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Hypernetted-chain study of broken rotational symmetry states for thenÄ 1
3 fractional quantum

Hall effect and other fractionally filled Landau levels

Orion Ciftja and C. Wexler
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211

~Received 6 August 2001; published 28 December 2001!

We investigate broken rotational symmetry~BRS! states for the fractional quantum Hall effect~FQHE! at 1
3

filling of the valence Landau level~LL !. Recent Monte Carlo calculations by Musaelian and Joynt@J. Phys.:
Condens. Matter8, L105 ~1996!# suggest that Laughlin’s state becomes unstable to a BRS state for some
critical finite thickness value. We study in detail the properties of such state by performing a hypernetted-chain
calculation that gives results in the thermodynamic limit, complementing other methods which are limited to a
finite number of particles. Our results indicate that while Laughlin’s state is stable in the lowest LL, in higher
LL’s a BRS instability occurs, perhaps indicating the absence of FQHE at partial fillings of higher LL’s.
Possible connections to the newly discovered liquid crystalline phases in higher LL’s are also discussed.

DOI: 10.1103/PhysRevB.65.045306 PACS number~s!: 73.43.Lp, 73.43.Nq, 64.70.Md
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I. INTRODUCTION

Recently, a plethora of new phenomena has emerge
the transitional regions between different plateaus of the H
conductance1–4 of Landau levels~LL ! with indexL>2. Near
half-filling of the valence LL, extreme anisotropy has be
measured in the magnetotransport below temperat
around 100 mK,1–3 accompanied by smooth nonlinearities1

In addition, reentrant integer quantum Hall effect~RIQHE!
regions with striking breakdown features and new ph
transitions~presumed to be quantum in origin5! have been
seen near14 filling of the valence LL.6

The anisotropic behavior has been attributed to the for
tion of a nematic phase of the two-dimensional electron s
tem ~2DES! which undergo a nematic to isotropic transitio
at higher temperatures.5,7 Similarly, the reentrant regions ar
believed to be ‘‘bubble phases’’ similar to Wigner crysta
but with several electrons per bubble, or possibly new e
tronic hexatic states.5

The motivation of our work is to study these numero
liquid crystalline phases present in partially filled LL’s b
means of many-body trial wavefunctions with broken ro
tion symmetry~BRS!, similar to those proposed by Musa
lian and Joynt~MJ! ~Ref. 8! in the context of the fractiona
quantum Hall effect~FQHE! ~which are essentially general
zations of Laughlin’s wave function9!:

Ca~z1 ,...,zN!5)
i . j

N

~zi2zj !~zi2zj2a!

3~zi2zj1a!e2~1/4!( i 5 i
N uzi u

2
, ~1!

wherezj5xj1 iy j is the complex 2D coordinate ofj -th elec-
tron anda is a complex number~we work in units of the
magnetic length:l 0

25\/eB51!. This wave function repre-
sents a homogeneous liquid state with filling factorn5 1

3 ,
lies entirely in the lowest LL~LLL !, and foraÞ0 has nem-
atic order~for a50 we recover Laughlin’s wave function
which is obviously isotropic!.

This wave function represents, therefore, a good star
point to consider nematic QH systems~even though the fill-
0163-1829/2001/65~4!/045306~6!/$20.00 65 0453
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ing factor is ‘‘incorrect’’ for the newly discovered anisotrop
states, see below for further analysis!, by facilitating the sys-
tematic study the energy dependence of BRS states fo
verse physical parameters~LL index, width of the 2DES,
etc.!. In addition, the possibility of BRS states forn5 1

3 is
intriguing by itself, since foraÞ0 highly damped low-
energy modes exist,10 strongly modifying the dynamics an
possibly suppressing the FQHE.

In Ref. 8 MJ investigated the possibility of BRS in
FQHE system using Eq.~1! and performing Monte Carlo
~MC! simulations in a disc geometry. Their results sugg
that the Laughlin fluid becomes unstable towards BRS st
in quantum wells whose thickness exceeds a critical va
depending on the electronic density.

In this work we study the BRS state for1
3 filling of the

valence LL ~i.e., n5M1 1
3 with M integer! by using the

hypernetted-chain~HNC! method.11–16 This method allows
us to compute physical quantities in the thermodynam
limit, without the limitations of using a finite number of pa
ticles that hinder other techniques, where the extrapolatio
the thermodynamic limit is not totally unambiguous. We fin
that, contrary to MJ’s results, the Laughlin state is stable
the LLL, whereas a BRS instability is possible in higher LL
~perhaps indicating, analogously to the arguments of Ref.
why there is no ordinary FQHE at, e.g.,n5 7

3 !.
In Sec. II we present the basic theoretical calculatio

needed to determine the stability of an isotropic or BR
state. A detailed description of the HNC formalism in th
context of the BRS wave function is given in Sec. III. Th
results for the BRS state in the LLL and their extension
higher Landau levels are discussed in Sec. IV. Finally, in S
V we discuss our results, and analyze how they can be
tended to more realistic filling factors.

II. BASIC THEORY

In this work we propose to study the stability of differe
states by using trial wave-functions such as Eq.~1!. We are
interested, therefore, to calculate the energy in each
these states to find the optimum value for the sole f
parametera.
©2001 The American Physical Society06-1
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We first consider the situation in the LLL, namely, th
state withn5 1

3 . Since the BRS wave function is complete
in the LLL the kinetic energy per particle is quenched at
lowest cyclotron energy

1

N

^CauK̂uCa&

^CauCa&
5

1

2
\vc , ~2!

wherevc5eB/m is the cyclotron frequency. The potentia
or correlation, energy per electron is

Ea5
1

N

^CauV̂uCa&

^CauCa&
5

r

2 E d2rV~r !@g~r !21#, ~3!

where V represents the electron-electron, electro
background, and background-background interaction;
g(r ) is the~angle-dependent! pair distribution function given
by

g~r !5
N~N21!

r2

*d2r 3¯d2r NuCa~r1¯rN!u2

*d2r 1¯d2r NuCa~r1¯rN!u2 , ~4!

where r5r22r1 . The following sum rule can be easily
provenr*d2r @g(r )21#521, and is a convenient check fo
numerical procedures. For an ideal 2D sample the interac
is a pure Coulomb potentialV(r ).e2/er , while in samples
with finite thickness a reasonable choice is the Zhang
Sarma~ZDS! potential18 V(r )5e2/eAr 21l2, wherel is of
the order of the sample thickness. Alternatively, the corre
tion energy can be computed in reciprocal space:

Ea5
1

2 E d2q

~2p!2 Ṽ~q!@S~q!21#, ~5!

whereṼ(q) is the 2D Fourier transform19 ~FT! of V(r ) and
S(q) is the static structure factor

S~q!215rFT@g~r !21#. ~6!

While bothg(r ) andS(q) are angle-dependent~e.g., see
Figs. 1 and 2!, because the interaction potential is centra
symmetric, the energyEa depends only on the angle
averaged pair distribution function or static structure fac
defined as

ḡ~r !5E
0

2p du

2p
g~r !, S̄~q!5E

0

2p duq

2p
S~q!. ~7!

The determination of either the pair distribution functio
or the structure factor is generally a complicated integ
problem that needs to be solved for each LL. However, it
known that if transitions to other LL’s are neglected~i.e., a
single-LL approximation!, g(r ) and S(q) at higher LL are
simply related to those at the LLL (L50) by means of a
convolution or product respectively. We will apply this a
proximation~which, moreover, quenches the kinetic ener
in higher LL’s as well!. It is then, sufficient to compute thes
distribution functions once in the LLL and then the corre
tion energy per electron is given by
04530
e

-
d

n

s

-

r

l
is

-

Ea
L5

1

2 E d2q

~2p!2 Ṽeff~q!@S~q!21#, ~8!

whereṼeff(q)[Ṽ(q)@LL(q
2/2)#2. LL(z) are Laguerre polyno-

mials, andS(q) is calculated in the LLL (L50). In what
follows we computeg(r ) and S(q) in the LLL using the
HNC method.

III. THE HNC METHOD FOR THE BROKEN
ROTATIONAL SYMMETRY STATE

Integral equation techniques such as the HNC theory11,13

allow an accurate evaluation of the pair distribution functi
and related quantities associated with a Jastrow wave fu
tion. In particular they are extremely useful for calculatio

FIG. 1. Pair distribution function for the BRS state atn5
1
3 . ~a!

a52, surface plot ofg(r ,u) ~the surface fory,0 was removed for
clarity!; ~b! a52, dotted lines:g(r ,u) for variousuP@0,2p#, full
line: angle averagedḡ(r ); ~c! Angle averagedḡ(r ) for a50, 1, 2,
and 3~0 and 1 are virtually identical!. Note the discrete nodes o
g(r ,u) at r 5a, u5ua , ua1p ~ua50 in this case!. Calculations
were performed in the HNC/0 approximation.
6-2
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that are performed in the thermodynamic limit. They ha
been widely used in the study of classical14 and quantum
fluids.16,15 However the HNC method for the BRS wav
function is a slightly different from that for the Laughli
wave function, since correlations and related quantities
pend on both distance and relative angle between a pa
particles.

The main quantity to be calculated in a HNC expansion
the pair distribution functiong(r ) @Eq. ~4!#, or equivalently
the structure factorS(q) @Eq. ~6!#. These may then be used
conjunction with Eqs.~3!, ~5!, or ~8! to determine the energ
per electron for arbitrary values of the BRS parametera or
the 2D widthl.

Although the BRS wave function is a Fermi wave fun
tion, its modulus square,

FIG. 2. Static structure factor for the BRS state atn5
1
3 . ~a! a

52, surface plot ofS(r ,u) ~the surface forqy,0 was removed for
clarity!; ~b! a52, dotted lines:S(q,uq) for various uqP@0,2p#,

full line: angle averagedS̄(q); ~c! angle averagedS̄(q) for a50, 1,
2, and 3~0 and 1 are virtually identical!. Note the presence of peak
in S(q) consistent with a nematic structure. Calculations were p
formed in the HNC/0 approximation.
04530
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uCa~z1 ,...,zN!u25e( i . j
N u~zi2zj !e2( i 51

N
~ uzi u

2/2!, ~9!

whereu(z)5 lnuzu21lnuz2au21lnuz1au2, can be viewed as a
symmetric Jastrow wave function with pair correlations a
single-particle terms. Therefore it is possible to apply t
Bose HNC formalism.20 In order to compute Eq.~4! one
needs some small parameter in which to expand pertu
tively ~and resum a subset of diagrams!. For standard sys-
tems such as Bose liquid4He, the pair correlation is short
range and heals to 1 for large distances, therefore
function exp@u(rij)#21 provides a possible expansion para
eter@note that in order to apply the Bose HNC expansion,
correlation ~pseudo! potential has to satisfy the condition
u(r i j →0)→2` and u(r i j →1`)→0]. In the case of the
BRS wave function, the correlation~pseudo! potential is
logarithmically long-range, however it is possible to exte
the method formally by splitting all quantities to compu
into a short-and long-range parts~see below!. It can be
shown that the pair distribution function can be expressed
a series of cluster terms associated with linked diagrams
will be given from the following HNC equations

X~r12!5eu~r12!1N~r12!1E~r12!2N~r12!21, ~10!

N~r12!5rE d3r 3X~r13!•@X~r32!1N~r32!#, ~11!

g~r12!511X~r12!1N~r12!. ~12!

The quantitiesX(r12) and N(r12) represent the sum of th
so-called composite and nodal diagrams, respectively,
E(r12) is the sum of elementary diagrams. The generation
diagrams contributing tog(r12) must go through a self-
consistent procedure. As a first approximation~and a good
one! we take the HNC/0 approximation where the ‘‘0’’ de
notes the neglect of elementary diagrams. The summatio
the nodal diagramsN(r12) is easily performed in Fourie
space.

In order to handle the 2D logarithmic~pseudo! potential
u(r12), the standard procedure is to split it into short- a
long-range parts

u~r12!5us~r12!1ul~r12!, ~13!

with the nodal functionN(r12) and the composite function
X(r12) similarly split:

N~r12!5Ns~r12!2ul~r12!, ~14!

X~r12!5Xs~r12!1ul~r12!. ~15!

This splitting is done subject to the following conditions:

u~r12!1N~r12!5us~r12!1Ns~r12!, ~16!

N~r12!1X~r12!5Ns~r12!1Xs~r12!. ~17!

Given the particular form of~pseudo! potential for the BRS
wave function, we choose to decomposeu(r12) into its short-
range function~going to2` for small distances and healin
to 0 for large distances! and its long-range counterpart in th
following manner:

r-
6-3
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us~r12!522K0~Qr12!22K0~Qur122au!

22K0~Qur121au!, ~18!

ul~r12!512@ ln~r 12!1K0~Qr12!#

12@ ln~ ur122au!1K0~Qur122au!#

12 @ ln~ ur121au!1K0~Qur121au!#, ~19!

where K0(x) is the modified Bessel function, andQ is a
cut-off parameter of order 1. We recall that the 2D FT~Ref.
19! of ul(r12) is

ũl~q!52
4pQ2

q2~q21Q2!
~11eiq•a1e2 iq•a!. ~20!

The final set of equations is solved by initially settin
Ns(r12)50 in Eq. ~10!, then obtainingXs(q)5FT@Xs(r12)#

which can be used to computeX̃(q)5X̃s(q)1ũl(q). Using
the convolution theorem we findÑ(q)5rX̃(q)2/@1
2rX̃(q)# and easily obtainÑs(q)5Ñ(q)1ũl(q). The last
step is to perform an inverse 2D FT onÑs(q) to obtain the
new Ns(r12). This procedure is repeated until a desired
curacy is reached. After convergence the pair distribut
function is given by

g~r12!511Xs~r12!1Ns~r12!. ~21!

Simultaneously, the static structure factor is given by

S~q!511r@X̃s~q!1Ñs~q!#. ~22!

The computation of such functions allows us to find the
teraction energy and other related quantities.

IV. RESULTS AND DISCUSSIONS

In the present work we applied the HNC theory to stu
the BRS state at filling13 of an arbitrary LL~in the single-LL
approximation!. For the sake of simplicity we neglected th
elementary diagrams~i.e., the so-called HNC/0 approxima
tion!. This allows us to determine to a reasonable accur
the pair distribution function and the static structure fact
In order to compare thea50 ~Laughlin! state with thea
Þ0 ~BRS! state we studied the properties of the BRS wa
function for severala’s with magnitudes between 0 to 3~in
generala5uaueiua, without loosing generality we consid
ered onlyua50!.

A. Pair distribution function and structure factor

In Fig. 1 we plot the pair distribution functiong(r ) for
a52 ~top, center panels!, and the angle-averaged pair dist
bution functionḡ(r ) corresponding toa50, 1, 2, and 3~bot-
tom panel!. It is interesting to note the splitting of the tripl
node at the origin, the noticeable angle-dependence ofg(r ),
and the change in the small-r behavior of ḡ(r ) which
switches from}r 6 ~for a50! to }r 2 as a is increased. In
04530
-
n
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addition, we mention the following generic properties mo
or less valid for any of thea’s we have considered the fol
lowing.

~1! ForaÞ0 there is at least one pair distribution functio
that has an additional zero~in addition to the zero atr 50! at
interparticle distancer 5a and angleu5ua ,ua1p ~ua50
in this case!.

~2! For aÞ0 there are special interparticle distancesr
~besides the zero at the origin! where all pair distribution
functions cross, irrespective of their angleu dependence.

~3! Extremely interesting is the behavior of the ang
averaged pair distribution functionḡ(r ) as a function ofa.
One notes that the major peak ofḡ(r ) simply shifts to larger
distances~without any sizeable change in its height! asa is
increased. For smaller distancesḡ(r ) starts to develop a
shoulder that is quite visible fora53 contrary to what seen
in Ref. 8 for a slightly largera53.2, where the shoulde
should had been even larger.

~4! For small-r, g(r ) has almost no angular dependenc
and for aÞ0, g(r'0,u).Car 2 for 0<r<0.5, whereCa
.0.026a2.5; whena50,g(r'0)}r 6 as expected. These re
sults derive immediately from the onefold vanishing of t
BRS wave function when two electrons come close, as
posed to the threefold vanishing of Laughlin’s wave fun
tion, since for small distances only two-body correlations
important. The absence of angular dependence ong(r ,u) for
small r can be easily understood by noting that in the smar
limit: g(r'0,u)}exp@us(r'0,u)#, where us(r ,u) is given
from Eq.~18! and does not have any angular dependence
recalling that limr→0 K0(Qr)52 ln(Qr/2)2g, where g
50.5772̄ is the Euler’s constant one can easily understa
why g(r ,u) has a quadratic dependence onr and not any
angular dependence for smallr and values ofaÞ0. Although
such quadratic dependence at shortr is also characteristic for
a Wigner crystal state at such filling factor12 we note that the
BRS state does not represent a crystalline state and the o
all pair distribution function of the BRS state is striking
different from the pair distribution function of the Wigne
crystal state.

In Fig. 2 we plot the static structure factorS(q) for a
52 ~top center panels!, and the angle-averaged static stru
ture factorS̄(q) corresponding toa50, 1, 2 and 3~bottom
panel!. The most important feature is the emergence of pe
in S(q) characteristic of a nematic structure. Broadly spe
ing, the major peak of theS̄(q) shifts to smallerq and its
height raises whena is increased, with no significant chang
in the small-q behavior.

B. Energy of BRS states

One can compute the correlation energy per particle ei
directly from Eqs.~3!, ~5!, or ~8! to determine the energy pe
electron for arbitrary values of the BRS parametera, the 2D
system widthl, and Landau level indexL. The following
simplified formula can be used in view of Eq.~7!:

Ea
L~l!5

1

4p E
0

`

dqqṼ~q,l!FLLS q2

2 D G2

@S̄~q!21#,

~23!
6-4
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FIG. 3. Energy per particle in
BRS states witha51, 2, and 3
relative to the isotropic (a50)
stateDEa(l)5Ea(l)2E0(l) for
various Landau levelsL as func-
tions of the short distance cutoffl
@Eq. ~23!#. Energies are in units of
e2/(e l 0). Note that in the LLL
(L50) BRS states are alway
higher in energy, whereas in
higher LL’s (L>1) there are
ranges ofl for which BRS states
are favorable.
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where Ṽ(q,l)5(2pe2/eq)exp(2lq) is the 2D FT of the
ZDS interaction potential.18 In addition to allowing straight-
forward calculations to be extended to any LL, Eq.~23! per-
mits a higher numerical accuracy on the calculation ofEa

since S̄(q) saturates exponentially to 1 for relatively sma
values ofq as compared toḡ(r ).

Figure 3 shows the energy difference between BRS st
with a51, 2, and 3, and the isotropic state witha50. Our
findings indicate that in the LLL (L50) the Laughlin state is
stable for anyl, since allaÞ0 states have higher energie
~top panel!, contrary to prior results8 that the BRS state fo
a51 has a lower energy than the Laughlin state if one c
siders the ZDS potential, withl.lc54.161.5.

The situation changes drammatically in higher LL’s (L
>1). For small l BRS states havelower energies and the
incompressible Laughlin-like state is unstable~see lower
panels of Fig. 3!. The presence of this instability towards
BRS state may be related to the absence of FQHE state
higher LL’s, since for aÞ0 highly damped low-energy
modes exist in the resulting nematic system.10 It is worth
noting that forl&1 the highest investigateda has the lowest
energy. In this regime, we are therefore unable to determ
the optimal state~even within this familty of trial wave func-
tions!. This BRS instability may be indicative of a transitio
towards a completely different state~e.g., as in Ref. 17!.

At this point it is important to comment on how precis
our determination of these energy differences is. The rea
should note that the HNC/0 approximation is essentiall
variational method that always gives an energy that con
tutes an upper bound to the exact ground state energy.11 For
example: for the Laughlin state withn5 1

3 andl50, HNC/0
gives an adimensional correlation energy of20.405, while
the ‘‘exact’’ value~determined by Monte Carlo21! is 20.410.
04530
es
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in

e
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a
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Similar errors~around 1%! will be present foraÞ0 as well.
While an error of this magnitude seems to be of the sa
order as, or bigger than, the energy differences we are in
ested in, we remark that these are notuncorrelated errorsbut
systematic deviationsdue to the nature of the approximation
used, and energydifferencesare considerably more precise
Preliminary results using Monte Carlo simulations22 for a
handful of cases indicate that energy differences are, ind
significant.

V. CONCLUSIONS, EXTENSIONS AND FURTHER
DEVELOPMENTS

In conclusion, we applied the HNC theory to study po
sible BRS states in a13-filled LL. We find that the isotropic
Laughlin state is stable in the LLL for realistic interactio
potentials. In higher LL’s, instabilities towards a BRS sta
are possible. Since BRS states are gapless10 this may be a
simple explanation why no FQHE was observed for1

3-filled
higher LL’s. One caveat is that the magnitude of the ene
differences obtained is comparable to the absolute accu
in the determination of individual energies by the HN
method. Although we believe that energydifferencesare
yielded more precisely than the energies themselves, th
results need confirmation by alternative~albeit more time
consuming! methods. Monte Carlo simulations with larg
number of electrons are currently being performed.22

While these results are by themselves compelling,
connection to recent observations of liquid cristalline pha
in half- and quarter-filled LL’s requires more sophisticat
methods. One possibility is to generalize MJ’s approach
composite fermion~CF! states,23 e.g.,
6-5
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Ca
1/2~z1 ,...,zN!5 P̂L)

j ,k

N

~zj2zk1a!~zj2zk2a!

3e2~1/4!( i 51
N uzi u

2
Det@fk~r i !#k,kF

,

~24!

where fk(r i) are plane waves of CF’s, filled fork,kF
5(4pr)1/2, and PL projects onto theLth LL. This wave
function is an obvious starting point to study thenematic
quantum Hall liquid crystals at half filling. For the RIQH
.

-

D

.

.

ta

04530
observed near14 filling, similar generalizations are possible
The presence of the Slater determinant in the trial~in addi-
tion to the Jastrow factors! implies the need to use the con
siderably more complex Fermi HNC.11,24 Calculations are
under way for trial states of these form.25
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