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We investigate broken rotational symmetBRS) states for the fractional quantum Hall effé EQHE) at%
filling of the valence Landau levélLL). Recent Monte Carlo calculations by Musaelian and JgynPhys.:
Condens. MatteB, L105 (1996] suggest that Laughlin’s state becomes unstable to a BRS state for some
critical finite thickness value. We study in detail the properties of such state by performing a hypernetted-chain
calculation that gives results in the thermodynamic limit, complementing other methods which are limited to a
finite number of particles. Our results indicate that while Laughlin’s state is stable in the lowest LL, in higher
LLl's a BRS instability occurs, perhaps indicating the absence of FQHE at partial fillings of higher LL's.
Possible connections to the newly discovered liquid crystalline phases in higher LL's are also discussed.
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I. INTRODUCTION ing factor is “incorrect” for the newly discovered anisotropic
states, see below for further analysisy facilitating the sys-
Recently, a plethora of new phenomena has emerged itematic study the energy dependence of BRS states for di-
the transitional regions between different plateaus of the HaWerse physical parametefEL index, width of the 2DES,
conductancE*of Landau level§LL) with indexL=2. Near  etc). In addition, the possibility of BRS states for=13 is
half-filling of the valence LL, extreme anisotropy has beenintriguing by itself, since fora#0 highly damped low-
measured in the magnetotransport below temperatureanergy modes exisf, strongly modifying the dynamics and
around 100 mK3 accompanied by smooth nonlinearities. possibly suppressing the FQHE.
In addition, reentrant integer quantum Hall efféRIQHE) In Ref. 8 MJ investigated the possibility of BRS in a
regions with striking breakdown features and new phas&QHE system using Eq.l) and performing Monte Carlo
transitions(presumed to be quantum in origichave been (MC) simulations in a disc geometry. Their results suggest
seen neat filling of the valence LL® that the Laughlin fluid becomes unstable towards BRS states
The anisotropic behavior has been attributed to the formain quantum wells whose thickness exceeds a critical value
tion of a nematic phase of the two-dimensional electron sysdepending on the electronic density.
tem (2DES which undergo a nematic to isotropic transition  In this work we study the BRS state f@rfilling of the
at higher temperatures. Similarly, the reentrant regions are valence LL (i.e., v=M+3 with M intege) by using the
believed to be “bubble phases” similar to Wigner crystals, hypernetted-chaifHNC) method!!~® This method allows
but with several electrons per bubble, or possibly new elecus to compute physical quantities in the thermodynamic
tronic hexatic states. limit, without the limitations of using a finite number of par-
The motivation of our work is to study these numerousticles that hinder other techniques, where the extrapolation to
liquid crystalline phases present in partially filled LL's by the thermodynamic limit is not totally unambiguous. We find
means of many-body trial wavefunctions with broken rota-that, contrary to MJ’s results, the Laughlin state is stable in
tion symmetry(BRS), similar to those proposed by Musae- the LLL, whereas a BRS instability is possible in higher LL's
lian and Joyn{MJ) (Ref. 8 in the context of the fractional (perhaps indicating, analogously to the arguments of Ref. 17,
quantum Hall effectFQHE) (which are essentially generali- why there is no ordinary FQHE at, e.g.=%).
zations of Laughlin’s wave functidin In Sec. Il we present the basic theoretical calculations
N needed to determine the stability of an isotropic or BRS
state. A detailed description of the HNC formalism in the
q’a(zlv--vZN):il;[j (zZi—=z)(zi—zj—a) context of the BRS wave function is given in Sec. Ill. The
results for the BRS state in the LLL and their extension in
(1) higher Landau levels are discussed in Sec. IV. Finally, in Sec.

o _ _ V we discuss our results, and analyze how they can be ex-
wherez;=x; +ly; is the complex 2D coordinate ¢fth elec-  tended to more realistic filling factors.

tron anda is a complex numbefwe work in units of the
magnetic Iength1§=ﬁ/eB= 1). This wave function repre-
sents a homogeneous liquid state with filling facios 2,

N
X (Zi — Zj + a)e_(lm)zi:ilzi‘z,

Il. BASIC THEORY

lies entirely in the lowest LI(LLL ), and fora#0 has nem- In this work we propose to study the stability of different
atic order(for «=0 we recover Laughlin’s wave function, states by using trial wave-functions such as Hg. We are
which is obviously isotropic interested, therefore, to calculate the energy in each of

This wave function represents, therefore, a good startinghese states to find the optimum value for the sole free
point to consider nematic QH systerfeven though the fill-  parametera.
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We first consider the situation in the LLL, namely, the
state withv=3%. Since the BRS wave function is completely
in the LLL the kinetic energy per particle is quenched at the
lowest cyclotron energy

1 (W JKw,) 1

N (W v, 2" @

where w.=eB/m is the cyclotron frequency. The potential,
or correlation, energy per electron is

1 (¥, |V|¥,
Eazﬁwzgjdzrwr)[g(r)—l], 3

where V represents the electron-electron, electron-
background, and background-background interaction; and
g(r) is the(angle-dependenpair distribution function given

by

- N(N_l) fd2r3'”derl\I}a(rl'”rN)F
g(r)= pz fdzrl'"derllpa(rl"'rN)F,

(4)

wherer=r,—r,. The following sum rule can be easily
provenpfd?r[g(r)—1]=—1, and is a convenient check for

numerical procedures. For an ideal 2D sample the interaction 81.2
is a pure Coulomb potential(r)=e?/er, while in samples 10l
with finite thickness a reasonable choice is the Zhang Das

Sarma(ZDS) potentiat® V(r)=e?/e\r?+\?, where\ is of 0.8
the order of the sample thickness. Alternatively, the correla-  (¢) 06|
tion energy can be computed in reciprocal space: )

04}
-1 f 9 S arsa-1 5
«=3 | 2a)? (@)[S(q)—1], ©) o2t /
whereV(q) is the 2D Fourier transforfl (FT) of V(r) and 0 12 14
S(q) is the static structure factor
S(q)—1=pFTg(r)—1]. 6) FIG. 1. Pair distribution function for the BRS stateiat 3. ()

a=2, surface plot of(r, #) (the surface foy<0 was removed for

. ) clarity); (b) =2, dotted linesy(r, ) for various#e[0,27], full
While bothg(r) andS(q) are angle-dependefe.g., see line: angle averaged(r); (c) Angle averagedj(r) for «=0, 1, 2,

Figs. 1 and 2 because the interaction potential is Cer]tra"yand 3(0 and 1 are virtually identical Note the discrete nodes of

symmetric, the energye, depends only on the angle- 9(r.0) atr=a, 6=0,, 6,+ (6,=0 in this casg Calculations
averaged pair distribution function or static structure factorq e performed in the HNC/O approximation.

defined as

2 do Td6
an-[ o0, So- [ pis@. @ =3 [ oy vetansa-1. ©®

whereV¢(q)=V(q)[L,(%/2)]% L (2) are Laguerre polyno-
The determination of either the pair distribution function mjals, andS(q) is calculated in the LLL (=0). In what
or the structure factor is generally a complicated mtegrakonows we computeg(r) and S(q) in the LLL using the
problem that needs to be solved for each LL. However, itS isHNC method.
known that if transitions to other LL's are neglectéce., a
singleLL approximation, g(r) and S(q) at higher LL are Ill. THE HNC METHOD EOR THE BROKEN
simply related to those at the LLLLEO) by means of a ROTATIONAL SYMMETRY STATE
convolution or product respectively. We will apply this ap-
proximation (which, moreover, quenches the kinetic energy  Integral equation techniques such as the HNC thidfy
in higher LL's as well. It is then, sufficient to compute these allow an accurate evaluation of the pair distribution function
distribution functions once in the LLL and then the correla-and related quantities associated with a Jastrow wave func-
tion energy per electron is given by tion. In particular they are extremely useful for calculations
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whereu(z) =In|Z?+In|z— a>*+In|z+ o/, can be viewed as a
symmetric Jastrow wave function with pair correlations and
single-particle terms. Therefore it is possible to apply the
Bose HNC formalisnf’ In order to compute Eq(4) one
needs some small parameter in which to expand perturba-
tively (and resum a subset of diagramBor standard sys-
tems such as Bose liquitHe, the pair correlation is short-
range and heals to 1 for large distances, therefore the
function expu(r;;)]—1 provides a possible expansion param-
eter[note that in order to apply the Bose HNC expansion, the

. correlation (pseudg potential has to satisfy the conditions
T u(ri;—0)——o andu(r;j— +°)—0]. In the case of the
L BRS wave function, the correlatiofpseud® potential is
logarithmically long-range, however it is possible to extend
the method formally by splitting all quantities to compute
into a short-and long-range partsee below. It can be
shown that the pair distribution function can be expressed as
a series of cluster terms associated with linked diagrams and
will be given from the following HNC equations

4 X(ryp) =N B2l —N(r ) -1, (10)

N(rlz):Pf d3r3X(rig)  [X(rz) +N(rs)], (11

g(ri)=1+X(r19) +N(ryp). (12

The quantitiesX(r,,) and N(r,,) represent the sum of the
so-called composite and nodal diagrams, respectively, and
E(rqy) is the sum of elementary diagrams. The generation of
diagrams contributing ta(r;,) must go through a self-
consistent procedure. As a first approximati@amd a good
one we take the HNC/O approximation where the “0” de-

4 notes the neglect of elementary diagrams. The summation of
q the nodal diagram(r,,) is easily performed in Fourier
space.

FIG. 2. Static structure factor for the BRS statevats. (a) o p|n order to handle the 2D logarithmipseudd potential
=2, surface plot o8(r, 0) (the surface fon, <0 was removed for  (r,.) the standard procedure is to split it into short- and
clarity); (b) a=2, dotte_d lines:$(q, 6,) for various 0qe[0,27], long-range parts
full line: angle average&(q); (c) angle average8(q) for «=0, 1,
2, and 3(0 and 1 are virtually identichl Note the presence of peaks u(rip)=ug(r)+uy(ryp), (13

in S(q) consistent with a nematic structure. Calculations were per- . . .
formed in the HNC/0 approximation. with the nodal functionN(r,) and the composite function

X(rqip) similarly split:
that are performed in the thermodynamic limit. They have

been widely used in the study of classféaind quantum N(r12) =Ng(r12) —u(rqo), (14
fluids 5> However the HNC method for the BRS wave
function is a slightly different from that for the Laughlin X(rq2)=Xg(r12) +U(rqo). (15

wave function, since correlations and related quantities de- . e : : e
pend on both distance and relative angle between a pair grhis splitting is done subject to the following conditions:

particles. =
The main quantity to be calculated in a HNC expansion is U(r12) +N(112) =Us(r1d) + Ne(r12), (16
the pair distribution functiomy(r) [Eq. (4)], or equivalently N(T 1)+ X(r 1) = Ng( 1) + Xo(T 1) (17)
S S "

the structure facto(q) [Eq.(6)]. These may then be used in
conjunction with Eqs(3), (5), or (8) to determine the energy Given the particular form ofpseud¢ potential for the BRS
per electron for arbitrary values of the BRS parameter  wave function, we choose to decompaege;,) into its short-

the 2D width\. range functiongoing to —<o for small distances and healing
Although the BRS wave function is a Fermi wave func- to O for large distancesand its long-range counterpart in the
tion, its modulus square, following manner:
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Ug(r1p) = —2Ko(Qri2) —2Ko(Qlr1,— af) addition, we mention the following generic properties more
or less valid for any of ther's we have considered the fol-
—2Ko(Q[r 1ot o)), (18 lowing.
(1) For a# 0 there is at least one pair distribution function
Ui(rip)=+2[In(r15)+Ke(Qrqo) ] that has an additional zefo addition to the zero at=0) at
interparticle distance =« and angled=46,,6,+ = (0,=0
+2[|n(|r12_a|)+Ko(Qlle_d|)] in this Cas@_
+2[In(|r1o+ @) + Ko(Qlript+ al)], (19 (2) For a#0 there are special interparticle distances,

(besides the zero at the origimhere all pair distribution
where Ky(x) is the modified Bessel function, ar@ is a  functions cross, irrespective of their anglelependence.

cut-off parameter of order 1. We recall that the 2D (Ref. (3) Extremely interesting is the behavior of the angle-
19) of u(ryy) is averaged pair distribution functiog(r) as a function ofa.
One notes that the major peakg(fr) simply shifts to larger
47Q? _ _ distanceqwithout any sizeable change in its heighs « is
l~J|(Q)=—W(1+e'q'aﬂLe*'q"')- (20 increased. For smaller distancg$r) starts to develop a

shoulder that is quite visible fax=3 contrary to what seen

The final set of equations is solved by initially setting 'th(ielg' k?agogezslgvh;glzggeerm:3.2' where the shoulder

NS(,rlz)_o in Eq. (10), then OEtameXS(Q) _~FT[XS(r1,2)] (4) For small¥, g(r) has almost no angular dependence,
which can be used to compur(q) =Xs(q) +T(q). USINg 54 for o0, g(r~0,)=C,r2 for 0=<r=<0.5, whereC,

the convolution theorem we findN(q)=pX(q)*/[1  ~0.026225 whena=0g(r~0)x=r® as expected. These re-
—pX(0)] and easily obtaiNy(q)=N(q)+T,(q). The last sults derive immediately from the onefold vanishing of the
step is to perform an inverse 2D FT dh(q) to obtain the BRS wave function when t\_/vo_electrons come close, as op-
new Ny(r1,). This procedure is repeated until a desired acP0sed to the threefold vanishing of Laughlin's wave func-
curacy is reached. After convergence the pair distributior{iOn since for small distances only two-body correlations are

function is given by important. The absence of angular dependencg(org) for
smallr can be easily understood by noting that in the small-
— limit: g(r~0,0)xexquyr~=0,0)], where ug(r,6) is given
9112 =1+ Xs(Faz) + N(112). ) from Eq.(18) and does not have any angular dependence. By
Simultaneously, the static structure factor is given by recalling that lim_oKo(Qr)=—In(Qr/2)—vy, where y
=0.5772-- is the Euler’s constant one can easily understand
S(q) =1+ p[X(q)+Ny(a)]. (22) why g(r,#) has a quadratic dependence om@and not any

angular dependence for smaknd values ofr# 0. Although
The computation of such functions allows us to find the in-such quadratic dependence at shastalso characteristic for
teraction energy and other related quantities. a Wigner crystal state at such filling factbwve note that the
BRS state does not represent a crystalline state and the over-
all pair distribution function of the BRS state is strikingly
different from the pair distribution function of the Wigner

In the present work we applied the HNC theory to studycrystal state.

the BRS state at filling of an arbitrary LL(in the single-LL In Fig. 2 we plot the static structure fact®(q) for «
approximation. For the sake of simplicity we neglected the =2 (top center paneJsand the angle-averaged static struc-
elementary diagramé.e., the so-called HNC/0 approxima- ture factorS(q) corresponding taxr=0, 1, 2 and 3bottom
tion). This allows us to determine to a reasonable accuracpane). The most important feature is the emergence of peaks
the pair distribution function and the static structure factorin S(q) characteristic of a nematic structure. Broadly speak-
In order to compare thee=0 (Laughlin state with thea ing, the major peak of thg(q) shifts to smallerg and its

#0 (BRS state we studied the properties of the BRS wavengight raises whew is increased, with no significant change
function for severaky’s with magnitudes between 0 to($ in the smallg behavior.

generala=|a|e'’, without loosing generality we consid-
ered onlyd,=0).

IV. RESULTS AND DISCUSSIONS

B. Energy of BRS states

One can compute the correlation energy per particle either
directly from Eqs.(3), (5), or (8) to determine the energy per

In Fig. 1 we plot the pair distribution functiog(r) for  electron for arbitrary values of the BRS parametgthe 2D
a=2 (top, center panelsand the angle-averaged pair distri- system width\, and Landau level indek. The following
bution functiong(r) corresponding tav=0, 1, 2, and 3bot-  simplified formula can be used in view of E):
tom panel. It is interesting to note the splitting of the triple 1 RN
node at the origin, the noticeable angle-dependenag 9f Loyve = [T qnex T rea
and the change in the smallbehavior of g(r) which EaM) 41 fo dqu(q,)\)[L,_ 2 H [S()—1],
switches fromecr® (for @=0) to «r? asa is increased. In (23

A. Pair distribution function and structure factor
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where V(q,\) = (2me? eq)exp(—\q) is the 2D FT of the Similar errors(around 1% will be present fora#0 as well.
ZDS interaction potentidf’ In addition to allowing straight- While an error of this magnitude seems to be of the same
forward calculations to be extended to any LL, E2@) per-  order as, or bigger than, the energy differences we are inter-
mits a higher numerical accuracy on the calculationEgf  ested in, we remark that these are notorrelated errorsut

since S(q) saturates exponentially to 1 for relatively small Systematic deviatiorgue to the nature of the approximations
values ofq as compared tg(r). used, and energglifferencesare considerably more precise.

Figure 3 shows the energy difference between BRS statéRreliminary results using Monte Carlo simulatiéhsor a
with =1, 2, and 3, and the isotropic state with=-0. Our  handful of cases indicate that energy differences are, indeed,
findings indicate that in the LLLL(=0) the Laughlin state is significant.
stable for any, since alla#0 states have higher energies
(top pane), contrary to prior resulfsthat the BRS state for
a=1 has a lower energy than the Laughlin state if one con- V. CONCLUSIONS, EXTENSIONS AND FURTHER

siders the ZDS potential, with>A .=4.1+1.5. DEVELOPMENTS
The situation changes drammatically in higher LLIs ( ] .
>1). Forsmall\ BRS states haveower energies and the [N conclusion, we applied the HNC theory to study pos-

incompressib|e Laugh"n_”ke state is unstat(@e lower sible BRS states in é—fl”Ed LL. We find that the iSOtrOpiC
panels of Fig. ® The presence of this instability towards a Laughlin state is stable in the LLL for realistic interaction
BRS state may be related to the absence of FQHE states pptentials. In higher LL's, instabilities towards a BRS state
higher LLs, since fora#0 highly damped low-energy are possible. Since BRS states are gapfetbis may be a
modes exist in the resulting nematic systéhit is worth  simple explanation why no FQHE was observed ¥dilled
noting that forA <1 the highest investigatadhas the lowest higher LL's. One caveat is that the magnitude of the energy
energy. In this regime, we are therefore unable to determindifferences obtained is comparable to the absolute accuracy
the optimal statéeven within this familty of trial wave func- in the determination of individual energies by the HNC
tiong). This BRS instability may be indicative of a transition method. Although we believe that energlfferencesare
towards a completely different state.g., as in Ref. 1)7 yielded more precisely than the energies themselves, these
At this point it is important to comment on how precise results need confirmation by alternativalbeit more time
our determination of these energy differences is. The readeronsuming methods. Monte Carlo simulations with large
should note that the HNC/O approximation is essentially anumber of electrons are currently being perforrfed.
variational method that always gives an energy that consti- While these results are by themselves compelling, the
tutes an upper bound to the exact ground state eféfggr  connection to recent observations of liquid cristalline phases
example: for the Laughlin state with=3 andA=0, HNC/0 in half- and quarter-filled LL's requires more sophisticated
gives an adimensional correlation energy-00.405, while  methods. One possibility is to generalize MJ's approach to
the “exact” value (determined by Monte Carfd) is —0.410.  composite fermioCF) states’® e.g.,
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_ N observed neat filling, similar generalizations are possible.
VY zy,...20) =PIl (zj—z+a)(z;—z—a) The presence of the Slater determinant in the firaladdi-
<k tion to the Jastrow factorsmplies the need to use the con-
siderably more complex Fermi HNE:?* Calculations are

x e~ (131121 Def ¢y (1))] \
kUi Jk<kg under way for trial states of these fofh.

(24)
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