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We study the ground-state properties of two-dimensional quantum-dot helium in zero external magnetic field
(a system of two interacting electrons in a two-dimensional parabolic confinement potential) by using pertur-
bation and variational theory. We introduce a family of ground-state trial wave functions with one, two, and
three variational parameters. We compare the perturbation and variational energies with numerically exact
diagonalization results and earlier unrestricted Hartree-Fock studies. We find that the three-parameter varia-
tional wave function is an excellent representation of the true ground state and argue on how to generalize such
a wave function for larger quantum dots with arbitrary numbers of electrons.
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I. INTRODUCTION

Semiconductor quantum dots are generally fabricated by
applying a lateral confining potential to a two-dimensional
(2D) electron system.1–6 In these systems, the electrons move
in a plane in a lateral confinement potential. The relative
strength of electron-electron and electron-confinement inter-
action can be experimentally tuned over a wide range result-
ing in a peculiar electronic system with tunable physical
properties. For this reason, quantum dots are sometimes ref-
ered to as “artificial atoms.” In a typical quantum dot, all
electrons are tightly bound, except for a few free electrons.
Such artificial atoms are of immense technological value be-
cause they form the building units of larger structures. Quan-
tum dots can contain anything from a single electron to a
collection of thousands of electrons and much of the param-
eters that describe a quantum dot can be precisely controlled
by conventional nanofabrication methods. Quantum dots are
realized in several ways. One example is a quantum dot array
in which the potential well at the interface is populated with
very few electrons. Another example is one where a charge
coupled device array operated under deep depletion may
have only a few electrons in the potential well under the
gate.

The standard theoretical model of a quantum dot includes
the following approximations. First, the motion of the elec-
trons is considered to be exactly 2D. Second, the confining
potential is taken to be parabolic, and third the interaction
between electrons is considered to be a pure Coulomb inter-
action. In absence of an external magnetic field, the Hamil-
tonian forN electrons interacting in a quantum dot is

Ĥ = o
i=1

N F p̂i
2

2m
+

m

2
v2ri

2G + o
i. j

N
e2

urW i − rW ju
, s1d

where pŴ i =sp̂ix , p̂iyd and rW i =sxi ,yid are, respectively, the 2D
momentum operator and position of theith electron,m is the
electron’s mass,v is the angular frequency of the parabolic

confining potential, ande is the electron’s charge.
Most of the initial theoretical studies on quantum dots

were done in the strong magnetic field’s regime with all elec-
trons being fully spin polarized. The goal was to study the
crossover regime between microscopic quantum dots and
macroscopic 2D electronic systems(2DES) of the fractional
quantum Hall type.7–10 However, in recent years, there has
been a surge of interest in theoretical studies of quantum dots
in zero magnetic field,11–15with the main focus on the Fermi-
liquid–Wigner-solid crossover regime, a problem closely re-
lated with the nature of metal-insulator transition in 2D.16

Among the variety of theoretical methods used to study
quantum dots we could mention a few such as analy-
tical calculations,17–20 exact numerical diagonal-
izations,21–27 quantum Monte Carlo(QMC) methods,28–31 as
well as density functional theory methods.32–36

The simplest quantum dot system consists of two elec-
trons sN=2d confined in a 2D parabolic potential in zero
magnetic field. The electrons repel each other with a Cou-
lomb potential and the Hamiltonian of the system is

ĤsrW1,rW2d =
p̂1

2
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m
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v2r1
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2
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+

m

2
v2r2

2 +
e2

urW1 − rW2u
. s2d

Because of the analogy of the system to that of helium atom
(although, strictly speaking, the quantum dot is 2D, and the
true helium atom is not) this system is called quantum-dot
helium. It is well known that, because of the Coulomb inter-
action, no exact analytical solutions can be obtained for the
energy spectra of an arbitraryN-electron parabolic quantum
dot in zero magnetic field. However, in some cases, such as
N=2 quantum-dot helium, exact numerical diagonal-
izations22 provide useful input.

Among different quantities describing a quantum dot, the
study of the ground-state properties is of fundamental impor-
tance, therefore we focus our main interest on the ground-
state wave function and the ground-state energy. Even in the
case of 2D quantum-dot helium in zero magnetic field, an
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exact analytic solution of the problem is not available, there-
fore most of the methods used so far, rely on approximations
or numerical calculations that some time differ considerably
with each other.

So far, the variational treatment of 2D quantum-dot he-
lium in presence of a magnetic field considers a wave func-
tion written as the product of a Laughlin-type wave function
with a Jastrow factor

C = Jsr12d 3 sz1 − z2dumzu expS−
uz1u2 + uz2u2

2l2
D , s3d

whereJsr12d is the Jastrow factor,zj =xj − iyj is the 2D posi-
tion in complex notation,j =1,2, andumzu=0,1, . . ., is the
angular momentum. In presence of an applied magnetic field
in the z direction Bz we have l =Î" / smVd and V2=v2

+svc/2d2, wherevc=eBz/m is the cyclotron frequency. The
only types of Jastrow factors used in the literature that we are
aware of have the formJsri jd~expfari j / s1+bri jdg, wherea
andb are two variational parameters,37 a generalized version
of the above form used by Pederivaet al.,38 or a simpler
versionJsri jd=1 used by Bolton.29 The common property of
the above Jastrow factors is that they can reproduce the many
body wave function very well under a magnetic field. How-
ever, we argue that in the limit of zero magnetic field, none
of the above choices represents the ground state very well.
Relying on the well-known fact29 that, in zero magnetic field,
the ground state has zero angular momentum, we point out
that the wave function of Eq.(3) with the above choices of
Jastrow factors is no longer the very best description of the
true ground state, therefore alternative scenarios need be
considered. At this point we also want to mention that there
are still controversies for the selection of Jastrow factors, as
discussed in Ref. 29, and more recently in Ref. 38. The main
motivation of the present work is to identify and demonstrate
that a variational wave function with a type of Jastrow factor
different from those previously considered in the literature
constitutes the best choice to describe the ground state of this
system.

In this work, we study the ground-state properties of 2D
quantum-dot helium in zero external magnetic field by using
perturbation and variational theory. Although approximative
in nature, the two approaches will serve as a testing ground
to build high-quality trial wave functions for quantum dot
systems with arbitrary numberN of electrons.

Given that a good variational wave function itself can be
an excellent approximation to the true exact ground state,
there is always a need to find better, yet simple enough ways
to accurately describe such complicated systems as the quan-
tum dots. After a systematic study of the ground-state prop-
erties of 2D quantum-dot helium by using perturbation and
variational theory, we succesfully identify a class of trial
wave functions with three variational parameters that is in-
deed an excellent representation of the true ground state as
shown from a comparison of variational energies to respec-
tive values obtained from an exact numerical diagonalization
calculation.

In Sec. II we briefly introduce the formalism and describe
the single-particle states for an electron in a 2D parabolic

confinement potential with no magnetic field. In Sec. III we
present the results of first order perturbation theory. In Sec.
IV we numerically solve the problem using exact diagonal-
ization techniques. In Sec. V we present the results obtained
with a one-parameter, two-parameter, and a three-parameter
variational wave function, the last one shown to be a very
good representation of the true ground state. A discussion of
results and concluding remarks can be found in Sec. VI.

II. SINGLE-PARTICLE STATES

The problem of a single electron in a 2D parabolic con-
finement potential with no magnetic field is exactly solvable.
In polar coordinates, the Hamiltonian is written as

ĤsrWd =
p̂r

2

2m
+

L̂z
2

2mr2 +
m

2
v2r2, s4d

wherem is electron’s mass,v is the angular frequency of the
2D parabolic confinement potential, and

p̂r
2 = − "21

r

]

]r
Sr

]

]r
D, L̂z = − i"

]

]w
, s5d

whererW =sx,yd and w is the polar angle. The energy eigen-
values are labeled by the quantum numbersnr=0,1, . . ., and
mz=0, ±1, ±2, . . ., and aregiven by

Enrmz
= "vs2nr + umzu + 1d. s6d

The normalized eigenfunctions are

Fnrmz
sr,wd = Nnrmz

eimzw

Î2p
sardumzue−a2r2/2Lnr

umzusa2r2d, s7d

where the functionsLnr

umzusa2r2d are associated Laguerre
polynomials.39 The normalization constantNnrmz

and the pa-
rametera (that has the dimensionality of an inverse length)
are

Nnrmz
=Î 2nr ! a2

snr + umzud!
, a =Îmv

"
. s8d

The ground-state wave function corresponds tonr=0 and
mz=0 and is not degenerate:

F00sr,wd =
a

Îp
e−a2r2/2. s9d

A complete set of single-particle solutions of the problem
is the product of the orbitals in Eq.(7) and the spin functions
xsms

ssd, wheres is the spin variable,s=1/2 is thespin quan-
tum number of the electron, andms= ±1/2 is thespin angu-
lar momentum quantum number. In absence of magnetic
field, the energy eigenvalues do not depend on spin.

III. FIRST-ORDER PERTURBATION THEORY

If we were to ignore the Coulomb repulsion in Eq.(2), we
would have a solution to the eigenvalue problem for the
two-electron system, with eigenfunctions given by
Fnr1

mz1
sr1,w1dFnr2

mz2
sr2,w2d and energy eigenvalues given
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by E=Enr1
mz1

+Enr2
mz2

. In this idealized model, the ground-

state energy isE=2"v. Since the electrons are identical fer-
mions, the total wave function should be antisymmetric un-
der the interchange of space and spin coordinates. Given that
the space part of the wave function is symmetric, a proper
description of the ground state of this idealized model is
given by the normalized wave function

CsrW1,rW2d = F00sr1,w1dF00sr2,w2dXsinglet

=
a2

p
e−sa2/2dsr1

2+r2
2dXsinglet, s10d

where Xsinglet is the spin singlet state(total spin S=0 and
Ms=0) given by

Xsinglet=
1
Î2

fx+ss1dx−ss2d − x−ss1dx+ss2dg, s11d

where x±ssid=x1/2,±1/2ssid denotes the two possible spin
states of the spin variablesi for electroni =1 and 2. We treat
the Coulomb repulsion as a perturbation and, given that the
ground state is nondegenerate, we can then apply perturba-
tion theory for a nondegenerate state. To first order in pertur-
bation theory, the energy correction of the ground state is
given by

DEs1d =KCsrW1,rW2dU e2

urW1 − rW2u
UCsrW1,rW2dL . s12d

Since the Coulomb perturbation does not involve the spin,
we only need calculate the following integral:

DEs1d = Sa2

p
D2E d2r1E d2r2e

−a2sr1
2+r2

2d e2

urW1 − rW2u
. s13d

We carry out the integration by using the identity

1

urW1 − rW2u
= o

mz=−`

` E
0

`

dkeimzsw1−w2dJmz
skr1dJmz

skr2d, s14d

whereJmz
skrid are Bessel functions. The integration over an-

gular variables,w1 and w2 is simple, and after straightfor-
ward calculations we obtain

DEs1d = e2aÎp

2
. s15d

The first-order correction of the energy is a positive contri-
bution, since it arises from repulsive interaction, and when
added to the unperturbed result gives the energy to first order
of perturbation theoryEs1d=2"v+DEs1d. This can be written
as

es1dsld =
Es1d

"v
= 2 +lÎp

2
, l =

e2a

"v
, s16d

wherees1dsld is a dimensionless energy(measured in units of
"v) andl=e2a / s"vd is a dimensionless interaction param-
eter that gauges the strength of the Coulomb correlation rela-
tive to the confining oscillator energy.

IV. EXACT NUMERICAL DIAGONALIZATION

We gauge the accuracy of perturbation theory and, later
on, variational approach, by considering exact numerical di-
agonalization energies as reference. In the case of 2D
quantum-dot helium, the exact numerical diagonalization
technique simplifies if we separate the Hamiltonian into two
parts, one representing the center-of-mass(c.m.) motion and
the other one representing the relative motion. The c.m. and
relative coordinates are defined as

RW =
rW1 + rW2

2
, PW = pW1 + pW2, rW = rW1 − rW2, pW =

pW1 − pW2

2
. s17d

Accordingly, the total mass of the system isM =2m and the
reduced mass ism=m/2. In this representation the Hamil-
tonian of the system decouples and can be written as

ĤsRW ,rWd = ĤRsRW d + ĤrsrWd, s18d

whereĤRsRW d and ĤrsrWd are, respectively, the c.m. and rela-
tive motion Hamiltonians given by

ĤRsRW d =
P̂2

2M
+

M

2
v2R2 s19d

and

ĤrsrWd =
p̂2

2m
+

m

2
v2r2 +

e2

r
. s20d

The eigenfunctions of the c.m. Hamiltonian are

FnRMz
sR,wRd = NnRMz

eiMzwR

Î2p
saRRduMzue−aR

2R2/2 3 LnR

uMzusaR
2R2d,

s21d

where nR=0,1, . . ., Mz=0, ±1, . . ., andaR=ÎMv /"=Î2a.
The c.m. eigenenergies are of the formEnRMz

=s2nR+ uMzu
+1d"v. If we ignore the Coulomb interactions for the mo-
ment, the eigenenergies and eigenfunctions for the relative
motion Hamiltonian are of the same form as Eqs.(6) and(7),
with the replacement of vectorrW with rW, of quantum number
nr with n, and ofa with ar =a /Î2, because of the reduced
mass. As in any standard numerical diagonalization tech-
nique we need to calculate the matrix elements of the Hamil-
tonian in the basisunRMz;nmzl. The only nondiagonal terms
arise from the Coulomb potential, which is diagonal with
respect tonR, Mz, and mz, but not n. As a result the most
general nonzero Hamiltonian matrix elements have the form

knRMz;n8mzuĤunRMz;nmzl=knRMzuĤRunRMzldn8n

+kn8mzuĤrunmzl. For a given nR, Mz, and mz, we have

knRMzuĤRunRMzl / s"vd=s2nR+ uMzu+1d, while hn8n

=kn8mzuĤrunmzl / s"vd is given by

hn8n = s2n + umzu + 1ddnn8

+
l

Î2
Î n8 ! n!

sn8 + umzud ! sn + umzud!
In8numzu

, s22d

where
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In8numzu
=E

0

`

dttumzue−tLn8
umzustdLn

umzustd
1
Ît

s23d

andl=e2a / s"vd.
For any value of the quantum numbermz=0, ±1, . . ., we

build sufficiently large matrices with elementshn8n and diag-
onalize them by using standard numerical methods. For a
given l, the smallest of the eigenvalues represents the
ground state energy for the relative motion. With the addition
of the c.m. energy to the ground-state energy of the relative
motion we obtain the exact numerical diagonalization value
of the ground-state energy of 2D quantum dot helium at zero
magnetic field.

V. VARIATIONAL THEORY

A. One-parameter variational wave function

In this section we employ variational theory and the Ritz
variational principle to calculate the ground-state energy of
2D quantum dot helium. This can be done by choosing a trial
variational wave function that depends on a number of pa-
rameters, calculating the expectation value of the Hamil-
tonian with respect to this trial wave function and then mini-
mizing the trial energy with respect to all parameters.

We start by considering a simple normalized one-
parameter variational wave function of the form

CasrW1,rW2d =
a2

p
e−sa2/2dsr1

2+r2
2dXsinglet, s24d

wherea is a positive variational parameter to be optimized
andXsinglet is the spin singlet function.

The problem of determining the ground state energy re-
duces to the evaluation of the integral

Ea =E d2r1E d2r2CasrW1,rW2d * ĤsrW1,rW2dCasrW1,rW2d,

s25d

where the Hamiltonian is given in Eq.(2) and the trial wave
function is normalized to 1. The variational energy as a func-
tion of the parametera turns out to be

Easld
"v

= S a

a
D2

+ Sa

a
D2

+ lÎp

2
S a

a
D , s26d

wherea=Îmv /" andl is the dimensionless Coulomb inter-
action parameter defined in Eq.(16). It is obvious that the
ground-state energy will depend on the parameterl. To sim-
plify notation we introduce a new variablet=a/a and write
est ,ld=Easld / s"vd as

est,ld = t2 +
1

t2
+ lÎp

2
t. s27d

Starting from the minimum conditiondest ,ld /dt=0, we
search for the real(positive) root of equationt0+lÎp /8
=1/t0

3, which represents the optimal value of parametert0
(therefore the optimal variational parametera0) that mini-
mizes the energy for any givenl.

B. Two-parameter variational wave function

Let us now consider a second family of variational wave
functions with two variational parameters. The special form
of the Hamiltonian in Eq.(18) allows a product ansatz for
the wave function in a factorized form

CsRW ,rWd = FRsRW dFrsrWdXsinglet, s28d

whereFRsRW d are the eigenstates of the c.m. Hamiltonian and
FrsrWd is a function of the relative coordinate. The ground-
state wave function for the c.m. motion(corresponding to the
energy,"v) is found from Eq.(21) and is

F00sR,wRd =
aR

Îp
e−aR

2R2/2. s29d

The eigenvalue equationĤrsrWdFrsrWd=ErFrsrWd is more com-
plicated and requires the solution of the stationary
Schrödinger equation

F−
"2

2m

1

r

]

]r
Sr

]

]r
D +

L̂z
2

2mr2 +
m

2
v2r2 +

e2

r
GFrsrWd = ErFrsrWd,

s30d

whereL̂z is the relative coordinate angular momentum opera-
tor andEr are the energy eigenvalues for the relative motion.
There are no exact analytic solutions to the above problem
and almost all treatments envolve some form of approxima-
tion to derive useful results.

In view of this and in consideration to the fact that our
main interest is on ground-state properties, we write a two-
parameter variational wave function as a product of two
terms, one depending on the c.m. coordinate and the other
one depending on the relative motion coordinate. We choose
a normalized two-parameter variational wave function of the
form

CaR,bsRW ,rWd = FaR
sRW dFbsrWdXsinglet, s31d

whereFaR
sRW d=F00sR,wRd is given from Eq.(29) and corre-

sponds to the exact ground-state wave function for the c.m.
motion. As a result, there is no need to determine an optimal
value for the parameteraR already known to beaR/a=Î2.
On the other hand, we write the relative motion trial wave
function as

FbsrWd =
b

Îp
e−sb2/2dr2

. s32d

The function, FbsrWd is normalized to one, describes the
ground state of the relative motion and need be optimized by
choosing the optimal value ofb via standard variational pro-
cedures. The functionXsinglet is the spin singlet function.

The expecation value of the two-body Hamiltonian for the
wave function of Eq.(31) can be reduced to the expression
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Eb = "v +E d2rFbsrWd * ĤrsrWdFbsrWd, s33d

where the first term comes from the c.m. motion and the
second integral results from the relative motion. After perfo-
ming the integrals we obtain

Ebsld
"v

= 1 +S b

a
D2

+
1

4
Sa

b
D2

+ lÎpS b

a
D . s34d

As previously done, we introduce the dimensionless vari-
ablest=b/a andest ,ld=Ebsld / s"vd to obtain

est,ld = 1 + t2 +
1

4t2
+ lÎpt. s35d

We minimizeest ,ld with respect tot in order to obtain the
optimal value of parametert0 (thereforeb0) for any givenl.

C. Three-parameter variational wave function

We can further improve the two-parameter variational
wave function and build a better wave function once we note
that the main effect of the Coulomb repulsion is to push the
two electrons further apart. In absence of Coulomb repul-
sion, the component of the ground-state wave function that
depends on the relative coordinate is expected to be centered
at urW1−rW2u=0, but in presence of the Coulomb repulsion be-
tween electrons, the center of the relative motion wave func-
tion would shift towards nonzero relative coordinatessurW1

−rW2uÞ0d. A variational wave function of the form

Ca,b,csrW1,rW2d = expF−
a2

2
sr1

2 + r2
2d −

b2

2
srW1 − rW2d2G

3 expfcburW1 − rW2ugXsinglet s36d

has all the key ingredients to satisfy the above scenario and
contains only three variational prameters to optimize. The
three parametersa, b, and c are considered to be non-
negative. On physical grounds we may expect to havea/a
=1, since the two electron equation can be separated by the
variablesR andr and this choice gives the exact lowest c.m.
energy. Although this argument applies to the three param-
eter wave function(because of its special form), it is not
always correct and should be treated with some care. This is
becausesr1

2+r2
2d depends on bothR and r, therefore, for an

arbitrary generic wave function, the optimal value ofa may
not always be the value that gives the exact lowest c.m.
energy. For the sake of generality and as a numerical check
of the minimization procedure we prefer to considera as a
variational parameter.(We later verify that the numerical
minimization procedure always gives the anticipated value
for parametera.) Whenb=0, the three-parameter wave func-
tion reduces to the one-parameter wave function(that would
give the exact solution of the problem if we were to ignore
the Coulomb repulsion). Whenb.0, we would then expect
the parameterc to play a significant role on improving the
variational energy, because the main effect of the
c-dependent term is to push the pair of electrons further
apart, therefore optimizing their Coulomb correlations.

A calculation of the expectation value of the Hamiltonian
with respect to the above three-parameter trial wave function
gives

e =
E

"v
=

− B2f1sA,B,cd +
f2sA,B,cd

s4B2d
+ lBf3sA,B,cd

fsA,B,cd

+
A2

2
+

1

2A2 , s37d

whereA=a/a, B=b/a, andl=e2a / s"vd. The four functions
f1,2,3 and f depend on the variables specified on their argu-
ments. In an integral form they are given by

f1sA,B,cd =E
0

`

dtte−sA2/2B2dt2−t2+2ct 3 FS1 +
A2

2B2D2

t2

− 2ctS1 +
A2

2B2D + c2 − 2 −
A2

B2 +
c

t
G ,

f2sA,B,cd =E
0

`

dtt3e−sA2/2B2dt2−t2+2ct,

f3sA,B,cd =E
0

`

dte−sA2/2B2dt2−t2+2ct,

fsA,B,cd =E
0

`

dtte−sA2/2B2dt2−t2+2ct, s38d

wheret=burW1−rW2u is an auxiliary variable introduced to sim-
plify the calculation of integrals. For any given value of pa-
rameterl, we minimize the expression in Eq.(37) with re-
spect to the variational parametersA, B, andc and as a result
obtain the best variational energy and the optimal values of
variational parameters, as well.

VI. RESULTS AND DISCUSSION

The optimal values of variational parameters for the one-,
two-, and three-parameter variational wave functions at dif-
ferentl’s are given in Table I. The optimal value of param-
eterA for the three-parameter variational wave function was
always found to beA=a/a=1, a value that guarantees the
lowest possible c.m. energy.

In Table II we show the ground-state energies
e=E/ s"vd for given values ofl (first column) obtained from
a variety of different methods: first order perturbation theory,
variational theory, exact numerical diagonalization, and un-
restricted Hartree-Fock(HF) technique,40 as well. From the
results of Table II we note that, even the energies obtained
from the one-parameter variational wave function are lower
than the first-order perturbation theory values, for alll’s un-
der consideration. As expected, we find out that for a wide
range of Coulomb correlation strengths, the ground-state en-
ergy obtained from first-order perturbation theory is too high.
The results suggest that perturbation theory is not very accu-
rate and may be used with some reliability only when 0
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øl,1. Comparing the third and fourth columns of Table II,
we see that the two-parameter variational wave function is a
clear improvement upon the one-parameter variational wave
function, however, the data clearly show that the three-

parameter variational wave function(fifth column) is the best
choice.

One notes that the variational ground state energies ob-
tained from the three-parameter variational wave function
(fifth column) are extremely close to exact numerical diago-
nalization values(sixth column), and considerably better
than unrestricted Hartree-Fock(HF) calculations(seventh
column). Furthermore, the results in Table II show that this
excellent agreement between the three-parameter variational
wave function energies and numerical diagonalization results
persists for alll’s under consideration(even for very large
l’s, where Coulomb correlation effects are expected to be
very strong). This further indicates the excellent quality of
this variational wave function.

In Fig. 1 we plot the dimensionless ground-state energy
e=E/ s"vd as a function of the dimensionless Coulomb in-
teraction parameterl=e2a / s"vd for values of l ranging
from 0 (no Coulomb repulsion) to l=10. The results repre-
sent the values obtained from first-order perturbation theory
(empty square), one-parameter variational theory(filled
square), two-parameter variational theory(empty circle),
three-parameter variational theory(filled circle), and exact
numerical diagonalization results(crosses). The three-
parameter variational wave function energies are practically
identical to the exact numerical diagonalization values.

For all l’s under consideration, the three-parameter varia-
tional wave function energies are sizeably lower than the
respective unrestricted HF values.40 This is explained by not-
ing that, in the absence of a magnetic field, the spin singlet
state is the state of lowest energy, therefore the neglect of
electronic pair correlations in the HF approach is responsible
for the poor quality of the HF singlet ground state. On the
contrary, the three-parameter variational wave function cap-
tures all essential electronic correlations through the param-
eterc-dependent term.

With the intent to generalize such a wave function to
larger quantum dots, we can rewrite the three-parameter

TABLE I. A display of the optimal variational parameters for
different values ofl (first column) corresponding to the different
types of variational wave functions for 2D quantum dot helium. For
the one-parameter variational wave function(var. 1), the optimal
valuesa/a are listed in the second column. For the two-parameter
variational wave function(var. 2), the optimal valuesb/a are listed
in the third column andaR/a=Î2 irrespective ofl. For the three-
parameter variational wave function(var. 3), the optimal values of
B=b/a and c are listed, respectively, in the fourth and fifth col-
umns, while we always haveA=a/a=1. The parametera
=Îmv /" has the dimensionality of an inverse length.

l

Var. 1 Var. 2 Var. 3

a/a b/a b/a c

0.0 1.000000 0.707107 0.000000 0.00000

1.0 0.873542 0.557394 0.401849 1.67676

2.0 0.788274 0.480537 0.497908 2.21655

3.0 0.726623 0.432455 0.542433 2.57492

4.0 0.679582 0.398732 0.566026 2.85052

5.0 0.642208 0.373335 0.579761 3.07820

6.0 0.611583 0.353267 0.588185 3.27473

7.0 0.585880 0.336856 0.593558 3.44916

8.0 0.563892 0.323085 0.597084 3.60699

9.0 0.544787 0.311297 0.599450 3.75177

10.0 0.527975 0.301043 0.601063 3.88599

TABLE II. Ground-state energiese=E/ s"vd of 2D quantum dot
helium as a function of dimensionless Coulomb coupling parameter
l=e2a / s"vd (first column) obtained from first order perturbation
theory (second column), one-parameter variational wave function
(third column), two-parameter variational wave function(fourth
column), three-parameter variational wave function(fifth column)
are compared with exact numerical diagonalization results(sixth
column) and unrestricted Hartree-Fock(HF) results (Ref. 40),
where available(seventh column). The parametera=Îmv /" has
the dimensionality of an inverse length.

l es1dsld e (var. 1) e (var. 2) e (var. 3) e (diag.) e (HF)

0.0 2.00000 2.00000 2.00000 2.00000 2.00000

1.0 3.25331 3.16838 3.10331 3.00174 3.00097

2.0 4.50663 4.20662 4.01702 3.72565 3.72143 4.034

3.0 5.75994 5.15405 4.82331 4.32576 4.31872

4.0 7.01326 6.03404 5.55838 4.85637 4.84780 5.182

5.0 8.26657 6.86152 6.24164 5.34141 5.33224

6.0 9.51988 7.64662 6.88494 5.79354 5.78429 6.107

7.0 10.7732 8.39658 7.49609 6.22032 6.21129

8.0 12.0265 9.11675 8.08061 6.62674 6.61804 6.930

9.0 13.2798 9.81125 8.64257 7.01626 7.00795

10.0 14.5331 10.48330 9.18504 7.39141 7.38351 7.686

FIG. 1. Plot of the dimensionless ground-state energye
=E/ s"vd of 2D quantum dot helium as a function of the dimen-
sionless Coulomb interaction parameterl=e2a / s"vd for values of
l from 0 to 10. The ground-state energies obtained from the three-
parameter wave function(solid circles) are practically identical to
exact numerical diagonalization results(crosses).
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variational wave function for 2D quantum dot helium as

C = D↑D↓p
i, j

N=2

Jsri jd, s39d

whereD↑, D↓ are Slater determinants for spin “up” and spin
“down” states andJsri jd is a two-body Jastrow correlation
factor which in our case has the form

Jsri jd = expS−
b2

2
ri j

2 + cbri jD , s40d

whereri j = urW i −rW ju and b, c are non-negative variational pa-
rameters to be optimized. It is obvious that the wave function
in Eq. (39) is equivalent to the wave function in Eq.(36)
sinceD↑D↓~expf−sa2/2dsr1

2+r2
2dg for N=2. To the best of

our knowledge, a three-parameter trial wave function with a
Jastrow factor of the form of Eq.(40) has not been previ-
ously considered neither forN=2, nor for arbitraryN quan-
tum dots, with or without magnetic field. Therefore, we be-
lieve it is appropriate to compare this trial wave function to
other different trial wave functions considered in the litera-
ture.

For example, Harjuet al.37 have studied a 2DN=2 quan-
tum dot in presence of a magnetic field using a variational
wave function of the form of Eq.(3) with Jastrow factor of
the form

Jsri jd ~ expS ari j

1 + bri j
D , s41d

wherea andb are two variational parameters.
Although the trial wave function of Eq.(36) cannot be

directly compared to that in Eq.(3), since the first describes
2D quantum dot helium at zero magnetic field, while the
second considers a nonzero magnetic field, it is evident that
these two variational wave functions have very different Ja-
strow factors. Furthermore, as noted in Ref. 37, the Jastrow
ansatz of Eq.(41) does not have the right asymptotic behav-
ior for ri j →`, where the electronic correlations are expected
to vanish and not saturate to a finite value. In a separate
study, Bolton29 considered systems ofN=2−4 interacting
electrons in a quantum dot, in the presence of magnetic field,
using the fixed-node diffusion Monte Carlo(DMC) method.
For N=2 electrons and a starting wave function of Laughlin
form, he found out that, without Coulomb interaction, the
state with angular momentummz=0 remains the ground state
over the entire range of magnetic fields(nonzero and zero
magnetic field). With the inclusion of the Coulomb interac-
tion, the situation at zero magnetic field is not altered, al-
though this is no longer the case for a nonzero magnetic
field. It is obvious that, for zero magnetic field and angular

momentummz=0, the Laughlin factor of the ground-state

wave function in Eq.(3) reduces to~e−sa2/2dsr1
2+r2

2d, which
corresponds to the un-normalized product of wave functions
for two uncorrelated electrons. Therefore, in the limit of zero
magnetic field, the wave function of Eq.(3) transforms into a
wave function of the form of Eq.(36) possesing the same
one-body term, but having a very different two-body Jastrow
factor.

We point out that generalizations of trial wave functions
as in Eq.(39) in absence31 and in presence of weak magnetic
fields41 have always considered Jastrow correlation factors of
the type of Eq.(41) so far. A generalized version of the
Jastrow factor in Eq.(41) was also used in recent DMC
calculations38 to calculate ground- and excited-state proper-
ties for up toN=13 electrons in a 2D quantum dot. Clearly,
the variational wave functions under consideration in this
work have substantially different Jastrow correlation factors
when compared to earlier studies.

We can readily generalize the wave function of Eq.(39)
with the proposed Jastrow factor of Eq.(40) to quantum dots
with arbitrary numberN of electrons. By doing so, the prod-
uct of Jastrow factors is now extended to all pairs of elec-
trons and we need to consider Slater determinants ofN↑ spin
“up” and N↓ spin “down” electrons, withN↑+N↓=N. As a
first scenario, one might consider the variational parameters,
b andc to be the same for any pair of electrons, irrespective
of their relative spin. Under a more sophisticated treatment,
one would assume different variational parametersb and c
for pairs of electrons with parallel and opposite spins. This is
because in larger systems we have correlations between pairs
of electrons not only of opposite spin(as in the case ofN
=2 quantum-dot helium), but also of pairs of electrons of
parallel spins. It is reasonable to expect that pairs of elec-
trons with parallel and opposite spins will not correlate in the
same way, under the most general circumstances.

Whether we consider the first or the second scenario(with
more variational parameters), standard variational Monte
Carlo (VMC) techniques would be applied to get an accurate
evaluation of the relevant physical properties of the system.
Trial wave functions of this type could also be good starting
points to implement additional DMC simulations as those
performed by Bolton29 for 2D quantum dots with few elec-
trons. Work in this direction is in progress.
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