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Trial state for a two-dimensional hexatic
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We investigate a possible trial state for liquid crystalline phases withhexaticorder in two dimensions using
a generalization of Laughlin’s wave function for a 1/7-filled lowest Landau level. This state has possible
applications for the understanding of recent experiments showing melting at ca. 135 mK of the Wigner crystal
to a fractional quantum Hall state at low filling factors@Phys. Rev. Lett.88, 176802~2002!#, and for other
problems in two-dimensional crystallization of one-component plasmas like electrons on the surface of liquid
helium.
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I. INTRODUCTION

It has been known for some time1 that in a two-
dimensional one-component plasma~2DOCP! a transition
from a solid ~usually a hexagonal lattice! to a liquid state
occurs at finite temperature. However, the possibility of
intermediate hexatic phase, as first suggested by t
~KTHNY ! Kosterlitz, Thouless, Halperin, Nelson, and You
theory2–4 has never been experimentally realized. Althou
the 2D melting problem has been intensively studied for
past decades, the existence of a hexatic phase has long
debated and still remains poorly understood to date.
strongest evidence for the validity of the KTHNY theory
2D melting was provided by the simulations of Chenet al.,5

who confirmed the existence of a hexatic phase in a 2D
tem interacting with a shifted Lennard-Jones~LJ! potential.

On these grounds it seems particularly interesting to
vestigate the possibility of a hexatic phase in 2D syste
interacting with other potentials, such as Coulomb~or
screened Coulomb, with 2D- or 3D-like radial dependen!
as in the case of electrons in the partially filled Landau lev
~LL ! or on the surface of liquid Helium. Since there is
well-known analogy between the Laughlin state for the fr
tional quantum Hall effect~FQHE! and the 2DOCP,6 it may
be interesting to see how ideas from these different vie
points correlate to each other.

In the realms of FQHE, one of the oldest questions
gards the transition point between the series of FQHE st
and the Wigner crystal~WC!.6–10 Initial estimations by
Laughlin predicted the transition atnc.1/10,6 with subse-
quent improvements leading to an estimate ofnc.1/6.5
~Refs. 9,10! or even at higher filling factors.8,10 The structure
of the WC corresponds to a hexagonal lattice.

Recently, for very high mobility GaAs/AlxGa12xAs het-
erostructures, Panet al.11 have discovered evidence that for
window of temperatures above a filling-factor-specific te
perature~e.g., ca. 135 mK forn51/7! an apparent FQHE is
observed, as evidenced by a dip in the longitudinal resista
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for various very low filling factors such asn52/11, 3/17,
3/19, 2/13, 1/7, 2/15, 2/17, and 1/9, corresponding to
hierarchical sequences of composite fermion~CF! states that
originate from then51/6 andn51/8 ‘‘Fermi seas’’12 ~and
which correspond to the attaching of 6 and 8 vortices to e
electron, respectively!. These recent experimental findings
an apparent FQHE state at finite temperatures corrobo
earlier measurements showing a reentrant behavior atn51/7
and 2/9,13,14 although these features disappear asT→0. The
general consensus is that the ‘‘true’’ ground state is, inde
the WC and that the observations correspond tomelting of
such WC towards a correlated liquid state such as
FQHE’s.

This explanation has shortcomings, however. Since
WC is the lowestenergystate and it has a gapless excitati
spectrum~for neutral excitations!, it is difficult to see how
the free energy A5E2TS for the Laughlin state can be
lower at finite temperatures, especially because the latte
gaped and hence should have lower entropyS, at least at
very low temperatures. More refined arguments, which c
sider the entropy of the Laughlin state at temperatures h
enough that there is a significant number of excitatio
across the gap, have shown that the FQHE state entropy
raise rapidly,15 which could explain the possibility of this
WC to FQHE melting transition. The calculated transitio
temperature for then51/7 state should be 400–600 mK,15

considerably higher than the experimental result
;135 mK ~Ref. 11! ~the difference is not necessarily unsa
isfactory given the nature of the approximations needed
the calculation!.

In this paper we propose many-body states, based o
broken rotational symmetry~BRS! generalization of Laugh-
lin’s with hexatic order. The motivation for these states h
multiple origins: ~i! Previous success of liquid crystallin
approaches~‘‘quantum Hall nematics’’! to explain recently
discovered anisotropic states and reentrant integer Q
states in partially filled LL’s,16–21moreover the characteristi
transition temperatures are comparable;11,16,19 ~ii ! These
©2003 The American Physical Society15-1
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hexatic states are natural intermediaries between WC
FQHE states, or as the liquid crystalline intermediate pha
between, e.g., hexagonal solid and liquid phases of elect
on the surface of liquid helium;1–5 ~iii ! Due to the spontane
ous broken symmetry of these BRS states, the existence
Goldstone mode assures a gapless excitation spectrum,
sibly leading to a lower free energyA at finite temperatures

In Sec. II we describe the trial states that are considere
this paper. Section III describes the Monte Carlo~MC! pro-
cedure used to calculate expectation values of various op
tors with particular emphasis on the determination of the p
correlation functiong(r ) and its Fourier transform, the stat
structure factorS(q) ~note that due to the BRS these acqu
angular dependence!. In Sec. IV we discuss the correlatio
energy of such states, in particular, how they compare to
relevant FQHE and WC states. The overall picture and
cussion of results are presented in Sec. V.

II. HEXATIC TRIAL STATES

Consider Laughlin’s6 many-body wave function for an
51/(2m11) FQHE state:

Cn~r1 , . . . ,rN!5F)
i , j

N

~zi2zj !
2mG

3F)
i , j

N

~zi2zj !e
21/4(k51

N uzku2G , ~1!

wherezi5xi1 iy i is i th electron position in thexy plane~we
work in units of the magnetic lengthl 0

25\/eB51). In the
CF picture,12 this wave function corresponds to the attac
ment of 2m vortices to each electron by the Jastrow fac
~the term between the first pair of brackets!, and~in the mean
field approximation! results in a (2m11)-fold reduction of
the effective magnetic field for the CF’s, which then com
pletely fill the lowest LL~as represented by the term betwe
the second set of brackets, which has the form of a Sl
determinant!. This state corresponds to a gaped, uniform a
isotropic liquid, and is an excellent description of the st
for the n51/3 and 1/5 FQHE. Note that for lowern ~e.g.
1/7!, as mentioned in Sec. I, a WC state is lower in ener

There is noa priori reason why the vortices responsib
for the CF transformation have to be attached precisely
top’’ of the electrons, and variants of these states have b
proposed in the past20,22–24 to deal with possible quantum
Hall nematic states. The basic idea is to split the 2m nodes in
a pattern around each electron. The only condition that ne
to be satisfied is exchange antisymmetry~Fermi statistics!,
which imply that these zeros must be spread in symme
pairs ~and the single node in the Slater determinant mus
‘‘kept at the origin’’!. Recently, we have successfully us
these ideas to explore possible quantum Hallnematicscorre-
sponding to the addition of twooff-centervortices (m51):
at n51/3 Refs. 20,22,23 andn51/2 Ref. 24~note however,
that in this latter case the ‘‘base’’ CF state is different25!.

In this paper we are interested in studying possible qu
tum Hall hexatic states, which can be achieved by splitt
the vortices in a regular hexagonal pattern, which can
15531
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achieved forn51/(2m11) for m>3. We consider here the
simplest of such states corresponding to filling factorn51/7:

C1/7
a ~r1 , . . . ,rN!5H)

i , j

N F )
m50

5

~zi2zj2am!G J
3F)

i , j

N

~zi2zj !e
21/4(k51

N uzku2G , ~2!

wheream[a exp@i(2pm/6)#, mP$0,1,2,3,4,5%, anda can be
taken to be real without loss of generality. This wave fun
tion represents a homogeneous liquid state, lies entirel
the lowest LL, and foraÞ0 has hexatic order~for a50 we
recover Laughlin’s wave function,6 which is obviously iso-
tropic!. This wave function represents, therefore, a go
starting point to consider a quantum Hallhexatic.

III. MONTE CARLO SIMULATIONS

Given the many-body wave functionC1/7
a @Eq. ~2!#, the

probability density for some electron configuratio
$r1 , . . . ,rN% is given by

P~r1 , . . . ,rN![uCau25exp@2U~r1 , . . . ,rN!#, ~3!

where an irrelevant overall normalization constant has b
omitted and

U~r1 , . . . ,rN![
1

2 (
k51

N

uzku22
1

2 (
i , j

N F S (
m50

5

lnuzi2zj2amu2D
1 lnuzi2zj u2G . ~4!

It is interesting to note the analogy between Eqs.~3! and~4!
and the Boltzmann distribution for a classical 2DOCP.6 For
the hexatic state~aÞ0!, the 2DOCP ‘‘particles’’ have addi-
tional higher-order multipole moments~which modify the
short-range correlations but donot have any long-range ef
fect!.

From this probability distribution, it is possible to calcu
late the expectation value of any position-dependent oper
in the usual form

^O&5

E d2r 1•••d2r NP~r1 , . . . ,rN!O~r1 , . . . ,rN!

E d2r 1•••d2r NP~r1 , . . . ,rN!

.

~5!

It is easy to see that even for a modest numberN of
electrons, integrals such as those involved in Eq.~5! are es-
sentially impossible to compute numerically unless the n
essarily discrete sets of 2N-dimensional points is chosen ap
propriately, which is the essence of all MC methods. F
eacha under consideration, we start by uniformly distribu
5-2
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FIG. 1. A typical MC configuration of 200 electrons fora53.5 ~left panel! anda510.0~right panel!. The picture for the lowera shows
clearly how the system is uniform~the orientational order which is not visible in the picture is better seen from the pair correlation fun
plots in Fig. 2!. The right picture for the unreasonably largea ~the electron vortex separation is larger than typical electron-elec
distances! is presented merely to aid the visualization of the underlying hexagonal symmetry of the state.
e
el

nic
r
i

s
i.e
e
di
h
al

la-
s
an

t

ion

-

tered
-
urs
4
the
dy-
e

or-

for

re
on
ing N electrons inside a disk of radiusR.A2N/n. In each
MC step, a random electron is moved a fixed distancd
~chosen in the beginning of the run so that approximat
50% of the MC attempts are successful! in a random angle.
Using the standard Metropolis algorithm,26 we accept the
move if the probability ratio between new and old electro
configurations,Pnew/Pold, is bigger than a random numbe
between 0 and 1, and otherwise reject it. The averages
volved in Eq.~5! are approximated by

^O&.
(

i
Oi

(
i

1

, ~6!

where Oi represents the operator evaluated at a given
of electron positions in a sequence of MC steps,
O(r1

( i ) , . . . ,rN
( i )). One should note that in order to improv

the convergence, a large number of initial MC steps are
carded from the averages to allow the system to reac
‘‘reasonable’’ state. For illustration, Fig. 1 shows typic
snapshots of the electron configurations.

A quantity that is of particular interest is the pair corre
tion functiong(r ). The importance of this function is that it
knowledge permits the determination of the average of
two-particle position operator~e.g. a two-body interaction
potential, see below!, becauseg(r ) corresponds to the join
probability of finding a particle at positionr given that an-
other particle is found at 0:

g~r ![
1

r2 K (
iÞ j

N

d~r i2r 8!d~r j2r 9!L , ~7!
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where r[r 82r 9, andr is the electron density~r5n/2p for
the state being considered!. It is easy to see that

g~r !5
N~N21!

r2

E d2r 3•••d2r NP~r1•••rN!

E d2r 1•••d2r NP~r1•••rN!

, ~8!

where in this caser5r22r1. Furthermoreg(r ) satisfies the
normalization conditionr*d2r @g(r )21#521. In addition
to its usual radial dependence, the pair correlation funct
acquires an angular dependence in the BRS states~aÞ0!.

After an initial ‘‘thermalization’’ process of several mil
lion MC steps, we computeg(r ) by counting how many
electrons are present in a discrete Cartesian array cen
around eachother electron,20,27 this counting process is av
eraged over several billion MC steps requiring several ho
to a few days of computation in a fairly fast Alpha 2126
workstation. Roughly 200–800 electrons were used in
MC runs and the results were extrapolated to the thermo
namic limit.28 Care is taken so that only electrons in th
‘‘bulk’’ of this system are counted~by excluding a ring near
the periphery of the disk where the electron density and c
relations are different from the bulk!.

In Fig. 2 we show a plot ofg(r ) for a state described by
the modified~hexatic! Laughlin-like function@Eq. ~2!# for a
hexatic parametera53.5. Approximately 109 MC steps were
used for this determination. Similar features are observed
other finitea.

Another function of great interest is the static structu
factor S(q), which is essentially a reciprocal space versi
of g(r ),
5-3
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S~q!215rE d2re2 iq•r@g~r !21#. ~9!

Fig. 3 presents a plot ofS(q) for a state described by th
modified ~hexatic! Laughlin-like function @Eq. ~2!# for a
hexatic parametera53.5. Similar features are observed f
other finitea.

IV. CORRELATION ENERGIES

It is interesting to compare the energies of the various t
states@Eq. ~2!# as function of the anisotropic parametera.
Since wave function~2! lies entirely in the lowest LL, the
kinetic energy per particle is quenched at the lowest cyc
tron energy,

1

N

^CauK̂uCa&

^CauCa&
5

1

2
\vc , ~10!

wherevc5eB/me is the cyclotron frequency. The potentia
or correlation energy per electron is

FIG. 2. Pair correlation function~plotted as@12g(r )# for clar-
ity! for a state described by Eq.~2! for a53.5. Note the symmetric
distribution of nodes ofg.

FIG. 3. Static structure factor for a state described by Eq.~2! for
a53.5. Obtained fromg(r ) using Eq.~9!. Note the symmetric dis-
tribution of smooth peaks corresponding to a hexatic system.
15531
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Ea5
1

N

^CauV̂uCa&

^CauCa&
, ~11!

where V̂ represents the electron-electron, electro
background, and background-background interactions.20,27

While this quantity can be computed directly using stand
MC sampling~Sec. III!, a new MC run has to be performe
if the potentialV needs to be changed~e.g. by considering a
different sample width in the third dimension, or a particu
screening length, etc!. Fortunately, for two-body potentials
this correlation energy may also be written as

Ea5
r

2E d2rV~r !@g~r !21#. ~12!

For an ideal 2D sample the interaction is a pure Coulo
potentialV(r ).e2/(er ), while in samples with finite thick-
ness a reasonable choice is the Zhang-Das Sarma~ZDS! po-
tential V(r )5e2/(eAr 21l2),29 where l is of the order of
the sample thickness. Alternatively, the correlation ene
can be computed in reciprocal space,

Ea5
1

2E d2q

~2p!2
Ṽ~q!@S~q!21#, ~13!

whereṼ(q) is the 2D Fourier transform~FT! of V(r ):

Ṽ~q!5E d2re2 iq•rV~r !52pE
0

`

drrJ0~qr !V~r !. ~14!

Although this paper focuses on the properties of electron
very small filling factors of the lowest LL, for completenes
we would like to remark that this second expression has
advantage of allowing for similar calculations of the corre
tion energy to be carried out at higher LL’s, once static str
ture factor for the lowest LL is known by simply modifyin
the effective interaction potentialṼ(q)→Ṽeff(q)[Ṽ(q)
3@LL(q2/2)#2, whereLL(x) are Laguerre polynomials andL
corresponds to the LL index.20,23,24

It is clear from Eq.~2! and Figs. 2 and 3 that bothg(r )
andS(q) are angle dependent foraÞ0. However, since the
interaction potential is centrally symmetric, the energyEa

FIG. 4. Angle averaged pair distribution functionḡ(r ) for vari-
ous values ofa. See Eq.~15!.
5-4
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FIG. 5. Correlation energy per electronEa ~in units ofe2/e l 0) for various anisotropy parametersa and ZDS sample width parametersl
~Ref. 29!. The right panel shows the difference in energy between a hexatic state and the isotropic Laughlin stateDEa[Ea2E0. Notice that
the Laughlin state is energetically favorable for alll in the lowest LL.
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depends only on the angle-averaged pair distribution fu
tion or static structure factor defined as

ḡ~r !5E
0

2pd u

2p
g~r !, S̄~q!5E

0

2pd uq

2p
S~q!. ~15!

Figure 4 shows the angle-averaged pair correlation fu
tion ḡ(r ) for various values ofa. The most remarkable fea
ture is the change in the small-r behavior due to the splitting
of the nodes of the wave function (ḡ;r 14 for a50, vs ḡ
;r 2 for aÞ0!.

In Fig. 5 ~top panel! we show the correlation energy pe
electron Ea calculated from Eq.~12! using the angle-
averagedḡ(r ) ~Fig. 4! for various values ofa and the ZDS
sample width parameterl.29 For comparison, the correlatio
energy per electron for a Wigner crystal is~for l50!
20.3885e2/e l 0.9 The bottom panel of Fig. 5 shows the e
ergy difference between hexatic and isotropic statesDEa
[Ea2E0. Notice that the Laughlin state is energetically f
vorable for alll in the lowest LL. Similar conclusions wer
found for quantum Hallnematics, where anisotropic insta
bilities (DEa,0) were found only inhigherLL’s.20,23,24The
explanation for this seemingly universal behavior is easy
explain: in the lowest LL, the electron packets are sim
Gaussians, and it is clear that the average distance betw
the electrons is largest when the vortices are at the electr
location ~a50!. For higher LL’s, the wave packets take
more ‘‘ring like’’ shape, and a finitea permits a more opti-
mal distribution of charge. In this work we focus on th
physics of 2D electron systems at very low densities,
properties of possible hexatic phases in high LL’s will
discussed elsewhere.30
15531
c-

c-

o
e
en
’s

e

V. RESULTS AND DISCUSSION

In this work we applied MC methods to study BR
~hexatic! states at an51/7 filling factor. Although we find
that the hexatic states proposed in this paper are slig
higher in energy than the isotropic Laughlin state, the f
that the BRS states are gapless~through their Goldstone
mode! may make them a suitable candidate for a melt
Wigner crystal at finite temperatures. Based on the anal
between the Laughlin-like states and the 2DOCP we can
interpret the proposed probability distribution as a candid
for a metastable hexatic phase of the 2D electrons trap
above a liquid helium surface and interacting with
Coulomb-like potential. Our results seem to suggest that
contrast to LJ systems, this hexatic phase is not favorable
Coulomb-like interactions. It is evident that a calculation
the excitation spectrum~and resulting entropy! of these
quantum Hallhexaticsis highly desirable to settle the issu
of melting observed at low filling factors by Panet al.11 We
envision that the results obtained by for the static struct
factor S(q) will allow for the calculation of such spectrum
at least in the Girvin-MacDonald-Platzman single-mo
approximation.31
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