —0.2827 —0.2491 —0.2198 —0.1944 —-0.1727 —0.1541 —0.1383
2 —0.2826 —0.2491 —0.2198 —0.1944 —0.1727 —0.1541 —0.1383
3 —0.2807 —0.2473 —0.2184 —0.1933 —-0.1719 —0.1536 —0.1379
4 —0.2492 —0.2185 —0.1945 —0.1745 —0.1573 —0.1425 —0.1296
5 —0.1917 —0.1643 —0.1467 —-0.1334 —0.1223 -0.1124 —0.1035

Interaction potentialv 5(r 1)
a A=0.0 A=0.5 A=1.0 A=15 A=2.0 A=25 A=3.0
0 —0.2827 —0.2470 —0.2123 —0.1821 —0.1576 —0.1382 —0.1227
1 —0.2827 —0.2470 —0.2124 —0.1822 —0.1577 —0.1383 —0.1227
2 —0.2826 —0.2470 —0.2123 —0.1821 —0.1576 —0.1382 —0.1227
3 —0.2807 —0.2452 —0.2110 —0.1813 —0.1571 —0.1378 —0.1225
4 —0.2492 —0.2164 —0.1894 —0.1659 —0.1460 —0.1297 —0.1162
5 —0.1917 —0.1621 —0.1443 —0.1295 —0.1160 —0.1040 —0.0936

Interaction potentialv zp<(r 12)

a A=0.0 A=05 A=1.0 A=15 A=2.0 N=25 A=3.0
0 —0.2827 —0.2436 —-0.2141 —-0.1914 —-0.1735 —0.1591 —-0.1471
1 —0.2827 —0.2437 —0.2141 —0.1915 —0.1736 —0.1591 —0.1472
2 —0.2826 —0.2436 —0.2141 —0.1914 —0.1735 —0.1591 —0.1471
3 —0.2807 —0.2419 —0.2128 —0.1904 —0.1727 —0.1584 —0.1465
4 —0.2492 —0.2147 —0.1906 —0.1720 —0.1572 —0.1450 —0.1348
5 —0.1917 —0.1627 —0.1454 —0.1323 —0.1216 —0.1126 —0.1050

v=1/3 in the second excited LLL(=2) obtained from po- precisely at the location of the electron themselves-0Q).
tentialv4(r 1) (the results are quite similar for the other two In higher LL's, the wavepackets take a more “ringlike”
forms of the potential These results are generally consistentshape, and a finitee permits a more optimal distribution of
to what we found in the past using the hypernetted-chairtharge for the nematic cageut not for either the tetratic or
approximationt&1° hexatio.

A conclusion can be derived from the above results: gen-
erally speak?ng the isotropic states seem _to be energetically V. UNDERLYING CHARGE-DENSITY WAVE IN THE
favorable, with the exception of the nematic state in the sec- ANISOTROPIC 2DOCP'S
ond excited LL. The explanation for this is simple: in the
LLL the electron packets are simple Gaussians, and it is clear In view of the appearance of considerable density varia-
that the best way to minimize their Coulomb repulsion is bytions in our MC simulations for larger values afwe inves-
placing the vortices responsible for the CF transformétion tigated the possible existence of an underlying CDW for the

AE =E -E, v=13 AE =E ~E, v=1/5 AE =E -E, v=1/7
0.1 T T T T T 0.1 - T T T 0.1 T T T T T
. a=] —— o =2 —— B a=3 ——
0.08 | §..ﬂ.. 1 0.08 X ?‘,--—E}-- 1 008 e é.-a-- 8
><._. 1% Ty P =
0.06 | T ] 0.06 | ' ] 0.06 | T ]
1N e B g X
004 B X 1 004r X1 004r e S
=y X el T +o.
0027 g 7 002F ., B 0.02 [ e 1
. e e U e | . D s e . 0 - o T
05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

A A A
FIG. 5. Energy difference between anisotropic states and the isotropic stat®)(AE ,=E ,— E,, for filling factors v=1/3, 1/5, and 1/7
in the LLL. These results correspond to the interaction potentié,,) and are plotted as function of the quasi-2D layer thickness
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TABLE IV. Correlation energy per particle in the second excited LK 2, (in units of e?/ely) for the

liquid crystal(BRS) states at filling factow=1/3 as a function of the anisotropy parameteand quasi-2D

layer width\. The formuv(r,) for the interaction potential was used.

Interaction potentialv (r 1)

1o A=0.0 A=0.5 A=1.0 A=15 A=2.0 A=25 A=3.0
0 —0.2642 —0.2139 —0.1872 —0.1662 —0.1485 —0.1335 —0.1207
1 —0.2653 —0.2146 —0.1875 —0.1663 —0.1486 —0.1335 —0.1208
2 —0.2693 —0.2169 —0.1881 —0.1663 —0.1483 —0.1333 —0.1206
3 —0.2708 —0.2158 —0.1852 —0.1631 —0.1455 —0.1310 —0.1188
liquid crystalline states of Ed3). For this purpose it is use- N
ful to consider, once again, the 2DOCP analog system. p(r)=21 S(r—ry), (17)
i<

Whereas considerable effort has been dedicéed a con-
sequent vast knowledge has been achigirethe past to the
treatment of the standaiidotropic plasma(see, e.g., Refs.
10,32,33 and 2% little has been pursued for a system with
anisotropic interactions, e.g., quadrupolar terms.

Consider the classical distribution functignote, in this
section we work in units of the magnetic lendt)

and po=1/(27m) is a neutralizing density.

Consider now the potentia generated by the addition of
some chargedp(r). This will cause a redistribution of the
particles that form the plasma, inducing a density change
[see the discussion related to the definition of the pair-
correlation function, Eq(8)],

N
|W m|?ce AV, where —BVZZZ {In|zi—zj| pind(r)=fdzr’po[g(r—r’)—l]ap(r’). (18)
i<j
The total charge, in reciprocal space, is therefore given by

N
1 > lzd?, (15 [see Eq(9)]
2&

m-1
+ 2 |Zi_zj_au|
u=1

. Prot(K)=S(k) 8p(k), 19
where, as before, = ae'’s, §,=2m(u—1)/(m—1), and Proik)=S(k) dp(k) 19
ne{l,2,...,(m—1)}. This potential energy corresponds to leading to a total potential
an “electrostatic potential” which is solution of a modified

. . . m-1
Poisson’s equation Bk = 47-rk52(k) 143 e‘“u‘k}_éf)(k). 20
m—1
VI Bp(r)]=—4m| p(r)+ 2 p(r—a,)|+4mmpq, This result neglects second-order corrections in the distribu-
p=1 (16) tion functions and is, therefore, commonly referred to as the
theory of linear screening.
wherea — a(cosf, sing.) It is now interesting to investigate whether this potential
© w w allows for the formation of underlying CDW’s in the
2DOCP. Assuming small variations from a uniform state, we
v=1/3 . X . i
0.004 , , , , allow for the particle density to vary from point to point
- B . according to
0.002 jres
EN ! p(r)=po+pico4q-r), (21
Ul_p ; whereq is the wave vector of the CDW ang<<p,. The
s ~0.002 + O[ p?] “excess energy*® per unit area is given by
<1 B a
-0.004 ' ',,.’-;"" azé fi__ Buexc 1 27TS(C]) m—1 B
3-8 =5 1+ >, elewd], (22)
-0.006 [E, | | | | p1 q pn=1
0 03 L 1: 23 It is evident that the charge neutrality sum r[igq) «q? for

q— 0192524 guarantees the elimination of the singularity at

FIG. 6. Energy difference between anisotropic states and thél=0 leading to screening of the interaction. More interest-
isotropic state ¢=0) AE,=E_,— E, for filling factor v=1/3 inthe ~ iNg, however, is the fact that the excess energy becomes

second excited valence LILE 2). These results correspond to the negative for a variety of wave vectors wher#0. If we
interaction potential fornw,(r,) and are plotted as function of the write Eq. (22) explicitly for the various states considered in
quasi-2D layer thickness. this paper:
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FIG. 7. Typical electron configurations for a nematie=(1/3, a=7, left pane), tetratic (#=1/5, «=8, center pangl and hexatic

(v=1/7, «=10, right panel Note the formation of a CDW'’s with one, two, and three different directors.

values of the anisotropy parameteibecause of phase lock-

12
() ing at the boundaries. A detailed study of the fluctuations of

[1+2cogaqy)],

nemati¢v= 1/3):5

2mS(q)

1
tetratid v=1/5) :5 5
q

) 12
hexatiq v= 1/7):5

q2

[1+2cogaqy)+2cogaqy)],

7S(q)

> 1+2 cogaqy)
q

these CDW's will be published elsewhete.

VI. CONCLUSIONS

In conclusion, we have investigated the possibility of
liquid-crystal states in quasi-two-dimensional electron sys-
tems in strong magnetic fields. We considered translation in-
variant yet anisotropic states at filling factors-1/3, 1/5,

and 1/7 of the lowestl(=0), first excited L =1) and sec-
ond excited [=2) LLs. We found that the anisotropic
states possess an underlying CDW along directors with the
same symmetry group of the proposed state but these CDW'’s
are “washed-out” by fluctuations. We applied MC methods
to calculate the(angle-dependentpair-correlation function
and static structure factors for these states, which have per-
We can see that the most important configuratighsse that ~ mitted us to calculate the correlation energies for a variety of
make the potentiaBV minimum and maximize their prob- reasonable generalizations of the Coulomb potential that take
ability) correspond to charge-density waves with wave vecinto consideration the finite width of the quasi-2D layer. For
tors in the neighborhood %f‘fa/q/ﬂ-:{(l’()),(— 1,0)} for the  all states and potentials under consideration the isotropic
nematic, aq/7={(1,1),(1-1),(—1,1),(—1,—1)} for the Laughlin state is found to be energetica]ly favc_)rable_in the
tetratic, and aq/7=1{(%,0),(~ %,0)'(?2/\/5),(%,_2/\/5), lowest and first excited LL, whereas we find an instability of

(-2 2/\/§) (—2 _2/\/5)} for the hexatic. This should pro- the v=1/3 nematic state in the second excited LL.

duce a unidirectional CDWa layered system, csmecti¢
underlying the nematic, with a characteristic wavelength
=2a; a square lattice tilted 45° with lattice constaat We would like to thank A.T. Dorsey, A.H. MacDonald, E.
=~2a, and a triangular lattice with triangle side= 3. Fradkin, M. Fogler, and J. MacCollough for useful discus-
Figure 7 depicts typical configurations during MC simula- sions. Acknowledgment is made to the University of Mis-
tions with largea’s. The characteristic CDW's have periods souri Research Board and to the Donors of the Petroleum
very close to those predicted above. Research Fund, administered by the American Chemical So-
One should note that these underlying CDW's are ex-<iety, for support of this research. One of the auth@<C)
tremely soft and fluctuations will render them invisible in the would like to acknowledge R. Wilkins and K. Kerby for their
thermodynamic and ergodic limits. In our simulations, how-hospitality during summer 2003. Part of the work was sup-
ever, their effects are perceptiblsee, e.g., Fig.)Ifor large  ported by NASA-CARR at Prairie View A&M University.
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