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Trial state for a two-dimensional hexatic
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We investigate a possible trial state for liquid crystalline phases hé@iaticorder in two dimensions using
a generalization of Laughlin’s wave function for a 1/7-filled lowest Landau level. This state has possible
applications for the understanding of recent experiments showing melting at ca. 135 mK of the Wigner crystal
to a fractional quantum Hall state at low filling factdi8hys. Rev. Lett88, 176802(2002], and for other
problems in two-dimensional crystallization of one-component plasmas like electrons on the surface of liquid
helium.
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[. INTRODUCTION for various very low filling factors such asy=2/11, 3/17,
3/19, 2/13, 1/7, 2/15, 2/17, and 1/9, corresponding to the

It has been known for some tithethat in a two- hierarchical sequences of composite fermiGf) states that
dimensional one-component plasnm2DOCP a transition  originate from ther=1/6 and »=1/8 “Fermi seas? (and
from a solid (usually a hexagonal latti¢do a liquid state  which correspond to the attaching of 6 and 8 vortices to each
occurs at finite temperature. However, the possibility of arelectron, respectively These recent experimental findings of
intermediate hexatic phase, as first suggested by thean apparent FQHE state at finite temperatures corroborate
(KTHNY) Kosterlitz, Thouless, Halperin, Nelson, and Young earlier measurements showing a reentrant behaviprat7
theory’~* has never been experimentally realized. Althoughand 2/93*although these features disappeaffas0. The
the 2D melting problem has been intensively studied for thegeneral consensus is that the “true” ground state is, indeed,
past decades, the existence of a hexatic phase has long bebe WC and that the observations correspondntdting of
debated and still remains poorly understood to date. Theuch WC towards a correlated liquid state such as the
strongest evidence for the validity of the KTHNY theory of FQHE's.
2D melting was provided by the simulations of Chesral., This explanation has shortcomings, however. Since the
who confirmed the existence of a hexatic phase in a 2D sy3A/C is the lowesenergystate and it has a gapless excitation
tem interacting with a shifted Lennard-Jorés) potential. ~ spectrum(for neutral excitations it is difficult to see how

On these grounds it seems particularly interesting to inthe free energy AAE—TS for the Laughlin state can be
vestigate the possibility of a hexatic phase in 2D system$ower at finite temperatures, especially because the latter is
interacting with other potentials, such as Coulordr  gaped and hence should have lower entr@uyat least at
screened Coulomb, with 2D- or 3D-like radial dependégncevery low temperatures. More refined arguments, which con-
as in the case of electrons in the partially filled Landau levelsider the entropy of the Laughlin state at temperatures high
(LL) or on the surface of liquid Helium. Since there is aenough that there is a significant number of excitations
well-known analogy between the Laughlin state for the frac-across the gap, have shown that the FQHE state entropy may
tional quantum Hall effectFQHE) and the 2DOCP,it may  raise rapidly*®> which could explain the possibility of this
be interesting to see how ideas from these different viewWC to FQHE melting transition. The calculated transition
points correlate to each other. temperature for the=1/7 state should be 400-600 niK,

In the realms of FQHE, one of the oldest questions reconsiderably higher than the experimental result of
gards the transition point between the series of FQHE states135 mK (Ref. 11 (the difference is not necessarily unsat-
and the Wigner crystalWC).5~1° Initial estimations by isfactory given the nature of the approximations needed for
Laughlin predicted the transition at.=1/10° with subse- the calculation

qguent improvements leading to an estimate 1g&=1/6.5 In this paper we propose many-body states, based on a
(Refs. 9,10 or even at higher filling factor$1° The structure  broken rotational symmetr§BRS) generalization of Laugh-
of the WC corresponds to a hexagonal lattice. lin's with hexatic order. The motivation for these states has

Recently, for very high mobility GaAs/AGa; _,As het-  multiple origins: (i) Previous success of liquid crystalline
erostructures, Pagt al'! have discovered evidence that for a approaches“quantum Hall nematicsy to explain recently
window of temperatures above a filling-factor-specific tem-discovered anisotropic states and reentrant integer QHE
perature(e.g., ca. 135 mK fow=1/7) an apparent FQHE is states in partially filled LL's*~?moreover the characteristic
observed, as evidenced by a dip in the longitudinal resistandeansition temperatures are comparabl&®® (i) These
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hexatic states are natural intermediaries between WC andchieved forv=1/(2m+ 1) for m=3. We consider here the
FQHE states, or as the liquid crystalline intermediate phasesimplest of such states corresponding to filling faaterl/7:
between, e.g., hexagonal solid and liquid phases of electrons
on the surface of liquid heliur;® (iii) Due to the spontane- N
ous broken symmetry of these BRS states, the existence ofa W (ry, ... ry)= [ 11 ]
N
11 (Zi_zj)elMZE‘lzklz} )
1<]

5
,};[o (zi—zj—a,)

Goldstone mode assures a gapless excitation spectrum, pos- i<i
sibly leading to a lower free energyat finite temperatures.

In Sec. Il we describe the trial states that are considered in %
this paper. Section Il describes the Monte CatC) pro-
cedure used to calculate expectation values of various opera-
tors with particular emphasis on the determination of the paiwherea,= a exdi(27u/6)], ©<1{0,1,2,3,4,%, anda can be
correlation functiorg(r) and its Fourier transform, the static taken to be real without loss of generality. This wave func-
structure facto5(q) (note that due to the BRS these acquiretion represents a homogeneous liquid state, lies entirely in
angular dependengeln Sec. IV we discuss the correlation the lowest LL, and fore#0 has hexatic ordeffor =0 we
energy of such states, in particular, how they compare to theecover Laughlin’s wave functiohwhich is obviously iso-
relevant FQHE and WC states. The overall picture and distropic). This wave function represents, therefore, a good

cussion of results are presented in Sec. V. starting point to consider a quantum Hh#xatic
IIl. HEXATIC TRIAL STATES Ill. MONTE CARLO SIMULATIONS
- Consider Laughlins mgny—body wave function for a Given the many-body wave functiolr$,, [Eq. (2)], the
=1/(2m+1) FQHE state: probability density for some electron configuration
N {rq, ... rn} is given by
W, (re, .= 1 (Zi_zj)zm}
<] P(rli "'er)E|\Pa|2:eXF[_U(rll '--!rN)]r (3)

N

— N 2 i i i
I1 (zi—2z)e 14z lz 1) where an irrelevant overall normalization constant has been
i<j

X ;
omitted and

wherez; = x; +1y; is ith electron position in they plane(we 1 N 1 N
work in unl|tzs o_f the magnetic lengttf=%/eB=1). In the U(ry, ... )= 5 Z |22~ EZ
CF picture,” this wave function corresponds to the attach- k=1 i<i
ment of 2m vortices to each electron by the Jastrow factor
(the term between the first pair of bracketsnd(in the mean
field approximatioh results in a (2n+ 1)-fold reduction of
the effective magnetic field for the CF's, which then com-
pletely fill the lowest LL(as represented by the term betweenlt is interesting to note the analogy between Eg$.and(4)

the second set of brackets, which has the form of a Slatesind the Boltzmann distribution for a classical 2D30For
determinant This state corresponds to a gaped, uniform andhe hexatic statéa+0), the 2DOCP “particles” have addi-
isotropic liquid, and is an excellent description of the statetional higher-order multipole momentsvhich modify the

for the »=1/3 and 1/5 FQHE. Note that for lower (e.g.  short-range correlations but dwt have any long-range ef-
1/7), as mentioned in Sec. I, a WC state is lower in energy.fect).

There is noa priori reason why the vortices responsible  From this probability distribution, it is possible to calcu-
for the CF transformation have to be attached precisely “orlate the expectation value of any position-dependent operator
top” of the electrons, and variants of these states have bedn the usual form
proposed in the pa&??~?*to deal with possible quantum

5
2
(M_o|n|zi_zj_a“|

+In|z—z|?|.

4

Hall nematic states. The basic idea is to split tiner2odes in

a pattern around each electron. The only condition that needs f d2ry- - d?ryP(ry, ... Oy, ... 1)

to be satisfied is exchange antisymmetRermi statisticy (0)=

which imply that these zeros must be spread in symmetric f A2y d2r P(ry, - )

pairs (and the single node in the Slater determinant must be ’ '

“kept at the origin”). Recently, we have successfully used )
these ideas to explore possible quantum IHathaticscorre-

sponding to the addition of twoff-centervortices (n=1): It is easy to see that even for a modest numNeof

at v=1/3 Refs. 20,22,23 and=1/2 Ref. 24(note however, electrons, integrals such as those involved in Gy.are es-
that in this latter case the “base” CF state is differént sentially impossible to compute numerically unless the nec-

In this paper we are interested in studying possible quanessarily discrete sets oN2dimensional points is chosen ap-
tum Hall hexatic states, which can be achieved by splittingoropriately, which is the essence of all MC methods. For
the vortices in a regular hexagonal pattern, which can beacha under consideration, we start by uniformly distribut-
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FIG. 1. Atypical MC configuration of 200 electrons far=3.5 (left pane) and a=10.0(right pane). The picture for the lowea shows
clearly how the system is uniforiithe orientational order which is not visible in the picture is better seen from the pair correlation function
plots in Fig. 2. The right picture for the unreasonably large(the electron vortex separation is larger than typical electron-electron
distancepis presented merely to aid the visualization of the underlying hexagonal symmetry of the state.

ing N electrons inside a disk of radilR=2N/v. In each  wherer=r'—r", andp is the electron densityp= /27 for
MC step, a random electron is moved a fixed distadce the state being consideredt is easy to see that
(chosen in the beginning of the run so that approximately

50% of the MC attempts are succesgfinl a random angle.

Using the standard Metropolis algoritffthwe accept the 2 2

move if the probability ratio between new and old electronic N(N—1) f drg- - doryP(ry---1y)
configurations,P™"/ P, is bigger than a random number g(r)= 5 , (®
between 0 and 1, and otherwise reject it. The averages in- P f d%ry- - d?ryP(ry---ry)

volved in Eq.(5) are approximated by

where in this case=r,—r,. Furthermorey(r) satisfies the

Z O normalization conditiorpfd?r[g(r)—1]=—1. In addition
(O)y=—, (6) to its usual radial dependence, the pair correlation function
2 1 acquires an angular dependence in the BRS state$).

i

After an initial “thermalization” process of several mil-
lion MC steps, we computg(r) by counting how many
where O; represents the operator evaluated at a given setlectrons are present in a discrete Cartesian array centered
of electron positions in a sequence of MC steps, i.earound eactother electron?®?’ this counting process is av-
o, ... r{)). One should note that in order to improve eraged over several billion MC steps requiring several hours
the convergence, a large number of initial MC steps are disto a few days of computation in a fairly fast Alpha 21264
carded from the averages to allow the system to reach workstation. Roughly 200—-800 electrons were used in the
“reasonable” state. For illustration, Fig. 1 shows typical MC runs and the results were extrapolated to the thermody-
snapshots of the electron configurations. namic limit?® Care is taken so that only electrons in the
A quantity that is of particular interest is the pair correla- “bulk” of this system are countedby excluding a ring near
tion functiong(r). The importance of this function is that its the periphery of the disk where the electron density and cor-
knowledge permits the determination of the average of anyelations are different from the bulk
two-particle position operatofe.g. a two-body interaction In Fig. 2 we show a plot ofj(r) for a state described by
potential, see below becauseay(r) corresponds to the joint the modified(hexatig Laughlin-like function[Eg. (2)] for a
probability of finding a particle at position given that an- hexatic parametex=3.5. Approximately 18 MC steps were
other patrticle is found at O: used for this determination. Similar features are observed for
other finite a.

1 /N Another function of great interest is the static structure
gn=—=(> S(ri—r")a(r;—r") (7)  factor S(q), which is essentially a reciprocal space version
2\~ '
p\i# of g(r),
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FIG. 4. Angle averaged pair distribution functiggr) for vari-
ous values ofx. See Eq(15).

FIG. 2. Pair correlation functiofplotted a§ 1—g(r)] for clar- 1(W NN’ )
ity) for a state described by E(R) for «=3.5. Note the symmetric = = (12)
distribution of nodes of. N <‘I’a|‘1’a>

where V represents the electron-electron, electron-
S(q)—lzpf d2re 1 Tg(r)—1]. (99  background, and background-background intgracﬁ&ﬁé.

While this quantity can be computed directly using standard
MC sampling(Sec. Ill), a new MC run has to be performed
if the potentialV needs to be changdd.g. by considering a
different sample width in the third dimension, or a particular
screening length, etcFortunately, for two-body potentials,
this correlation energy may also be written as

Fig. 3 presents a plot o§(q) for a state described by the
modified (hexatig Laughlin-like function[Eq. (2)] for a
hexatic parametewr=3.5. Similar features are observed for
other finite a.

IV. CORRELATION ENERGIES

o | . Ea=3f d2rv(n)[g(n—1]. (12
Itis interesting to compare the energies of the various trial 2
states[Eq. (2)] as function of the anisotropic paramet@r o an ideal 2D sample the interaction is a pure Coulomb
S_mcg wave functlor(2)_lles.ent|rely in the lowest LL, the potentialV(r)=e?(er), while in samples with finite thick-
kinetic energy per particle is quenched at the lowest cyclopess a reasonable choice is the Zhang-Das S&ZDS) po-

tron energy, tential V(r)=e€?/(er2+1?),?° where\ is of the order of
. the sample thickness. Alternatively, the correlation energy
1(ValK[¥,) 1 (10  ©an be computed in reciprocal space,
N () 2 )
wherew.=eB/m, is the cyclotron frequency. The potential, Eazif d q2\~/(q)[S(q)—1], (13
or correlation energy per electron is (2m)

S(q) whereV(q) is the 2D Fourier transforrFT) of V(r):

12 V(g)= J dzre“q‘rV(r)=27rfo drrdo(qr)V(r). (14
) Although this paper focuses on the properties of electrons at
g: very small filling factors of the lowest LL, for completeness
jg we would like to remark that this second expression has the
advantage of allowing for similar calculations of the correla-
tion energy to be carried out at higher LL's, once static struc-

ture factor for the lowest LL is known by simply modifying

8 o the effective interaction potentialV/(q)— Ver(q)=V(q)
q, 2573 X[L_(g%/2)]?, whereL (x) are Laguerre polynomials arid
corresponds to the LL inde®:>>24
FIG. 3. Static structure factor for a state described by(Egfor It is clear from Eq.(2) and Figs. 2 and 3 that bot(r)
«=3.5. Obtained frong(r) using Eq.(9). Note the symmetric dis- andS(q) are angle dependent far#0. However, since the
tribution of smooth peaks corresponding to a hexatic system. interaction potential is centrally symmetric, the enefgy

155315-4



TRIAL STATE FOR A TWO-DIMENSIONAL HEXATIC PHYSICAL REVIEW B 67, 155315 (2003

0.012

0.1 " " =28 .
0.1} @ ® N " . .
L | 0.01+ . 85
N
-0.14} Egﬂ | x
i ¢ ¥ | 0.008} x
I:|g *
-0.18} o ¥ 1 x
s .- 0.006f *
LT.] L D:* E 26 *
022 o T 0.004} "
-0.26} ® * 0=00 -+
: 99 0.002
3 30 * XXXXXXXXX *
03 ) 35 = P} I SN I B 3 3
0 1 2 3 4 5 0 1 2 3 4 5
A A

FIG. 5. Correlation energy per electré (in units ofe?/ el,) for various anisotropy parametessand ZDS sample width parameters
(Ref. 29. The right panel shows the difference in energy between a hexatic state and the isotropic Laughlik stake, — E,. Notice that
the Laughlin state is energetically favorable foralin the lowest LL.

depends only on the angle-averaged pair distribution func- V. RESULTS AND DISCUSSION

tion or static structure factor defined as In this work we applied MC methods to study BRS

27d 0 _ 27d 0 (hexatig states at av=1/7 filling factor. Although we find
@(r):f 2—g(r), S(q)=f —qS(q). (15  that the hexatic states proposed in this paper are slightly
0 a 0 2 hi . . . i
igher in energy than the isotropic Laughlin state, the fact
Figure 4 shows the angle-averaged pair correlation functhat the BRS states are gaple@krough their Goldstone
tion g(r) for various values ofr. The most remarkable fea- mode may make them a suitable candidate for a melting
ture is the change in the smallbehavior due to the splitting wigner crystal at finite temperatures. Based on the analogy
of the nodes of the wave functiorg{-r'** for =0, vsg  between the Laughlin-like states and the 2DOCP we can also
~r? for a#0). interpret the proposed probability distribution as a candidate
In Fig. 5 (top panel we show the correlation energy per for a metastable hexatic phase of the 2D electrons trapped
electron E, calculated from Eq.(12) using the angle- above a liquid helium surface and interacting with a
averaged(r) (Fig. 4) for various values ofr and the ZDS  Coulomb-like potential. Our results seem to suggest that, in
sample width parameter®® For comparison, the correlation contrast to LJ systems, this hexatic phase is not favorable for
energy per electron for a Wigner crystal r A\=0)  Coulomb-like interactions. It is evident that a calculation of
—0.388%% ¢l,.° The bottom panel of Fig. 5 shows the en- the excitation spectruniand resulting entropy of these
ergy difference between hexatic and isotropic stal¢s, = quantum Hallhexaticsis highly desirable to settle the issue
=E,—E,. Notice that the Laughlin state is energetically fa- of melting observed at low filling factors by Pat al** We
vorable for all\ in the lowest LL. Similar conclusions were envision that the results obtained by for the static structure
found for quantum Halhematics where anisotropic insta- factor S(q) will allow for the calculation of such spectrum,
bilities (AE,<0) were found only irhigherLL's.?>*3?The  at least in the Girvin-MacDonald-Platzman single-mode
explanation for this seemingly universal behavior is easy tapproximatiort:
explain: in the lowest LL, the electron packets are simple
Gaussians, and it is clear that the average distance between ACKNOWLEDGMENTS
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