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Monte Carlo simulation method for Laughlin-like states in a disk geometry
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Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211
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We discuss an alternative accurate Monte Carlo method to calculate the ground-state energy and related
quantities for Laughlin states of the fractional quantum Hall effect in a disk geometry. This alternative ap-
proach allows us to obtain accurate bulk regime~thermodynamic limit! values for various quantities from
Monte Carlo simulations with a small number of particles~much smaller than that needed with standard Monte
Carlo approaches!.

DOI: 10.1103/PhysRevB.67.075304 PACS number~s!: 73.43.2f, 05.30.Fk, 71.70.Di
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I. INTRODUCTION

The discovery of the fractional quantum Hall effe
~FQHE! has stimulated extensive studies on the propertie
two-dimensional~2D! quantum many-electron systems in
strong magnetic field.1 It is now understood that the FQH
represents the condensation of nearly 2D electrons subje
a strong perpendicular magnetic field~at low enough tem-
peratures and low enough amount of disorder! into an incom-
pressible quantum fluid formed at some specific filling fa
tors. A neutralizing positive charge density is present
preserve overall charge neutrality and, to lowest approxim
tion, can be thought of as a uniform positive density in t
same plane as the 2D electrons~in reality the positive
charges are the ionized donors that are roughly distribu
randomly a spacer thicknessaway and produce a sma
amount of disorder and an overall constant shift in the en
gies!.

The strong magnetic field quantizes the electrons’s mo
on the plane and quenches the kinetic energy of each elec
to a discrete set of Landau levels~LL’s ! separated by the
relatively large cyclotron energy\vc5\eB/m* , where
2e(e.0) is the electron charge andm* is the effective
mass of electrons in the semiconductor (m* .0.07me in
GaAs, whereme is the bare electron’s mass!. In addition, the
Zeeman splitting spin-polarizes the electrons rendering th
effectively spinless. In each LL,rLL51/2p l 0

2 ( l 05A\/eB is
the magnetic length! electrons per unit area can be acco
modated. It is evident that for large enough magnetic fie
only the lowest LL~LLL ! is occupied~and only the lowest
spin sub-band!, and if the occupation is not complete th
system is highly degenerate. At particularfilling factors n
5r/rLL , electron interactions lead to highly correlate
states which exhibit an excitation gap and result in the
served FQHE. These particular filling factors form a hier
chy, of which the simplest FQHE states have filling facto
n51/m with m53 and 5.

For filling factors of the formn51/m ~m odd! the unnor-
malized Laughlin2 trial wave function forN electrons can be
written as

Cm~z1 . . . zN!5)
i , j

N

~zi2zj !
m)

i 51

N

e2uzi u
2/4l 0

2
, ~1!
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wherezj5xj1 iy j is the position of thej th electron in com-
plex coordinates. This wave function gives an excellent
scription of the true ground state of the electrons form53
and 5. Form>7 the electrons tend to form a Wigner crysta3

consistent with the experimental observation4 that the FQHE
does not occur for filling factorsn<1/7.

Since the Laughlin wave function lies entirely in the LLL
the expectation value of the kinetic energy per electron,

^K̂&
N

5
1

2
\vc , ~2!

is constant and becomes irrelevant, therefore the only im
tant contribution of the quantum-mechanical Hamiltoni
Ĥ5K̂1V̂ originates from the total potential-energy operat

V̂5V̂ee1V̂eb1V̂bb , ~3!

where

V̂ee5(
i , j

N
e2

ur i2r j u
; V̂eb52r0(

i 51

N E
VN

d2r
e2

ur i2r u
;

V̂bb5
r0

2

2 E
VN

d2r E
VN

d2r 8
e2

ur2r 8u
, ~4!

are the electron-electron, electron-background, a
background-background potential-energy operators, res
tively. Here we have assumed a simple geometry appropr
for the circular symmetry of the Laughlin wave functio
where a positive background densityr05n/(2p l 0

2) is spread
over a diskVN of radiusRN5 l 0A2N/n ~i.e., it cancels the
electronic density in the thermodynamic limit and makes
system neutral for allN).

Numerous techniques have been employed to calcu
the expectation value of the potential energy per part

^V̂&/N @see Eq.~3!# in the Laughlin state@Eq. ~1!#. For ex-
ample, Laughlin2 initially employed the hypernetted-chai
method to estimate the value of this correlation energy wit
;1% accuracy!; and various standard Monte Carlo~MC!
schemes have been proposed, all of which are essent
exact in the thermodynamic limit.

An excellent description of a standard MC computation
the potential energy and other relevant quantities in a d
geometry is given by Morf and Halperin.5 Spherical geom-
©2003 The American Physical Society04-1
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O. CIFTJA AND C. WEXLER PHYSICAL REVIEW B67, 075304 ~2003!
etries are also used quite often since the convergence to
thermodynamic limit is quicker because boundary effects
eliminated.6

Although considerable more care is needed in the d
geometry to eliminate boundary effects when extrapolat
~necessarily! finite-N results to the thermodynamic limit~in
particular due to the long-range nature of the Coulomb
tential!, there are cases in which the spherical geometr
either inconvenient, or plainly incompatible with the sta
under consideration~for example for the study of possibl
quantum Hall nematic phases7 for which considerable topo
logical defects would be generated at the poles of
sphere!.

Furthermore, the value of the correlation energy in
thermodynamic limit is not easily extracted from standa
MC simulation ~see Sec. II! data, since the limit is ap
proached very slowly, with corrections of the order of 1/AN,
requiring repeated calculations for variousN and a careful
extrapolation of the results to theN→` limit. It is therefore
highly desirable to explore methods that would expedite
extrapolation to the thermodynamic limit.

In Sec. II we describe, for the sake of completeness,
procedure used in the standard MC approach. Section
describes an alternative method that converges to the
modynamic limit considerably faster. We discuss our res
in Sec. IV.

II. STANDARD MONTE CARLO APPROACH

In the standard MC approach one considers the calc
tion of the expectation value of the potential-energy ope
tors as given in Eq.~4!. The background-background inte
action potential poses no problem, it can be calcula
analytically and is found to be

^V̂bb&
N

5
1

N

r0
2

2 E
VN

d2r E
VN

d2r 8
e2

urW2rW 8u
5

8

3p
AnN

2

e2

l 0
.

~5!

In order to compute the expectation value of the electr
background interaction potential one conveniently writes
as

V̂eb5(
i 51

N

v̂eb~r i !; v̂eb~r i !52r0E
VN

d2r
e2

ur i2r u
, ~6!

wherev̂eb(r i) is the interaction potential of a single electro
at positionrW i with the uniform positive background in th
finite disk. Such electron-background interaction poten
depends on the ratior i /RN , wherer i5ur i u is electron’s dis-
tance from the center of the disk andRN is the radius of the
finite disk and can be expressed as

v̂eb~r i !52A2nNF~r i /RN!
e2

l 0
;
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F~x!5E
0

`

dy
J0~xy!J1~y!

y
55

2E~x2!

p
, x<1

2F1S12,
1

2
;2;

1

x2D
2x

, x>1,

~7!

where Jn(x) are Bessel functions of ordern, E(x) is the
complete elliptic integral, and2F1(a,b;c;z) is the hypergeo-
metric function. Figure 1 plots the functionF(x). It is inter-
esting to note thatF(0)51, F(1)52/p, and F(x)
;1/(2x) for x@1, as expected for the Coulomb potential f
from a charged disk. AlthoughF(x) can be expressed ana
lytically, it generally preferable to store it in a table, an
interpolate it for allx for all the calculations that follow.

While most electrons stay within the confines of the ne
tralizing background~i.e., x<1), electrons near the edg
may spread outside the disk to some extent~although it is
extremely unlikely that they will spread to more than a fe
magnetic lengths from the edge!. The expectation value o
the electron-background interaction potential during the M
simulation can then be calculated using

^V̂eb&
N

5
1

N K (
i 51

N

v̂eb~r i !L . ~8!

Finally, the expectation value ofV̂ee is accordingly given by

^V̂ee&
N

5
1

N K (
i , j

N
e2

ur i2r j u
L . ~9!

In the usual Metropolis MC method,8 the expectation
value of an operator can be computed by averaging the v
of the operator over numerous configurations$rW1 , . . . ,rWN%
of the many-body system that obey detailed balance, tha
the probability ratios between pairs of discrete configuratio
are related by the ratios oftheprobability distribution for the

FIG. 1. The electron-background functionF(x). Here x
5r /RN , wherer is the distance of an electron from the center
the disk andRN is the radius of the finite disk filled with neutraliz
ing positive background. The dotted line shows the 1/(2x)
asymptotic dependence. Most electrons sit in thex<1 region.
4-2
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MONTE CARLO SIMULATION METHOD FOR LAUGHLIN- . . . PHYSICAL REVIEW B 67, 075304 ~2003!
system@in this caseuCm(z1 , . . . ,zN)u2; see Eq.~1!#. Usually
several million configurations are used for eachN and the
results are extrapolated to the thermodynamic limit by c
sidering a sequence of various increasingN’s.

A MC step ~MCS! consists of attempts to move one b
one all the electrons of the system by a small distance
orderD in a random direction. After each attempt~to move
the i th electron fromrW i

old to rW i
new, the probability ratio be-

tween the ‘‘new’’ state and the ‘‘old’’ state is then compute

uC~r1 ,•••r i
new

•••rN!u2

uC~r1 ,•••r i
old
•••rN!u2

5expFm(
j Þ i

N

~ lnur j2r i
newu2

2 lnur j2r i
oldu2!G•expF

2
1

2l 0
2 ~ ur i

newu22ur i
oldu2!G .

~10!

In the usual Metropolis scheme,8 if this ratio is bigger than a
uniformly distributed number in the@0,1# range the attemp
is accepted, otherwise it is rejected. The parameterD is ad-
justed so that the acceptance ratio is close to 50%. A
attempting to move all electrons~one MCS!, the electron
configurations are then used to calculate the operator u
consideration. Averaging over numerous MCS’s conver
gradually~as 1/Anumber of MCS) to the desired expectatio
value. Normally it is convenient to disregard numerous~sev-
eral thousand! initial configurations to reach a good ‘‘ther
malization’’ before the averaging begins, which significan
reduces the expurious effects of the somewhat arbitrary
tial configurations. All the results that we report here we
obtained after discarding 100 000 ‘‘thermalization’’ MCS
and using 23106 MCS’s for averaging purposes.

In Table I we show the correlation energy per particle
finite systems ofN electrons in the Laughlin statesm53 and
m55 obtained using the standard MC method descri
above. The results are rounded in the last digit.

To get the the bulk~thermodynamic estimate! of the cor-
relation energy per particle one needs to perform a car
extrapolation of the results as illustrated in Fig. 2 where
show the correlation energy per particle for statesn51/3 and

TABLE I. Correlation energy per particle in the Laughlin sta
for filling factorsn51/3 and 1/5. These results were obtained af
a standard Monte Carlo simulation in a disk geometry. Energies
in units of e2/ l 0.

N m53 m55

4 20.388 84 20.321 59
16 20.397 66 20.323 28
36 20.401 29 20.324 46
64 20.403 23 20.325 10
100 20.404 45 20.325 50
144 20.405 21 20.325 77
196 20.405 79 20.325 94
400 20.406 75 20.326 24
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1/5 plotted as a function of 1/AN for systems withN536,
64, 100, 144, 196, and 400 electrons.

We fitted the energies of Table I forN54, 16, 36, 64,
100, 144, 196, and 400 electrons to a polynomial function
reported in Ref. 5 and obtained

^V̂&1/3

N
5S 20.40941

0.0524

AN
2

0.0225

N D e2

l 0
, ~11!

^V̂&1/5

N
5S 20.32731

0.0200

AN
2

0.0172

N D e2

l 0
. ~12!

These interpolation lines are used to estimate the correla
energy per particle in the thermodynamic limit~the first term
in each of the parentheses!. Our results for the thermody
namic limit are similar to those found in Ref. 9,20.4100
60.0001 and20.327760.0002~in units of e2/ l 0) derived
with the use of the pair-correlation function evaluated fro

r
re

FIG. 2. Monte Carlo results in disk geometry for the Laugh
state atn51/3 ~top panel! andn51/5 ~bottom panel!. The potential

energy per particle,̂ V̂&/N, is plotted as a function of 1/AN for
systems withN536, 64, 100, 144, 196, and 400 electrons. F
circles: correlation energies calculated by the standard method
scribed above, the full line is a least-square fit@Eqs.~11! and~12!#
used to extrapolate to the thermodynamic limit. Energies are
units of e2/ l 0.
4-3
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O. CIFTJA AND C. WEXLER PHYSICAL REVIEW B67, 075304 ~2003!
MC simulations with up toN5256 electrons and generatin
as many as five million MC configuratons. Note how slo
the convergence is, although the extrapolation toN→`
seems unambiguous it is still time consuming and cumb
some~even forN5400 the error is still approximately 1%!.

A. One-particle density

Other physical quantities of interest that may be read
computed are the single-particle density function and the
distribution function. Given that the Laughlin wave functio
describes an isotropic liquid and is rotationally invariant, t
single-particle density depends only on the radial dista
from the center of the disk. We may compute the sing
particle density by counting the number of electronsNl(Dr )
found in several 2D shells of widthDr centered around a
discrete set of distances to the centerr l5( l 1 1

2 )Dr ( l 50,1,
•••):

r~r l ![ K Nl~Dr !

V l~Dr !L , ~13!

whereV l(Dr )5p(Dr )2@( l 11)22 l 2# is the area of each 2D
shell. In theDr→0 the quantity computed corresponds u
equivocally to the electron density

r~r !5K (
i 51

N

d~r 2r i !L . ~14!

The computation of the single-particle density in t
Laughlin state indicates a significant nonuniformity near
boundary~see Fig. 3!. As the number of electrons increase
significant portion of the system becomes uniform as
pected. Note, however, that the nonuniformity near the e
always persists. This behavior can be used to characte
which electrons are ‘‘in the bulk.’’

FIG. 3. One-body density function,r(r )/r0, in the Laughlin
staten51/3 as a function of the distancer / l 0 from the center of the
disk for systems withN564, 100, 144, and 196 electrons. Note t
persistence of an ‘‘edge region’’ of finite width and the developm
of a ‘‘bulk region’’ for large N. A discretization intervalDr
50.05l 0 was used.
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r-

y
ir

e
e
-

-

e

-
e

ize

B. Pair distribution function

Another important quantity related with the trial wav
function is the pair distribution function, which correspon
to the conditional probability density to find an electron a
distancer from another electron. For any homogeneous a
isotropic liquid with uniform densityr0 it is defined as

r0g~r !5
1

N K (
i 51

N

(
j Þ i

N

d~r 2ur i2r j u)L . ~15!

Following the same procedure as above, we discretize
concentric shells around thei th electron and count the num
ber of electronsNl(Dr ) in each shell, which should give
g(r ) asDr→0 according to the following equation:

r0g~r l !5
1

N

1

V l~Dr ! K (
i 51

N

(
j Þ i

N

Nl~Dr !L . ~16!

It is evident that electrons near the edges of the system c
contribute expuriously to these sums as their ‘‘surrounding
are considerably different than those at the bulk. To elimin
as much as possible any boundary effects, it is convenien5 to
consider only~for the ‘‘i electrons’’ above! the electrons that
are within a small circle of radiusR1 around the origin. IfN1
is the average number of electrons that are within this sm
circle, then the approximationĝ(r l) for the pair distribution
g(r l) is

r0ĝ~r l !5
1

N1

1

V l~Dr ! K (
i 51

N1

(
j Þ i

N

Nl~Dr !L , ~17!

where in this expression one is considering the pairs betw
any electroni ( i 51, . . . ,N1) lying inside the circle of radius
R1, with all other electronsj ( j 51, . . . ,i 21,i 11, . . . ,N)
that may lie either inside, or outside that circle. This guar
tees that the evaluation ofĝ(r l) involves only pairs, where a
least one member lies inside a circle of radiusR1 around the
origin, where correlations are believed to be close to thos
the bulk of an infinite system.

Figure 4 show plots of the pair distribution function fo
the statesn51/3 and 1/5 for systems withN54, 16, 36, 64,
100, 144, and 196 electrons. For our MC simulations
choseR150.25RN and a discretization intervalDr 50.05l 0.
Note the gradual decay at larger which reflects the finite size
of the system.

The determination of the pair correlation function for
given finiteN tends to be quite time consuming but provid
for an alternative way to compute the correlation energy
particle in the thermodynamic limit5 by using the formula

^V̂&
N

5
r0

2 E
0

1`

d2r
e2

r
@g~r !21#, ~18!

which is valid in the limit of an infinite system. Although th
pair distribution function is obtained from a system with
finite number of particles, one can calculate the thermo
namic value of the correlation energy per particle to a v
good accuracy by using the slightly modified formula

t

4-4
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^V̂&
N

5
r0

2 E
0

Rcut
d2r

e2

r
@ ĝ~r !21#, ~19!

in conjunction with the normalization condition

r0E
0

Rcut
d2r @ ĝ~r !21#521, ~20!

which defines an upper cuttoffRcut . This approach produce
good estimates for the thermodynamic correlation energy
particle as long asĝ(r ) is able to reach its asymptotic valu

@ ĝ(r ).1#. Reasonable results can be achieved even for
tems ofN>36 electrons.

III. AN ALTERNATIVE METHOD

In the standard MC approach one needs to calculate
expectation values of various quantities several times for
ferentN in order to extract the thermodynamic estimate fro
the data by performing a 1/AN fit ~and taking the limit
1/AN→0 , as shown, e.g., in Fig. 2!. It is highly desirable to
obtain estimates for the bulk regime~in thermodynamic
limit ! without needing to perform the above analysis. In t

FIG. 4. Pair distribution function forn51/3 and 1/5 obtained by
a standard Monte Carlo simulation in disk geometry for system
N54, 16, 36, 64, 100, 144, and 196 electrons.
07530
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following we describe a method that allows us to obta
results consistent with the bulk regime, by doing simulatio
with only a finite~relatively small! number of particles. The
method although approximate, yields very accurate res
corresponding to the bulk regime even when simulations
performed for a small number of electrons. The estimates
very stable over a wide range ofN and the technical appli-
cation of the simulation is less involved.

In order to obtain reliable estimates for the bulk regim
we need to exclude from consideration the boundary-affec
outer region of the finite disk. In a standard MC simulati
the electrons are distributed all over the 2D space, at a g
instant it is obvious that the electrons close to the cen
region of the disk resemble to the bulk regime better th
those close to the boundary. However, during the simula
each of the previously ‘‘bulk’’ electrons moves around t
whole disk therefore the correlation energy of such elect
with the other electrons is not a good estimate of the co
lation energy in the bulk regime.

The core of the method proposed here is to consider
electron pinned to the center of the disk which, by constr
tion is the point which most closely resembles the bulk of
system. Therefore, if we are able to derive results where o
the correlation energy of that particular electron with the r
~away from edge! is involved, we anticipate that such est
mates should approximate the bulk regime much more ac
rately than other methods, and as a result thermodyna
limit values can be achieved even in a system with a re
tively small number of electrons. One has to recall that fo
finite system, the Laughlin wave function describes an
compressible system of strongly correlated ellectrons w
uniform densityr0 only in the bulk region~central part of
the disk not very close to the boundary!, while close to the
boundary~where the density of electrons falls to zero! the
fluid becomes compressible and there is a deviation of
electron density from its constant value in the bulk.

In our MC simulations, we consider a Laughlin-like sta
@Eq. ~1!# in which one electron is pinned at the positionz0
~we considerz050), and N85N21 electrons are free to
move ~i.e., in a typical MC step!:

Cm8 ~z0,z1,•••zN8!5Cm~z1 ,•••zN8!)
j 51

N8

~zj2z0!me2uz0u2/4l 0
2
.

~21!

When an attempt is made to move electroni ( i
51, . . . ,N8) from r i

old to r i
new, the MC probability ratio is

given by

uC8~r0 ,•••r i
new

•••rN8!u
2

uC8~r0 ,•••r i
old
•••rN8!u

2
5

uC~r1 ,•••r i
new

•••rN8!u
2

uC~r1 ,•••r i
old
•••rN8!u

2

3em(lnur i
new2r0u22 lnur i

old2r0u2).

~22!

Since the electrons are identical we need only cons
the average correlation energy of one specified electron w
the rest of the electrons to compute the electron-electron

f

4-5
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teraction energy, therefore to this level of simplification t
electron-electron energy per particle is obtained by consi
ing only the interaction between the pinned electron and
rest of Ni other electrons contained within a inner disk
radiusRi,RN where the electron density is approximate
equal to the bulk valuer0. We found that a reasonabl
choice for the radius of inner disk that excludes the ed
electrons isRi50.75RN , therefore this value was adopted
all the following simulations.

To be consistent with the above procedure also the di
electron-background and background-background ene
should be calculated within the same degree of simplifica
~see the Appendix!. It is therefore useful to first calculate th
one-body density function~see, e.g., Fig. 3! in order to de-
termine an optimalRi for future use. IfRi is reasonably
large, we expect the correlation energy calculated in this w
to closely correspond to the desired correlation energy
particle in the thermodynamic limit~see the Appendix!:

^V̂&
N

.
1

2 K (
i 51

Ni e2

urW i2rW0u L 2ANi11

2m

e2

l 0
. ~23!

As in the standard MC method case, our MC runs consis
100 000 discarded equalibration MCS’s followed by 23106

MCS’s for averaging purposes.
In Table II we show the correlation energy per particle

finite systems ofN electrons and Laughlin statesm53 and
m55 calculated by pinning an electron atz050 as described
above @see Eq.~22!#, and using Eq.~23!. The results are
rounded in the last digit.

In Fig. 5 we show the potential energy per particle forn
51/3 and 1/5 computed from the alternative method a
plotted as a function of 1/AN. For the sake of comparison w
also plot the results from the standard method~Sec. II!.

It is striking to note how much faster the alternati
method converges to the thermodynamic limit. Differen
from the standard MC approach, the alternative method
we introduced does not need to have the data points le
square fitted to get the thermodynamic limit value. O
merely needs to choose a big enoughN ~for instanceN

TABLE II. Correlation energy per particle in the Laughlin sta
for filling factorsn51/3 and 1/5, obtained via a Monte Carlo sim
lation in a disk geometry using the method of pinning one elect
at the center of the disk. Energies are in units ofe2/ l 0.

N m53 m55

4 20.381 87 20.301 57
16 20.408 98 20.327 22
36 20.408 95 20.326 37
64 20.409 09 20.326 65
100 20.409 55 20.327 38
144 20.409 36 20.327 32
196 20.409 53 20.327 34
400 20.409 54 20.327 35
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5196) and do a MC run that typically will generate bu
~thermodynamic limit! results to an excellent degree of a
curacy.

Pair distribution function

Using the same ideas presented above~keep one electron
pinned atz050) the pair distribution function is very easil
calculated. The essence of the method consists in measu
the one-particle densityexcludingthe pinned electron which
is obviously the pair distribution function instead of consi
ering all the possible pairings between the electrons. As
fore, the advantage of this method, besides its simplic
resides in the fact that this electron, being the farthest fr
the edge, is in an environment closest to that in a bulk s
tem. Therefore one has to calculate

n

FIG. 5. Monte Carlo results in disk geometry for the Laugh
state atn51/3 ~top panel! and 1/5~bottom panel!. The potential

energy per particle,̂ V̂&/N, is plotted as a function of 1/AN for
systems withN536, 64, 100, 144, 196, and 400 electrons. F
circles: correlation energies calculated by the standard method~Sec.
II ! the full line is a least-square fit@Eqs. ~11! and ~12!# used to
extrapolate to the thermodynamic limit. Empty circles: correlati
energies calculated by the alternative method described in Sec
the dashed line is a visual aid indicating the thermodynamic lim
Note how the thermodynamic limit is approached faster in the s
ond method. Energies are in units ofe2/ l 0.
4-6
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r0g~r !.K Nl~Dr !

V l~Dr !L , ~24!

whereNl(Dr ) is the number of electrons found in the 2
shell V l(Dr ) with distance range (r l ,r l1Dr ) from the
pinned electron at the center of the disk. In Fig. 6 we sh
plots of the pair distribution function for the statesn51/3
andn51/5 for systems withN54, 16, 36, 64, 100, 144, an
196 electrons obtained with a choice ofRi50.75RN and us-
ing a discretization intervalDr 50.05l 0.

IV. SUMMARY AND DISCUSSIONS

We implemented an alternative Monte Carlo method
calculate the properties of Laughlin states of the fractio
quantum Hall effect in the thermodynamic limit while usin
a very small number of electrons. The key point of th
method is the pinning of an electron in the center of the d
so that the potential energy and correlation functions ca
lated through the pinned electron accurately represent
bulk ~thermodynamic limit! even in a relatively small sys
tem. The idea is quite general and, in principle, can be

FIG. 6. Pair distribution function for the staten51/3 and 1/5
obtained after a Monte Carlo simulation in the disk geometry
systems ofN54, 16, 36, 64, 100, 144, and 196 electrons with o
electron held fixed at the center of the disk.
07530
o
l

,
-

he

p-

plied to any system as far as the main concern is the ca
lation of correlation effects such as the potential ener
the pair distribution function, etc. For systems such as
electronic one-component plasmas,10 composite fermion
states described by the Jain’s unprojected wave functio11

etc., that is all that matters. Obviously such alternat
method can always be used to calculate the potential en
and related quantities of other more diverse systems, w
the the kinetic energy calculated in the standard way wh
ever applicable. By using this alternative method we a
lyzed the properties of the Laughlin states corresponding
filling factor n51/3 and 1/5 by performing Monte Carl
simulations in disk geometry for systems with up toN
5400 electrons. The correlation energy per particle and
pair distribution function computed in this approach a
compared to corresponding bulk-regime values obtained
a standard Monte Carlo simulation in disk geometry, wher
careful extrapolation in thermodynamic limit has been p
formed. We find that such approach allows us to obtain
curate bulk regime~thermodynamic limit! values for various
quantities using a modest number of electrons~even forN
516 the error is less than 0.1%!.
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APPENDIX

Let us consider a system ofN interacting 2D electrons
coupled to the positive neutralizing background that fills
finite disk and guarantees overall charge neutrality. The
pectation value of the electron-background potential ene
per particle can be written as

^V̂eb&
N

52
r0

N E d2r 1r~r1!E
VN

d2r
e2

ur12r u
, ~A1!

wherer(r1) is the one-body~single! electron density func-
tion given by

r~r1!5N
E d2r 2•••d2r NuC~r1•••rN!u2

E d2r 1•••d2r NuC~r1•••rN!u2
;

E d2r 1r~r1!5N. ~A2!

One notes that when the one-body electron density beco
uniform, r(r1)'r0 and the system is sufficiently large s
that most of the electrons are to be found inside the fin
disk then2^V̂eb&/N'2^V̂bb&/N, therefore we would have

r
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^V̂eb&1^V̂bb&
N

.
1

2

^V̂eb&
N

. ~A3!

By making a preliminary calculation of the one-body dens
function we could estimate the radius,Ri,RN of an inner
disk where the electrons have supposedly uniform den
therefore we could argue that all these electrons inside
inner disk are in the bulk regime. IfNi is the number of
electrons within this reference circle of radiusRi in addition
to the electron pinned at the center of the disk then a g
estimate for the potential energy per particle in the therm
dynamic limit is obtained from the quantity

^V̂&
N

5
1

Ni11 K (
i 50

Ni

(
i , j

Ni e2

ur i2r j u
L

1
1

Ni11 K (
i 50

Ni

v̂eb~r i !L 1
^V̂bb&
Ni11

, ~A4!

where^V̂bb&/(Ni11) is the background-background ener
per particle of a positive charge that exactly neutralizes
charge ofNi11 electrons. Since the electron-electron pote
. B

07530
ty
is

d
-

e
-

tial energy per particle was obtained to a level of simplific
tion where only the interaction between the pinned elect
and otherNi electrons was considered, then the whole pot
tial energy per particle should be calculated in the sa
grounds too, namely, using as reference only the interac
energy of the pinned electron with the positive backgrou

^V̂&
N

5
^V̂ee&

N
1

^V̂eb&1^V̂bb&
N

.
1

2 K (
i 51

Ni e2

urW i2rW0u L
1

1

2
^v̂eb~r0!&5

1

2 K (
i 51

Ni e2

urW i2rW0u L 2
r0

2 E
VNi

d2r
e2

r
.

~A5!

As a result the correlation energy per particle in the th
modynamic limit can be written as in Eq.~23!. Note that use
of relation 2^V̂eb&/N'2^V̂bb&/N to express (̂V̂eb&
1^V̂bb&)/N in Eq. ~A3! in terms of^V̂bb&/N is inaccurate in
view of the approach adopted in our method therefore sho
be avoided.
r,
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