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Monte Carlo simulation method for Laughlin-like states in a disk geometry
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We discuss an alternative accurate Monte Carlo method to calculate the ground-state energy and related
quantities for Laughlin states of the fractional quantum Hall effect in a disk geometry. This alternative ap-
proach allows us to obtain accurate bulk regittteermodynamic limit values for various quantities from
Monte Carlo simulations with a small number of particlerich smaller than that needed with standard Monte
Carlo approaches
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[. INTRODUCTION wherez; =x;+1iy; is the position of thgth electron in com-
plex coordinates. This wave function gives an excellent de-
The discovery of the fractional quantum Hall effect scription of the true ground state of the electronsrfor 3
(FQHE) has stimulated extensive studies on the properties oind 5. Fom=7 the electrons tend to form a Wigner crystal
two-dimensional(2D) quantum many-electron systems in a consistent with the experimental observatitmat the FQHE
strong magnetic field.It is now understood that the FQHE does not occur for filling factors<1/7.
represents the condensation of nearly 2D electrons subject to Since the Laughlin wave function lies entirely in the LLL,
a strong perpendicular magnetic fielat low enough tem- the expectation value of the kinetic energy per electron,
peratures and low enough amount of disoydeio an incom- N
X : g ) (K)y 1
pressible quantum fluid formed at some specific filling fac Y e T he )
tors. A neutralizing positive charge density is present to N 2%

preserve Everr?ll cr;]argfe neutrah_tfy and, to I_OWE;St apprc_JX|mha]-S constant and becomes irrelevant, therefore the only impor-
tion, can be thought of as a uniform positive density In ey, contripution of the guantum-mechanical Hamiltonian

same plane as the 2D electrofi® reality the positive Y — K+ oriinates f the total potential tor-
charges are the ionized donors that are roughly distributell = originates from the total potential-energy operator:

randomly aspacer thicknessaway and produce a small

amount of disorder and an overall constant shift in the ener-

gies. where
The strong magnetic field quantizes the electrons’s motion \

on the plane and quenches the kinetic energy of each electron . e - e

to a discrete set of Landau levelsl's) separated by the Vee:E ,

relatively large cyclotron energyiw.=AeB/m*, where

—e(e>0) is the electron charge amu* is the effective p2 o2

mass of electrons in the semiconducton*(=0.07m, in \”/bb:_of d?r d?r’ (4)

GaAs, wheram, is the bare electron’s mgssn addition, the Qy Qy

Zeem.an split?ing spin-polarizes the electgons rendering thergre the electron-electron, electron-background, and

effectively spinlesdn each LL,p, =1/27l5 (o= VA/€Bis  packground-background potential-energy operators, respec-

the magnetic lengthelectrons per unit area can be accom-tjyely. Here we have assumed a simple geometry appropriate

modated. It is evident that for large enough magnetic fieldsg, the circular symmetry of the Laughlin wave function,

only the lowest LL(LLL) is occupied(and only the lowest where a positive background density= V/(zmg) is spread

spin sub-band and if the occupation is not complete the oo 5 giskq,, of radius Ry=10V2N/v (i.e., it cancels the

system is highly de_genera_te. Al parucuhih_ng factors » electronic density in the thermodynamic limit and makes the

=plp. L, electron interactions lead to highly correlated system neutral for alN).

statesdv;hul:_rine)Erhr:blt an ei§C|t?t|oPII_gapf antd refsult N tr?_e ob- Numerous techniques have been employed to calculate
served FQHE. These particular filling factors form a hierar-y, o expectation value of the potential energy per particle

chy, of which the simplest FQHE states have filling factors, ~ . .
y b Q g (V)IN [see Eq.(3)] in the Laughlin statéEqg. (1)]. For ex-

v=1/m with m=3 and 5. SO .
For filling factors of the formw=1/m (m odd the unnor- ample, LaUth'ﬁ initially employepl the hypernetted-cha_ln
malized LaughliA trial wave function forN electrons can be method to estimate the V'?"“e of this correlation energy with a

written as ~1% accuracy, and various standard Monte Can{biC)
schemes have been proposed, all of which are essentially
exact in the thermodynamic limit.
N N An excellent description of a standard MC computation of
Vo (zy .. -ZN):]._.[ (Zi—Zj)mH e—|zi\2/4|§, (1) the potential energy and other relevant quantities in a disk
i=1 geometry is given by Morf and HalpermSpherical geom-

\A/:\A/ee‘f‘ \A/eb+ \A/bb, (3)

i<j
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etries are also used quite often since the convergence to th 1f
thermodynamic limit is quicker because boundary effects are
eliminated® 0.8}

Although considerable more care is needed in the disk
geometry to eliminate boundary effects when extrapolating—_ ¢ ¢!
(necessarily finite-N results to the thermodynamic limiin Z

. [y \
particular due to the long-range nature of the Coulomb po-—~ , | N
tential), there are cases in which the spherical geometry is S
either inconvenient, or plainly incompatible with the state
under consideratiorifor example for the study of possible
quantum Hall nematic phasefor which considerable topo-
logical defects would be generated at the poles of the " : B 3 p s
sphere.

Furthermore, the value of the correlation energy in the
thermodynamic limit is not easily extracted from standard FIG. 1. The electron-background functio(x). Here x
MC simulation (see Sec. )l data, since the limit is ap- =r/Ry, wherer is the distance of an electron from the center of
proached very slowly, with corrections of the order of/N/ the disk andRy, is the radius of the finite disk filled with neutraliz-
requiring repeated calculations for variodlsand a careful ing positive background. The dotted line shows the gJ(2
extrapolation of the results to thé— oo limit. It is therefore ~ asymptotic dependence. Most electrons sit inxkel region.
highly desirable to explore methods that would expedite the
extrapolation to the thermodynamic limit. [ 2E(x?)

In Sec. Il we describe, for the sake of completeness, the T X=
procedure used in the standard MC approach. Section Ill

X

describes an alternative method that converges to the ther- F(x)= fwdywz< 11 1
modynamic limit considerably faster. We discuss our results 0 y 2|:1<_,_;2;_)
in Sec. IV. 2°27 "y _
| > <
(7

I. STANDARD MONTE CARLO APPROACH
where J,(x) are Bessel functions of order, E(x) is the

_ In the standard I\_/IC approach one cons.iders the CaICUIGCompIete elliptic integral, angF,(a,b:c:2) is the hypergeo-
tion of the expectation value of the potential-energy OP€Mainetric function. Figure 1 plots the functidf(x). It is inter-
tors as given in Eq(4). The background-background inter- sting to note thatF(0)=1, F(1)=2/m, and F(X)

action. potential_ poses no problem, it can be calculate(i 1/(2x) for x>1, as expected for the Coulomb potential far
analytically and is found to be

from a charged disk. Althougk(x) can be expressed ana-

lytically, it generally preferable to store it in a table, and
(Voo 1 p3 , - @2 8 [uNe? interpqlate it for allx for all the g:allculations that follow.
N N2 d“r der — "3 N2 While most electrons stay within the confines of the neu-
Oy Oy r=r’| 0 tralizing background(i.e., x<1), electrons near the edge
) may spread outside the disk to some ext@ithough it is

extremely unlikely that they will spread to more than a few

In order to compute the expectation value of the electronmagnetic lengths from the edgelhe expectation value of
background interaction potential one conveniently writes itthe electron-background interaction potential during the MC

as simulation can then be calculated using
9 N
N 2 <Veb> 1 < ~ >
. . . e =—{ > vey(r) ). (8)
Veb=2, Ven(T); veb(fi):—Pof d’r—-r, (6) N N\ & e
=1 oy Iri—rl
Finally, the expectation value &f, is accordingly given by
whereuv(r;) is the interaction potential of a single electron N N )
L . I, . (Ve 1 e
at positionr; with the uniform positive background in the =_ S 9
finite disk. Such electron-background interaction potential N N\ [ri—rj
depends on the ratig /Ry, wherer;=|r;| is electron’s dis- ) & )
tance from the center of the disk aRy, is the radius of the In the usual Metropolis MC methadthe expectation
finite disk and can be expressed as value of an operator can be computed by averaging the value
of the operator over numerous configuratidms, . . . ,ry}
2 of the many-body system that obey detailed balance, that is,
Ven(ri)=— V2uNF(r, /RN)e—' the probability ratios between pairs of discrete configurations
M ' lo are related by the ratios ttie probability distribution for the
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TABLE |. Correlation energy per particle in the Laughlin state -0.39
for filling factors v=1/3 and 1/5. These results were obtained after
a standard Monte Carlo simulation in a disk geometry. Energies are -0.395 + J
in units ofe?/l,.
0.4t
N m=3 m=5
£
4 —0.388 84 -0.32159 £ 04T T
16 —0.397 66 —0.323 28
36 —0.401 29 —0.324 46 041 1 I
64 —0.403 23 —-0.32510
100 —0.404 45 —0.32550 0415 1 T
144 —0.40521 —0.32577
196 —0.405 79 ~0.325 94 042 0.05 o1 015 02
_ -0.32
systenin this casdW¥ (z;, . . . ,zn)|% see Eq(1)]. Usually
several million configurations are used for ead¢hand the
results are extrapolated to the thermodynamic limit by con- -0.322 - .
sidering a sequence of various increasiig.
A MC step (MCS) consists of attempts to move one by 0324 |

one all the electrons of the system by a small distance ofz '
orderA in a random direction. After each attemjd move <
theith electron fromr,®'? to r;"®", the probability ratio be-  * -0326 | .
tween the “new” state and the “old” state is then computed:

|W(ry,- - ry)? N ) 0328 1 I

e LR

1 i N ] 033 , , .
0 0.05 0.1 0.15 0.2
_|n|rj_riold|2) ~ex;{ (b) 1/sqri(N)
FIG. 2. Monte Carlo results in disk geometry for the Laughlin
1 state atv=1/3 (top panel andv=1/5 (bottom panel The potential

—<|rrevw2—|ri°'d|2>].

- N energy per particle(\?}/N, is plotted as a function of YN for
0

systems withN=236, 64, 100, 144, 196, and 400 electrons. Full
circles: correlation energies calculated by the standard method de-
scribed above, the full line is a least-squard Higs.(11) and (12)]

used to extrapolate to the thermodynamic limit. Energies are in
units ofe?/l,.

(10
In the usual Metropolis schenfdf this ratio is bigger than a
uniformly distributed number in thg0,1] range the attempt
is accepted, otherwise it is rejected. The paramatés ad-
justed so that the acceptance ratio is close to 50%. After , ,
attempting to move all electronéne MCS, the electron /> plotted as a function of IN for systems withN =36,
configurations are then used to calculate the operator und&* 100, 144, 196, and 400 electrons.
consideration. Averaging over numerous MCS's converges We fitted the energies of Table | fdd=4, 16, 36, 64,
gradually(as 1A/number of MCS) to the desired expectation 100, 144, 196, and 400 electrons to a polynomial function as
value. Normally it is convenient to disregard numer¢sesv-  reported in Ref. 5 and obtained
eral thousandinitial configurations to reach a good “ther-

malization” before the averaging begins, which significantly (V)1 0.0524 0.0225 e?

reduces the expurious effects of the somewhat arbitrary ini- N —0.4094+ W‘ TN 1! (12)

tial configurations. All the results that we report here were

obtained after discarding 100000 “thermalization” MCS’s . 5

and using % 10° MCS’s for averaging purposes. Mus _ _0.3273+ 0.0200 0.0172e” 12
In Table | we show the correlation energy per particle for N ' JN N lo

finite systems oN electrons in the Laughlin states=3 and
m=5 obtained using the standard MC method described hese interpolation lines are used to estimate the correlation
above. The results are rounded in the last digit. energy per particle in the thermodynamic lirttie first term

To get the the bulkthermodynamic estimatef the cor-  in each of the parenthege®Our results for the thermody-
relation energy per particle one needs to perform a carefubamic limit are similar to those found in Ref. 9;0.4100
extrapolation of the results as illustrated in Fig. 2 where we*0.0001 and—0.3277+0.0002(in units of €%/l,) derived
show the correlation energy per particle for statesl/3 and  with the use of the pair-correlation function evaluated from
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1.4 . . . . . T T B. Pair distribution function
121 N=64 /) 100/} 1447, 196/} | Another important quantity related with the trial wave
/ ‘ [ function is the pair distribution function, which corresponds
1 o to the conditional probability density to find an electron at a

distancer from another electron. For any homogeneous and

Q_O 0.8 isotropic liquid with uniform density it is defined as
< 0.6 1/ NN
pog(r>=ﬁ<, > 6(r—|ri—r,-|)>. (15
0.4 =1 j#i
02 L Following the same procedure as above, we discretize in
concentric shells around théh electron and count the num-
00 5 1'0 1'5 2'0 25 3‘6 3‘5 20 ber of electronsN,(Ar) in each shell, which should give
g(r) asAr—0 according to the following equation:
ry
1 1 N N
FIG. 3. One-body density functiom(r)/po, in the Laughlin pod(r))= NW<E > N|(Ar)>. (16)
statev=1/3 as a function of the distanc#l , from the center of the ! =17

disk for systems wittN=64, 100, 144, and 196 electrons. Note the |t jg eyident that electrons near the edges of the system could
persistence of an “edge region” of finite width and the development.nyibyte expuriously to these sums as their “surroundings”
of a *bulk region” for large N. A discretization intervalAr 5.0 considerably different than those at the bulk. To eliminate
=0.09, was used. as much as possible any boundary effects, it is convetient
consider only(for the “i electrons” abovgthe electrons that

MC simulations with up t\ =256 electrons and generating are within a small circle of radiuR, around the origin. IN;

as many as five ”".“”'0” MC configuratons. No_te how SIOWis the average number of electrons that are within this small
the convergence is, although the extrapolationNe-

seems unambiguous it is still time consuming and cumber€ircle; then the approximatiog(r) for the pair distribution
some(even forN=400 the error is still approximately 16 9(1) s

Ny N
. . ~ 1 1 !
A. One-particle density pod(r) = N m< ;1 ; N,(Ar)> , (17)

Other physical quantities of interest that may be readily
computed are the single-particle density function and the pawhere in this expression one is considering the pairs between
distribution function. Given that the Laughlin wave function any electrori (i=1, ... N;) lying inside the circle of radius
describes an isotropic liquid and is rotationally invariant, ther,, with all other electrong (j=1,...ji—1ji+1,... N)
single-particle density depends only on the radial distancehat may lie either inside, or outside that circle. This guaran-
from the center of the disk. We may compute the singleges that the evaluation g{r,) involves only pairs, where at
particle density by counting the number of electrd§éAr)  |east one member lies inside a circle of radRysaround the

found in several 2D shells of widtAr centlered around a origin, where correlations are believed to be close to those in
discrete set of distances to the center (I+3)Ar (1=0,1,  the pulk of an infinite system.

) Figure 4 show plots of the pair distribution function for
the statesy=1/3 and 1/5 for systems witN=4, 16, 36, 64,
o(r, E< N,(Ar)> (13) 100, 144, and 196 electrons. For our MC simulations we
Q(Ar) [’ choseR;=0.25Ry and a discretization intervalr =0.09 .

) 5 1o Note the gradual decay at largevhich reflects the finite size
where()(Ar)=m(Ar)[(I+1)°—1¢] is the area of each 2D ¢ the system.

shell. In theAr—0 the quantity computed corresponds un-  The determination of the pair correlation function for a

equivocally to the electron density given finiteN tends to be quite time consuming but provides
N for an alternative way to compu;g the correlation energy per
article in the thermodynamic limity using the formula
p<r>=<i21 5(r—ri>>. a9 P Y Y Hsng
V) _po e ¢ -1 18
The computation of the single-particle density in the N 2), 7 [9(r)—1], (18)

Laughlin state indicates a significant nonuniformity near the

boundary(see Fig. 3 As the number of electrons increase, awhich is valid in the limit of an infinite system. Although the
significant portion of the system becomes uniform as expair distribution function is obtained from a system with a
pected. Note, however, that the nonuniformity near the edgénite number of particles, one can calculate the thermody-
always persists. This behavior can be used to characterizeamic value of the correlation energy per particle to a very
which electrons are “in the bulk.” good accuracy by using the slightly modified formula
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following we describe a method that allows us to obtain
results consistent with the bulk regime, by doing simulations
with only a finite (relatively small number of particles. The
method although approximate, yields very accurate results
corresponding to the bulk regime even when simulations are
performed for a small number of electrons. The estimates are
very stable over a wide range bdf and the technical appli-
cation of the simulation is less involved.
oy | In order to obtain reliable estimates for the bulk regime,
N we need to exclude from consideration the boundary-affected
oz | ! "'\\ | outer region of the finite disk. In a standard MC simulation
\ the electrons are distributed all over the 2D space, at a given

0 NN S N VU S instant it is obvious that the electrons close to the central

0 10 20 30 40 50 region of the disk resemble to the bulk regime better than
(@) rlly those close to the boundary. However, during the simulation
each of the previously “bulk” electrons moves around the
whole disk therefore the correlation energy of such electron
with the other electrons is not a good estimate of the corre-
lation energy in the bulk regime.

The core of the method proposed here is to consider an
electron pinned to the center of the disk which, by construc-
tion is the point which most closely resembles the bulk of the
\ s .“ ,‘ system. Therefore, if we are able to derive results where only
{ ] the correlation energy of that particular electron with the rest
} ; A (away from edggis involved, we anticipate that such esti-
mates should approximate the bulk regime much more accu-
! ... \ N rately than other methods, and as a result thermodynamic

‘ limit values can be achieved even in a system with a rela-

/\ LN L N tively small number of electrons. One has to recall that for a

0 10 20 30 40 50 finite system, the Laughlin wave function describes an in-

() 1k compressible system of strongly correlated ellectrons with
uniform densityp, only in the bulk region(central part of

FIG. 4. Pair distribution function for=1/3 and 1/5 obtained by the disk not very close to the boundarwhile close to the
a standard Monte Carlo simulation in disk geometry for systems oboundary(where the density of electrons falls to zetbe

12t v=1/3'

08

06

g(r)

04 ¢

12

08

&(r)

06

0.4 r

N=4, 16, 36, 64, 100, 144, and 196 electrons. fluid becomes compressible and there is a deviation of the
electron density from its constant value in the bulk.
(V) po [Rout , €% . In our MC simulations, we consider a Laughlin-like state
N-2 der[g(r)—l], (199  [Eg. (1)] in which one electron is pinned at the positinn
0 (we considerzo=0), andN’'=N-1 electrons are free to
in conjunction with the normalization condition move (i.e., in a typical MC step
chutdZ g 1]1=-1 20 o 242
Po 0 r[g(r)_ ]__ ) ( ) \Irr’n(zo’zl’...ZN,):\IIm(Zl,...ZN,)Hl (Zj_zo)me_ho‘ /4|0_
=
which defines an upper cuttd®.,;. This approach produces (21)
good estimates for the thermodynamic correlation energy p&fhen an attempt is made to move electran (i
partlcle as long ag(r) is able to reach its asymptotic value — =1,...N’) from rO'd to ri®", the MC probability ratio is

[g(r) 1]. Reasonable results can be achieved even for sygjiven by
tems ofN=36 electrons.

(W' (rg,- - 1" vy |2 [W(ry,-or® o)
ll. AN ALTERNATIVE METHOD W (rg,- - -rOW. 'TN')|2 W (ry,--r%% . ry)2
In the standard MC approach one needs to calculate the m(inr M o] 19y 2)
expectation values of various quantities several times for dif- xe ' 0 e
ferentN in order to extract the thermodynamic estimate from (22)
the data by performing a {N fit (and taking the limit
1/JJN—0 , as shown, e.g., in Fig)2lt is highly desirable to Since the electrons are identical we need only consider

obtain estimates for the bulk regim@n thermodynamic the average correlation energy of one specified electron with
limit) without needing to perform the above analysis. In thethe rest of the electrons to compute the electron-electron in-
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TABLE II. Correlation energy per particle in the Laughlin state -0.39
for filling factors v=1/3 and 1/5, obtained via a Monte Carlo simu-
lation in a disk geometry using the method of pinning one electron -0.395 | .
at the center of the disk. Energies are in unitedf .

-0.4 f
N m=3 m=5
E
4 —-0.381 87 —-0.30157 % -0.405 | 1
16 —0.408 98 —0.327 22 N " o
36 —0.408 95 —0.326 37 041 F oY < 3
64 —0.409 09 —0.326 65
100 —0.409 55 —-0.327 38 -0.415 ¢ 1
144 —0.409 36 —0.327 32
196 —0.409 53 —0.327 34 042 0.05 o1 015 02
400 —0.409 54 —0.327 35 (@) 1/sqrt(N)
-0.32

teraction energy, therefore to this level of simplification the
electron-electron energy per particle is obtained by consider-  .p322 | i
ing only the interaction between the pinned electron and the
rest of N; other electrons contained within a inner disk of
radius R;<Ry where the electron density is approximately z 0324 1
equal to the bulk valuepy,. We found that a reasonable £
choice for the radius of inner disk that excludes the edge V' o326} o .
electrons iR;=0.73Ry, therefore this value was adopted in o
all the following simulations. e 7

To be consistent with the above procedure also the disk’s 0828 1 |
electron-background and background-background energy
should be calculated within the same degree of simplification -0.33 : : :
(see the Appendix It is therefore useful to first calculate the 0 0.05 0.1 0.15 0.2
one-body density functiofsee, e.g., Fig. 3in order to de-  ®) 1/sart(N)

termine an optimakR; for future use. IfR; is reasonably FIG. 5. Monte Carlo results in disk geometry for the Laughlin

large, we expect the correlation energy calculqted in this Waate aty=1/3 (top panel and 1/5(bottom panel The potential
to closely correspond to the desired correlation energy p

eéner er particle(V)/N, is plotted as a function of YN for
particle in the thermodynamic limiisee the Appendjx 9y bt b (V)IN, is p W

systems withN=236, 64, 100, 144, 196, and 400 electrons. Full
circles: correlation energies calculated by the standard mésex

~ N II) the full line is a least-square ffEqgs. (11) and (12)] used to
(V) 1/ €? N;+1e?
- 2 _ ! i (23) extrapolate to the thermodynamic limit. Empty circles: correlation
N 2\ =1 |Fi — Fo| 2m ly° energies calculated by the alternative method described in Sec. I,

the dashed line is a visual aid indicating the thermodynamic limit.

. . Note how the thermodynamic limit is approached faster in the sec-
As in the standard MC method case, our MC runs consist 0fnq method. Energies are in units efl,.

100000 discarded equalibration MCS’s followed by 20°
MCS’s for averaging purposes. ) i

In Table Il we show the correlation energy per particle for =196) and do a MC run that typically will generate bulk
finite systems oN electrons and Laughlin states=3 and  (thermodynamic limit results to an excellent degree of ac-

m=5 calculated by pinning an electronzt=0 as described curacy.

above[see EQ.(22)], and using Eq(23). The results are Pair distribution function
rounded in the last digit.
In Fig. 5 we show the potential energy per particle for Using the same ideas presented abgezp one electron

=1/3 and 1/5 computed from the alternative method antinned atz,=0) the pair distribution function is very easily
plotted as a function of /N. For the sake of comparison we calculated. The essence of the method consists in measuring
also plot the results from the standard mettigéc. I)). the one-particle densitgxcludingthe pinned electron which

It is striking to note how much faster the alternative is obviously the pair distribution function instead of consid-
method converges to the thermodynamic limit. Differently ering all the possible pairings between the electrons. As be-
from the standard MC approach, the alternative method th&bre, the advantage of this method, besides its simplicity,
we introduced does not need to have the data points leastesides in the fact that this electron, being the farthest from
square fitted to get the thermodynamic limit value. Onethe edge, is in an environment closest to that in a bulk sys-
merely needs to choose a big enouiyh(for instanceN  tem. Therefore one has to calculate
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1.4 - y y T plied to any system as far as the main concern is the calcu-
: lation of correlation effects such as the potential energy,
the pair distribution function, etc. For systems such as 2D
electronic one-component plasm8scomposite fermion
states described by the Jain’s unprojected wave funttion,
etc., that is all that matters. Obviously such alternative
method can always be used to calculate the potential energy
and related quantities of other more diverse systems, with
the the kinetic energy calculated in the standard way when-
ever applicable. By using this alternative method we ana-
lyzed the properties of the Laughlin states corresponding to
filing factor v=1/3 and 1/5 by performing Monte Carlo
simulations in disk geometry for systems with up b
=400 electrons. The correlation energy per particle and the
pair distribution function computed in this approach are
compared to corresponding bulk-regime values obtained via
a standard Monte Carlo simulation in disk geometry, where a
careful extrapolation in thermodynamic limit has been per-
formed. We find that such approach allows us to obtain ac-
curate bulk regiméthermodynamic limit values for various
guantities using a modest number of electr¢agen forN
=16 the error is less than 0.1%

1.2

08

g(r)

06

04 r

g(r)
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(b)

FIG. 6. Pair distribution function for the state=1/3 and 1/5
obtained after a Monte Carlo simulation in the disk geometry for Let us consider a system & interacting 2D electrons
systems oN=4, 16, 36, 64, 100, 144, and 196 electrons with onecoupled to the positive neutralizing background that fills a

APPENDIX

electron held fixed at the center of the disk. finite disk and guarantees overall charge neutrality. The ex-
pectation value of the electron-background potential energy
N (Ar) per particle can be written as
pog(r)_<QI(Ar)>! (24)
i i <Veb> Po e’
where N|(Ar) is the number of electrons found in the 2D e _J d2rlp(r1)j d2r . (AD
shell Q,(Ar) with distance ranger(,r;+Ar) from the N N oy Il

pinned electron at the center of the disk. In Fig. 6 we show
plots of the pair distribution function for the states=1/3  wherep(r,) is the one-body(single electron density func-
andv=1/5 for systems witiN=4, 16, 36, 64, 100, 144, and tion given by
196 electrons obtained with a choice Rf=0.75Ry and us-

ing a discretization intervahr =0.09,.

f d2r2- : -der|\If(rl~ : "'N)|2

IV. SUMMARY AND DISCUSSIONS p(ry)=N

2 2 2
. . rqo---dorg|W(ry---r
We implemented an alternative Monte Carlo method to jd 1 AW ()|

calculate the properties of Laughlin states of the fractional

quantum Hall effect in the thermodynamic limit while using f d?r,p(r)=N. (A2)

a very small number of electrons. The key point of this

method is the pinning of an electron in the center of the disk,

so that the potential energy and correlation functions calcu©One notes that when the one-body electron density becomes
lated through the pinned electron accurately represent thihiform, p(r;)~po and the system is sufficiently large so
bulk (thermodynamic limit even in a relatively small sys- that most of the electrons are to be found inside the finite

tem. The idea is quite general and, in principle, can be apdisk then—(V..,)/N~2(V,)/N, therefore we would have
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<\“/eb>+<\7bb> 1 <\‘/eb> tial energy per particle was obtained to a level of simplifica-
== (A3)  tion where only the interaction between the pinned electron

N 2 N and otheiN; electrons was considered, then the whole poten-

By making a preliminary calculation of the one-body densitytial energy per particle should be calculated in the same

function we could estimate the radiu’; <Ry of an inner  grounds too, namely, using as reference only the interaction

disk where the electrons have supposedly uniform densitgnergy of the pinned electron with the positive background:

therefore we could argue that all these electrons inside this

inner disk are in Fhe bulk regime. N; is t_he_numb_e_r of <\7> _<\7ee> <\A/eb>+<\7bb> 1< N g2 >

electrons within this reference circle of radiRsin addition —= = —

to the electron pinned at the center of the disk then a good N N N 2\

estimate for the potential energy per particle in the thermo- NG g2 o2
dynamic limit is obtained from the quantity 2<veb(r0 )= > E _ -5 d2r— .
R =1 01— ro| Oy r
w__t /s E ¢’ S
W CON+1 =0 i< —r; | (A5)
1 N ( o) As a result the correlation energy per particle in the ther-
+ N1 2 Vep(ri) N N+1' (A4)  modynamic limit can be written as in E23). Note that use
i

of relation —(Ven)/N=2(Vpo)/N to express (Vep)

where(Vy,)/(N;+1) is the background-background energy +(V,,))/N in Eq. (A3) in terms of(V,,)/N is inaccurate in
per particle of a positive charge that exactly neutralizes theiew of the approach adopted in our method therefore should
charge ofN; + 1 electrons. Since the electron-electron poten-be avoided.
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