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Ground state of two-dimensional quantum-dot helium in zero magnetic field: Perturbation,
diagonalization, and variational theory
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We study the ground-state properties of two-dimensional quantum-dot helium in zero external magnetic field
(a system of two interacting electrons in a two-dimensional parabolic confinement potentigding pertur-
bation and variational theory. We introduce a family of ground-state trial wave functions with one, two, and
three variational parameters. We compare the perturbation and variational energies with numerically exact
diagonalization results and earlier unrestricted Hartree-Fock studies. We find that the three-parameter varia-
tional wave function is an excellent representation of the true ground state and argue on how to generalize such
a wave function for larger quantum dots with arbitrary numbers of electrons.
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I. INTRODUCTION confining potential, ané is the electron’s charge.
Most of the initial theoretical studies on quantum dots

Semiconductor quantum dots are generally fabricated b¥vere done in the strong magnetic field’s regime with all elec-

applying a lateral confining potential to a two-dlmen5|onaltrons being fully spin polarized. The goal was to study the

6
(2D) electron systert-®In these systems, the electrons MOVe . cover regime between microscopic quantum dots and

Strength of electron-electron and elecion-confinement nie12CT0SCOPic 2D electionic sySteEDES of the fractonal
9 quantum Hall type€1° However, in recent years, there has

%Ct'cig (;an gfuﬁgfeé:;ncﬁp;ﬁ:g tsur;fgng)vviirtﬁ \tlﬂggbrlzngﬁ r;igll peen a surge of interest in theoretical studies of quantum dots
9 P y by in zero magnetic field->with the main focus on the Fermi-

roperties. For this reason, quantum dots are sometimes r . . . .
prop 9 eI|qU|d—W|gner—soI|d crossover regime, a problem closely re-

glr:gtri)on:;:rttimﬁtllal Sct)?f:j' elxncea tt%g'rczl fg\?vafnr':auemelic():tt’roﬂlslated with the nature of metal-insulator transition in ¥D.

> are tightly " P . Among the variety of theoretical methods used to study
Such artificial atoms are of immense technological value be(quantum dots we could mention a few such as analy-
cause they form the_bwldlng_unlts of Iarge_r structures. Quanfical calculationd™  exact numerical  diagonal-
tum dots can contain anything from a single electron to a}zationsﬂ‘”quantum Monte CarléQMC) method<®-3' as
collection of thousands of electrons and much of the param- ell as density functional theory methots3®

eters that describe a quantum dot can be precisely controlled The simplest quantum dot System consists of two elec-
by conventional nanofabrication methods. Quantum dots arg o (N=2) confined in a 2D parabolic potential in zero

realized in several ways. One example is a quantum dot array . - etic field. The electrons repel each other with a Cou-
in which the potential well at the interface is populated with g ) 'S Tep .
lomb potential and the Hamiltonian of the system is

very few electrons. Another example is one where a charge

coupled device array operated under deep depletion may ﬁz m ﬁz m
have only a few electrons in the potential well under the H(py,po) = — + —wzpf+—2+ —w’pi+t ———. (2)
gate. 2m 2 2m 2 |p1— P2l

The standard theoretical model of a quantum dot includegg .5 ;56 of the analogy of the system to that of helium atom
the following approximations. First, the motion of the elec-ér

. . .~ (although, strictly speaking, the quantum dot is 2D, and the
trons is considered to be exactly 2D. Second, the confining, o hegljium ato% isp n()tthigs systgm is called quantum-dot
potential is taken to be parabolic, and third the interactior]ﬂ|

b | ) idered © b Coulomb i elium. It is well known that, because of the Coulomb inter-
etyveen electrons is considered to be a pure Loulom 'ntfeﬁction, no exact analytical solutions can be obtained for the
action. In absence of an external magnetic field, the Hamil

2n forN el . e dot i energy spectra of an arbitraN-electron parabolic quantum
tonian forN electrons interacting in a quantum dot Is dot in zero magnetic field. However, in some cases, such as

N T .o N2 N=2 quantum-dot helium, exact numerical diagonal-
H=Y {ﬂ + Twzpf] T (1)  ization$? provide useful input.
= L2m 2 i>] |pi — Pj| Among different quantities describing a quantum dot, the

. study of the ground-state properties is of fundamental impor-
where ;= (P, f,) and p;=(x;,y;) are, respectively, the 2D tance, therefore we focus our main interest on the ground-
momentum operator and position of ttik electronmis the  state wave function and the ground-state energy. Even in the
electron’s masse is the angular frequency of the parabolic case of 2D quantum-dot helium in zero magnetic field, an
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exact analytic solution of the problem is not available, thereconfinement potential with no magnetic field. In Sec. Il we
fore most of the methods used so far, rely on approximationgresent the results of first order perturbation theory. In Sec.
or numerical calculations that some time differ considerablylV we numerically solve the problem using exact diagonal-
with each other. ization techniques. In Sec. V we present the results obtained
So far, the variational treatment of 2D quantum-dot he-with a one-parameter, two-parameter, and a three-parameter
lium in presence of a magnetic field considers a wave funcvariational wave function, the last one shown to be a very
tion written as the product of a Laughlin-type wave functiongood representation of the true ground state. A discussion of
with a Jastrow factor results and concluding remarks can be found in Sec. VI.

|21+ |2 -
W =J(pyy) X (71— 2p)™ exp(— T , 3) Il. SINGLE-PARTICLE STATES
The problem of a single electron in a 2D parabolic con-

whereJ(p;) is the Jastrow factog;=x;-iy; is the 2D posi- finement potential with no magnetic field is exactly solvable.

tion in complex notationj=1,2, and|m/=0,1,..., is the In polar coordinates, the Hamiltonian is written as
angular momentum. In presence of an applied magnetic field .2 2 m

in the z direction B, we havel=y#%/(mQ) and Q?=w? A(p) = P, L S+ a2, 4)
+(we/2)?, wherew,=eB,/mis the cyclotron frequency. The 2m 2mp° 2

only types of Jastrow factors used in the literature that we argnaremis electron’s mass is the angular frequency of the
aware of have the fornd(p;) = exflap;;/(1+bp;j)], wherea  >p paranolic confinement potential, and

andb are two variational parametetsa generalized version ’
of the above form used by Pederiea al.,®® or a simpler fo 2}i< (9) ~

0
— |, L,=—ia—, 5
pé’p z g (5

versionJ(p;;) =1 used by Boltorf? The common property of Pp pdp
the above Jastrow factors is that they can reproduce the many . . )
body wave function very well under a magnetic field. How- Wherep=(x,y) and ¢ is the polar angle. The energy eigen-

ever, we argue that in the limit of zero magnetic field, nonevalues are labeled by the quantum numbers0,1,..., and
of the above choices represents the ground state very wellx=0,+1,%2,..., and argiven by
Relying on the well-known faét that, in zero magnetic field, Enm = haw(2n,+ Imy| +1). (6)

the ground state has zero angular momentum, we point out

that the wave function of Eq3) with the above choices of The normalized eigenfunctions are

Jastrow factors is no longer the very best description of the i

true ground state, therefore alternative scenarios need be _ my| a2y M), 2 2
considered. At this point we also want to mention that there Po,m (P2 €) =Nom, \;’ZT(QP)| ey anZ(a P (D
are still controversies for the selection of Jastrow factors, as ) )

discussed in Ref. 29, and more recently in Ref. 38. The maiM/here the fU”Ct'OnSLLTZ|(C“2P2) are associated Laguerre
motivation of the present work is to identify and demonstratepolynomials®® The normalization constam, r,, and the pa-
that a variational wave function with a type of Jastrow factorrametera (that has the dimensionality of an inverse length
different from those previously considered in the literatureare

constitutes the best choice to describe the ground state of this 5

system. N =y Pt Mo ®)
In this work, we study the ground-state properties of 2D Rk (n,+[mr’ %

guantum-dot helium in zero external magnetic field by using_l_ .

perturbation and variational theory. Although approximative he groun_d-state wave funf:tlon correspondsnje-0 and

in nature, the two approaches will serve as a testing groun'fpz:0 and is not degenerate:

to build high-quality trial wave functions for quantum dot a 9o

systems with arbitrary numbet of electrons. Doglp, ) = ——€ 772, 9
Given that a good variational wave function itself can be N

an excellent approximation to the true exact ground state, A complete set of single-particle solutions of the problem

there is always a need to find better, yet simple enough wayig the product of the orbitals in E¢7) and the spin functions

to accurately describe such complicated systems as the quag;, (o), whereo is the spin variables=1/2 is thespin quan-

tum dots. After a systematic study of the ground-state proprym number of the electron, amd,= +1/2 is thespin angu-

erties of 2D quantum-dot helium by using perturbation andar momentum quantum number. In absence of magnetic

variational theory, we succesfully identify a class of trial fie|d, the energy eigenvalues do not depend on spin.
wave functions with three variational parameters that is in-

deed an excellent rep_resentation_ o_f the true g_round state @S || EIRST-ORDER PERTURBATION THEORY

shown from a comparison of variational energies to respec-

tive values obtained from an exact numerical diagonalization If we were to ignore the Coulomb repulsion in Eg), we

calculation. would have a solution to the eigenvalue problem for the
In Sec. Il we briefly introduce the formalism and describetwo-electron system, with eigenfunctions given by

the single-particle states for an electron in a 2D parabolicbnplmzl(pl,<pl)(1>np2,%(p2,goz) and energy eigenvalues given
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by E=Enp m, +Enp m, - In this idealized model, the ground- IV. EXACT NUMERICAL DIAGONALIZATION
1“1 2 2

state energy i€=2%w. Since the electrons are identical fer-  \we gauge the accuracy of perturbation theory and, later
mionS, the total wave function should be antisymmetric Un'on, variational approach, by Considering exact numerical di-
der the interchange of space and spin coordinates. Given thggonalization energies as reference. In the case of 2D
the space part of the wave function is symmetric, a propeguantum-dot helium, the exact numerical diagonalization
description of the ground state of this idealized model istechnique simplifies if we separate the Hamiltonian into two

given by the normalized wave function parts, one representing the center-of-m@ss) motion and
N the other one representing the relative motion. The ¢.m. and
W(p1,p2) = Poolp1, ¢1) PoolP2: 92) Xsingiet relative coordinaE[)es are dgfined as
2
(04 2 2, 2
— = o (a2)(pT+p5) gy 3. — 0
=—e 172 Xsinglet 10 - p1tpy o= L L L L L
- singlet (10) R=P1 Pz, B=p,+ By F=p1—po = P1 p2_ 17)

2 2
where Xgiet IS the spin singlet statgtotal spin S=0 and

M.=0) given by Accordingly, the total mass of the systemhis=2m and the

reduced mass ig=m/2. In this representation the Hamil-
1 tonian of the system decouples and can be written as
Xsinglet= T[X+(0'1)X—(Uz)_X—(U'l)X+(0'2)], (12) . o
V2 A(RF) = AR(R) + Ac(D), (18)
where x.(0i)=x12.:1/407) denotes the two possible spin
states of the spin variablg for electroni=1 and 2. We treat
the Coulomb repulsion as a perturbation and, given that th

WhereﬁR(ﬁ) and |:Ir(F) are, respectively, the c.m. and rela-
gve motion Hamiltonians given by

ground state is nondegenerate, we can then apply perturba- 52
4 : . ~ o PTM o,
tion theory for a nondegenerate state. To first order in pertur- Hg(R) = — + - ‘R (19
bation theory, the energy correction of the ground state is 2M 2
given by and
- - ~ PP op &
AEY = W(p1,p00) | == | ¥(pn.p) )- (12) Hi(F) = — + S0+ —. (20
|p1— P2l 2u 2 r

Since the Coulomb perturbation does not involve the spinThe eigenfunctions of the c.m. Hamiltonian are
we only need calculate the following integral:

eMzr M o a2R%12 < | IMJ/ 2152
2\2 s 2 (I)nRMZ(R: QDIQ = N”RMz 7 (aRR) 2e7R X LnRZ(aRR ),
AE(D:<_) J d*py f Py i) —— . (13) ven
m 1= P2l (21)
We carry out the integration by using the identity where ng=0,1,..., M,=0,+1,..., andag=\Mw/f=12a.
" The c.m. eigenenergies are of the foffq v =(2ng+|M/]
1 o i i o)
= dkemAe1e2g (kpo)Jm (kpo), (14) +Dho. If we ignore the Coulomb mterat_:tlons for the mo-
|p1— Pl m=— J 0 z ment, the eigenenergies and eigenfunctions for the relative

) . ) motion Hamiltonian are of the same form as E@s.and(7),
whereJn, (kp;) are Bessel functions. The integration over an-yjith the replacement of vectgr with F, of quantum number
gular variables; and ¢, is simple, and after straightfor- n with n, and ofa with a;=a/+2, because of the reduced

ward calculations we obtain mass. As in any standard numerical diagonalization tech-
nigue we need to calculate the matrix elements of the Hamil-
AE® = eza\/E_ (15) tonian in the basigngM,;nm,). The only nondiagonal terms
arise from the Coulomb potential, which is diagonal with

respect tong, M,, andm,, but notn. As a result the most

Th? f|rst-.order correchon of the energy 1s a posmve Contrl;1general nonzero Hamiltonian matrix elements have the form
bution, since it arises from repulsive interaction, and whe

added to the unperturbed result gives the energy to first ordéPRMz: 1M HINgMz; nmy) =(npM | HRINRM.) 81
of perturbation theonEW=24w+AEWY. This can be written +(n'mJH,/nmy). For a givenng, M, and m, we have

as (RMJHRINEM )/ ()= (2ng+[MJ+1),  while  hy,
(=) . a =(n'mJH,|nm,)/ (fiw) is given by
eDN)=—=2+N/=, N\=—, (16)
he hw hn'n = (Zn + |mz| + l) 5nn'
whereeP(\) is a dimensionless energgeasured in units of \ ntnl
fw) and\=€?a/ (hw) is a dimensionless interaction param- + \_E (W +m)) L (n+|m)! I, (22

eter that gauges the strength of the Coulomb correlation rela-
tive to the confining oscillator energy. where
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o im 1 B. Two-parameter variational wave function
lovimy = f dtt™le L™ (t)LIm(t) = (23) , _ o
0 vt Let us now consider a second family of variational wave
functions with two variational parameters. The special form
and\=€a/ (fiw). of the Hamiltonian in Eq(18) allows a product ansatz for
For any value of the quantum numbeg=0,+1,..., we  the wave function in a factorized form

build sufficiently large matrices with elemerits,, and diag-
onalize them by using standard numerical methods. For a
given \, the smallest of the eigenvalues represents the

ground state energy for the relative motion. With the addition N . o
of the c.m. energy to the ground-state energy of the relativd'here®(R) are the eigenstates of the c.m. Hamiltonian and

motion we obtain the exact numerical diagonalization value®:(r) is a function of the relative coordinate. The ground-

of the ground-state energy of 2D quantum dot helium at zergtate wave function for the c.m. motigeorresponding to the
magnetic field. energy,hw) is found from Eq.21) and is

W(R,F) = DRI () Xsingles (28)

V. VARIATIONAL THEORY DooR, gp) = R w2, (29)
N
A. One-parameter variational wave function

In this section we employ variational theory and the RitzThe eigenvalue equatiod,(F)®,()=E,®,(f) is more com-
variational principle to calculate the ground-state energy oplicated and requires the solution of the stationary
2D quantum dot helium. This can be done by choosing a triaSchridinger equation
variational wave function that depends on a number of pa-
rameters, calculating the expectation value of the Hamil- 219/ 9 [2 P &2
tonian with respect to this trial wave function and then mini- (r—) + 5+ —oir?+ = |0 = E D, (1),
mizing the trial energy with respect to all parameters. 2uror\ o/ 2urt 2 r

We start by considering a simple normalized one- (30)
parameter variational wave function of the form

a2 . 5 o wherelzZ is the relative coordinate angular momentum opera-
U o(p1,pp) = —€ @RETPIX e (24)  tor andE, are the energy eigenvalues for the relative motion.
™ There are no exact analytic solutions to the above problem

wherea is a positive variational parameter to be optimizedand almost all treatments envolve some form of approxima-

and Xgingiet is the spin singlet function. tion to derive useful results. .
The prob|em of determining the ground state energy re- In view of this and in consideration to the fact that our
duces to the evaluation of the integral main interest is on ground-state properties, we write a two-

parameter variational wave function as a product of two

I . terms, one depending on the c.m. coordinate and the other
— 2 2 * !
Ea= f d plf Fp2¥a(p1.p2) * H(p1,p2)Valp1p2), one depending on the relative motion coordinate. We choose
(25) a normalized two-parameter variational wave function of the
form
where the Hamiltonian is given in E¢R) and the trial wave
function is normalized to 1. The variational energy as a func- W b(RF) = B, (RIPH) Xsingier (31)
tion of the parametea turns out to be
E{N) _ [a\? [a)? \/; a Where¢aR(§)=®oo(R,¢R) is given from Eq.(29) and corre-
ro \o) T\3) AN L) (26) sponds to the exact ground-state wave function for the c.m.

N . _ _ _ motion. As a result, there is no need to determine an optimal
wherea=ymw/#% and\ is the dimensionless Coulomb inter- yalue for the parametety already known to bevg/ @=12.

action parameter defined in E@L6). It is obvious that the  On the other hand, we write the relative motion trial wave
ground-state energy will depend on the paramgtéio sim-  fynction as
plify notation we introduce a new variabtea/« and write

(t.M)=EsM)/(fiw) as 21012
€ [ q)b(f) - %e—(b 12)r ) (32)

1 v
e(t,\) =2+ ot A \/gt. (27)

The function, ®,(r) is normalized to one, describes the
Starting from the minimum conditiorde(t,\)/dt=0, we  ground state of the relative motion and need be optimized by
search for the realpositive) root of equationty+\yVm/8  choosing the optimal value @f via standard variational pro-
=1/t3, which represents the optimal value of parameger cedures. The functioMjngie is the spin singlet function.
(therefore the optimal variational parametgy) that mini- The expecation value of the two-body Hamiltonian for the
mizes the energy for any given wave function of Eq(31) can be reduced to the expression
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5 - A calculation of the expectation value of the Hamiltonian
Ep=fiw+ f drdy(r) * H (NPy(r), (33 with respect to the above three-parameter trial wave function
gives
where the first term comes from the c¢.m. motion and the
second integral results from the relative motion. After perfo- — B%f,(AB,c) + fZ(A—EC) + \Bf4(A,B,0)
ming the integrals we obtain . E _ (4B)
Ey) b\ 1(a\?  ~(b ho fAB.c)
—— =1+ =] +-| -] +NVA| — . (34) 2 q
o a) " 4\b a AL (37)
21
As previously done, we introduce the dimensionless vari- 2 2A
ablest=b/« and €(t,\) =E,(\)/ (w) to obtain whereA=al o, B=b/ «, and\ =€?a/ (fw). The four functions
1 f;2zandf depend on the variables specified on their argu-
etN)=1+2+ -5+ At (355  ments. In an integral form they are given by
o AZ 2
We minimize (t,\) with respect ta in order to obtain the f1(A,B,c) = f diter (A72BAE-Prct 5 {(1 +E> t2
0

optimal value of parametey (thereforeby) for any given.

Az A? c
-2t 1+ |+c°-2-—+—|,
C. Three-parameter variational wave function 2B B t

We can further improve the two-parameter variational -
wave function and build a better wave function once we note f,(AB,c) = f dtfe(AY2BAP-t+2ct
that the main effect of the Coulomb repulsion is to push the 0
two electrons further apart. In absence of Coulomb repul-
sion, the component of the ground-state wave function that o
depends on the relative coordinate is expected to be centered f3(A,B,C) = f dier(A%128Y-tPs2ct
at|p,—p,|=0, but in presence of the Coulomb repulsion be- 0
tween electrons, the center of the relative motion wave func-

tion would shift towards nonzero relative coordinatés; * 2020 2
N .. . — (A/2B)to—t“+2ct
—po| #0). A variational wave function of the form f(AB,c) = fo dite < (39
2 2
W, (P, po) = expl - a_(pi + pg) - b—(ﬁl — p)? wheret=b|p,—p,| is an auxiliary variable introduced to sim-
. 2 2 plify the calculation of integrals. For any given value of pa-

- rameter\, we minimize the expression in E with re-
X extleblps = ol Xsingie: (36) spect to the variational parameﬁ@r,sB, andc a?dnas a result
has all the key ingredients to satisfy the above scenario andbtain the best variational energy and the optimal values of
contains only three variational prameters to optimize. Thevariational parameters, as well.

three parameters, b, and c are considered to be non-
negative. On physical grounds we may expect to hate

=1, since the two electron equation can be separated by the
variablesR andr and this choice gives the exact lowest c.m.  The optimal values of variational parameters for the one-,
energy. Although this argument applies to the three paramtwo-, and three-parameter variational wave functions at dif-
eter wave functionbecause of its special fopmit is not  ferent\’s are given in Table |. The optimal value of param-
always correct and should be treated with some care. This ister A for the three-parameter variational wave function was
because(p§+p§) depends on botR andr, therefore, for an always found to beA=a/a=1, a value that guarantees the
arbitrary generic wave function, the optimal valueaoimay  lowest possible c.m. energy.

not always be the value that gives the exact lowest c.m. In Table 1l we show the ground-state energies
energy. For the sake of generality and as a numerical cheak=E/ (% w) for given values oh (first columr) obtained from

of the minimization procedure we prefer to consideas a a variety of different methods: first order perturbation theory,
variational parameterWe later verify that the numerical variational theory, exact numerical diagonalization, and un-
minimization procedure always gives the anticipated valueestricted Hartree-FockHF) technique’® as well. From the

for parametern.) Whenb=0, the three-parameter wave func- results of Table Il we note that, even the energies obtained
tion reduces to the one-parameter wave funcftbat would  from the one-parameter variational wave function are lower
give the exact solution of the problem if we were to ignorethan the first-order perturbation theory values, fornalun-

the Coulomb repulsion Whenb>0, we would then expect der consideration. As expected, we find out that for a wide
the parametec to play a significant role on improving the range of Coulomb correlation strengths, the ground-state en-
variational energy, because the main effect of theergy obtained from first-order perturbation theory is too high.
c-dependent term is to push the pair of electrons furtheihe results suggest that perturbation theory is not very accu-
apart, therefore optimizing their Coulomb correlations. rate and may be used with some reliability only when O

VI. RESULTS AND DISCUSSION
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. . i 20 . ' '
. TABLE I. A dlsplay of the optimal varlatlgnal paramgters for First-order perturbation
different values of\ (first column corresponding to the different One-parameter variational —8—
it ; i Two-parameter variational —6—
types of variational wave functlons for 2D quantum dot hell_um. For Three-parameter vasiational
the one-parameter variational wave functiguar. 1), the optimal 15 | Exact numerical diagonalization —<— g

valuesa/ « are listed in the second column. For the two-parameter
variational wave functiorivar. 2, the optimal value®/ « are listed

in the third column andvg/ a=y2 irrespective of\. For the three- w10
parameter variational wave functigmar. 3, the optimal values of

B=b/a andc are listed, respectively, in the fourth and fifth col-

umns, while we always haveA=a/a=1. The parametera 5
=Vmw/# has the dimensionality of an inverse length.

Var. 1 Var. 2 Var. 3

N ala b/a b/a [

0.0 1.000000 0.707107 0.000000 0.00000 FIG. 1. Plot of the dimensionless ground-state enekgy
1.0 0.873542 0.557394 0.401849 1.67676 =E/(hw) of 2D quantum dot helium as a function of the dimen-
2.0 0.788274 0.480537 0.497908 2.21655 sionless Coulomb interaction paramekere?a/ (fiw) for values of

3.0 0.726623 0.432455 0.542433 257492 \ from 0 to 10. The ground-state energies obtained from the three-

4.0 0.679582 0.398732 0.566026 285052 Parameter wave functio(solid circleg are practically identical to
50 0.642208 0.373335 0.579761 3.07820 exact numerical diagonalization resultsosses

6.0 0.611583 0.353267 0.588185 3.27473

7.0 0.585880 0.336856 0.593558 3.44916 choice.

8.0 0.563892 0.323085 0.597084 3.60699 One notes that the variational ground state energies ob-
9.0 0.544787 0.311297 0.599450 3.75177 tained from the three-parameter variational wave function
10.0 0.527975 0.301043 0.601063 3.88599 (fifth column) are extremely close to exact numerical diago-
nalization values(sixth column, and considerably better
than unrestricted Hartree-FoaqiF) calculations(seventh
<A\ <1. Comparing the third and fourth columns of Table Il, column). Furthermore, the results in Table Il show that this
we see that the two-parameter variational wave function is @xcellent agreement between the three-parameter variational
clear improvement upon the one-parameter variational wav@aye function energies and numerical diagonalization results
function, however, the data clearly show that the threepersists for all\’s under consideratiogeven for very large
\'s, where Coulomb correlation effects are expected to be

TABLE Il. Ground-state energies=E/(%w) of 2D quantum dot  yery strong. This further indicates the excellent quality of

helium as a function of dimensionless Coulomb coupling parametefhis variational wave function.

N=€%al(hw) (first columr) obtained from first order perturbation In Fig. 1 we plot the dimensionless ground-state energy
theory (second columy one-parameter variational wave function e=E/(hw) as a function of the dimensionless Coulomb in-
(third column), two-parameter yariational wave.fgnctiqrfourth teraction paramete}\:eza/(hw) for values of A ranging
column), three-parameter variational wave functi@ifth column) from 0 (no Coulomb repulsionto A=10. The results repre-

are compared with exact numerical diagonalization reggiteth t th | btained f first-ord turbation th
column and unrestricted Hartree-FockdF) results (Ref. 40, sént the values obtained from first-order perturbation theory
(empty squarg one-parameter variational theorgfilled

where availablgseventh column The parameterr=\mw/# has o !
the dimensionality of an inverse length. square, two-parameter varlatlongl theo_r&empty circle,
three-parameter variational theoffjlled circle), and exact

N eD(\) e(var D e(var. 2 e(var. 3 e(diag) e(HF) numerical diagonalization result¢crosses The three-
parameter variational wave function energies are practically

parameter variational wave functigfifth column) is the best

0.0 2.00000 2.00000 2.00000 2.00000 2.00000 identical to the exact numerical diagonalization values.

1.0 3.25331 3.16838 3.10331 3.00174 3.00097 For all \'s under consideration, the three-parameter varia-
20 450663 4.20662 4.01702 3.72565 3.72143 4.034tional wave function energies are sizeably lower than the
3.0 575994 5.15405 4.82331 4.32576 4.31872 respective unrestricted HF valu¥sThis is explained by not-

40 701326 6.03404 555838 485637 484780 5.182"M9 that, in the absence of a magnetic field, the spin singlet
state is the state of lowest energy, therefore the neglect of

50 826657 6.86152 6.24164 534141 5.33224 electronic pair correlations in the HF approach is responsible

6.0 951988 7.64662 6.88494 579354 5.78429 6.107for the poor quality of the HF singlet ground state. On the

7.0 10.7732 8.39658 7.49609 6.22032 6.21129 contrary, the three-parameter variational wave function cap-
8.0 12.0265 9.11675 8.08061 6.62674 6.61804 6.930tures all essential electronic correlations through the param-
9.0 13.2798 9.81125 8.64257 7.01626 7.00795 eterc-dependent term.

10.0 145331 1048330 9.18504 7.39141 7.38351 7.686 With the intent to generalize such a wave function to
larger quantum dots, we can rewrite the three-parameter
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variational wave function for 2D quantum dot helium as  momentumm,=0, the Laughlin factor of the ground-state

. . 272 .

N=2 wave function in Eq.(3) reduces toxe @/21+0d which
V= DTDLH I(pij). (39) corresponds to the un-normalized product of wave functions
i<j for two uncorrelated electrons. Therefore, in the limit of zero

magnetic field, the wave function of E() transforms into a
wave function of the form of Eq(36) possesing the same
one-body term, but having a very different two-body Jastrow
factor.
b? , We point out that generalizations of trial wave functions
Ipij) =exp ~ Epii + cbpj; |, (40) as in Eq.(39) in absenc# and in presence of weak magnetic
fields*! have always considered Jastrow correlation factors of
where p;; =|p;—p;| andb, ¢ are non-negative variational pa- the type of Eq.(41) so far. A generalized version of the
rameters to be optimized. It is obvious that the wave functionjastrow factor in Eq(41) was also used in recent DMC
in Eq. (39) is equivalent to the wave function in E36)  calculation® to calculate ground- and excited-state proper-
since D, D xexp—(a%/2)(p+p3)] for N=2. To the best of ties for up toN=13 electrons in a 2D quantum dot. Clearly,
our knowledge, a three-parameter trial wave function with ahe variational wave functions under consideration in this
Jastrow factor of the form of Eq40) has not been previ- work have substantially different Jastrow correlation factors
ously considered neither f&¢=2, nor for arbitraryN quan-  when compared to earlier studies.
tum dots, with or without magnetic field. Therefore, we be- We can readily generalize the wave function of E2p)
lieve it is appropriate to compare this trial wave function towith the proposed Jastrow factor of §40) to quantum dots
other different trial wave functions considered in the litera-with arbitrary numbeN of electrons. By doing so, the prod-
ture. uct of Jastrow factors is nhow extended to all pairs of elec-
For example, Harjet al3” have studied a 2IN=2 quan-  trons and we need to consider Slater determinanié; afpin
tum dot in presence of a magnetic field using a variationatup” and N; spin “down” electrons, witiN;+N ;=N. As a
wave function of the form of Eq(3) with Jastrow factor of first scenario, one might consider the variational parameters,

whereD,, D, are Slater determinants for spin “up” and spin
“down” states andl(p;) is a two-body Jastrow correlation
factor which in our case has the form

the form b andc to be the same for any pair of electrons, irrespective
ap; of their relative spin. Under a more sophisticated treatment,
J(pjj) = ex —'J—> (41) one would assume different variational parametei@nd c
1 +bp; for pairs of electrons with parallel and opposite spins. This is
wherea andb are two variational parameters. because in larger systems we have correlations between pairs

Although the trial wave function of Eq:36) cannot be Of electrons not only of opposite spias in the case oN
directly compared to that in E¢3), since the first describes =2 quantum-dot helium but also of pairs of electrons of
2D quantum dot helium at zero magnetic field, while theParallel spins. It is reasonable to expect that pairs of elec-
second considers a nonzero magnetic field, it is evident thdfons with parallel and opposite spins will not correlate in the
these two variational wave functions have very different JaSame way, under the most general circumstances.
strow factors. Furthermore, as noted in Ref. 37, the Jastrow Whether we consider the first or the second scenavith
ansatz of Eq(41) does not have the right asymptotic behav-more variational paramete)rsstandard_ variational Monte
ior for p; — =, where the electronic correlations are expected-arlo(VMC) techniques would be applied to get an accurate
to vanish and not saturate to a finite value. In a separatgvaluation of the relevant physical properties of the system.
study, Boltor?® considered systems dfi=2-4 interacting Trl_al wave functions of thl§ type could a_Iso be_ good starting
electrons in a quantum dot, in the presence of magnetic field?0ints to implement additional DMC simulations as those
using the fixed-node diffusion Monte CaldMC) method. ~ Performed by Boltof for 2D quantum dots with few elec-
For N=2 electrons and a starting wave function of Laughlintrons. Work in this direction is in progress.
form, he found out that, without Coulomb interaction, the
state with angular momentumZ:OIrer.nains the ground state ACKNOWLEDGMENTS
over the entire range of magnetic fieldlsonzero and zero
magnetic fielgl With the inclusion of the Coulomb interac- Part of this work was supported by the Office of the Vice-
tion, the situation at zero magnetic field is not altered, al-President for Research and Development of Prairie View
though this is no longer the case for a nonzero magneti&é&M University through a 2003-2004 Research Enhance-
field. It is obvious that, for zero magnetic field and angularment Program grant.

1L. Jacak, P. Hawrylak, and A. WojRQuantum Dots(Springer, (1998.
Berlin, 1997%. 4D. Heitmann and J. P. Kotthaus, Phys. Tod4; 56 (1993.
2R. C. Ashoori, NaturgLondon) 379 413(1996. SM. A. Kastner, Phys. Today6, 24 (1993.

3L. P. Kouwenhoven and C. M. Marcus, Phys. World, 35 6S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L.

205326-7



O. CIFTJAAND A. A. KUMAR PHYSICAL REVIEW B 70, 205326(2004)

P. Kouwenhoven, Phys. Rev. Lefl7, 3613(1996. 253 -R. E. Yang, A. H. MacDonald, and M. D. Johnson, Phys. Rev.
’D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.  Lett. 71, 3194(1993.
48, 1559(1982. 26D, Pfannkuche, V. Gudmundsson, and P. A. Maksym, Phys. Rev.
8R.B. Laughlin, Phys. Rev. Lett50, 1395(1983. B 47, 2244(1993
9 ifti i ’ '
O. Ciftja, S. Fantoni, and K. Gernoth, Phys. Rev.3B, 13739 27¢  yannouleas and U. Landman, Phys. Rev. L&, 1726
(19979 (2000.

100, Ciftja, Phys. Rev. B59, 10 194(1999.
11C. E. Creffield, W. Hausler, J. H. Jefferson, and S. Sarkar, Phy

Rev. B 59, 10 719(1999. 20 : o )
125 M. Reimann, M. Koskinen, and M. Manninen, Phys. Rev. B J. Kainz, S. A. Mikhailov, A. Wensauer, and U. Rdssler, Phys.
Rev. B 65, 115305(2002.

62, 8108(2000. a1 . S I
18R, Egger, W. Hausler, C. H. Mak, and H. Grabert, Phys. Rev. A. Harju, S. Siljamaki, and R. M. Nieminen, Phys. Rev.&5,

28p. A. Maksym, Phys. Rev. B53, 10 871(1996.
SZQF. Bolton, Phys. Rev. B54, 4780(1996).

Lett. 82, 3320(1999. 45, J12309(2002. _ _
14R. Egger, W. Hausler, C. H. Mak, and H. Grabert, Phys. Rev. M. Koskinen, M. Manninen, and S. M. Reimann, Phys. Rev. Lett.
Lett. 83, 462E) (1999. 79, 1389(1997).
15A. V. Filinov, M. Bonitz, and Y. E. Lozovik, Phys. Rev. Letg6, - K. Hirose and N. S. Wingreen, Phys. Rev.3®, 4604(1999.
3851 (2001). 340. Steffens, U. Rossler, and M. Suhrke, Europhys. L4®.529
16 Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. (1998.
Phys. 73, 251 (2001). 350. Steffens, U. Rossler, and M. Suhrke, Europhys. Lé#.222
7M. Taut, Phys. Rev. A48, 3561(1993. (1999.
18M. Taut, J. Phys. A27, 1045(1994). 36M. Ferconi and G. Vignale, Phys. Rev. B0, 14 722(1994).
19A, Turbiner, Phys. Rev. A50, 5335(1994. STA. Harju, V. A. Sverdlov, B. Barbiellini, and R. M. Nieminen,
20M. Dineykhan and R. G. Nazmitdinov, Phys. Rev.35, 13 707 Physica B 255, 145(1998.
(1999. 38F, Pederiva, C. J. Umrigar, and E. Lipparini, Phys. Rev65
21p. A. Maksym and T. Chakraborty, Phys. Rev. Le65, 108 8120(2000; 68, 089901E) (2003.
(1990. 39Mathematical Methods For Physicistéth ed., edited by George
22, Merkt, J. Huser, and M. Wagner, Phys. Rev. 8, 7320 B. Arfken and Hans J. WebetAcademic Press New York,
(1991. 1995.
23p. Pfannkuche and R. R. Gerhardts, Phys. Rev4® 13132  4°B. Reusch, W. Hausler, and H. Grabert, Phys. Re33113313
(1992 (2001).
24A. H. MacDonald and M. D. Johnson, Phys. Rev. L&, 3107  *XA. Harju, V. A. Sverdlov, R. M. Nieminen, and V. Halonen, Phys.
(1993. Rev. B 59, 5622(1999.

205326-8



