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Equation of state and spin-correlation functions of ultrasmall classical Heisenberg magnets
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We obtain analytical expressions for the total magnetic moment and the static spin-correlation functions of
the classical Heisenberg model for ultrasmall systems of spins~unit vectors!, that interact via isotropic,
nearest-neighbor~n-n! exchange and that are subject to a uniform dc magnetic field of arbitrary strength.
Explicit results are presented for the dimer, equilateral triangle, square, and regular tetrahedron arrays of spins.
These systems provide a useful theoretical framework for calculating the magnetic properties of several
recently synthesized molecular magnets. The tetrahedron as well as the equilateral triangle systems, each
considered for n-n antiferromagnetic exchange, are of particular interest since they exhibit frustrated spin
ordering for sufficiently low temperatures and weak magnetic fields.@S0163-1829~99!01538-6#
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I. INTRODUCTION

In recent years there has been a surge of interest in
magnetic properties of synthesized molecular clusters1,2 con-
taining relatively small numbers of paramagnetic ions. W
the ability to control the placement of magnetic moments
diverse species within stable molecular structures, one
test basic theories of magnetism and explore the desig
novel systems that offer the prospect of use
applications.3,4 A common feature of these organic-bas
molecular magnets is that intermolecular magnetic inter
tions are extremely weak compared to those within in
vidual molecules, i.e., a bulk sample can be described
terms of independent individual molecular magnets. As
amples of molecular magnets with ultrasmall numbers
embedded paramagnetic ions we mention: Two dimer s
tems, one5 of V41 ~spin S51/2) and the second consistin
of6 Fe31 ions ~spin S55/2); a nearly equilateral triangula
array7 of V41; a nearly square array8 of Nd31 ~total spin j
59/2); a regular tetrahedron array9 of Cr31 ~spin S53/2);
and a nonregular tetrahedron array10 of Fe31 ions. Also note-
worthy is the pyrochlore antiferromagnet Tb2Ti2O7, al-
though distinct from the class of organic molecules yet sh
ing the feature that the Tb31 ions ~total spin j 56) reside on
a network of very weakly coupled tetrahedra.11

This paper has been motivated by the rapid experime
developments in the synthesis of molecular magnets w
ultrasmall numbers of strongly interacting moments. It
perhaps surprising that for high-spin moments the calcula
of equlibrium magnetic properties for arbitrary temperatu
and magnetic-field strengths presents a serious challe
One might expect that the determination of the partit
function for a few-spin system would be a relatively simp
task. To put this matter in perspective, it should be reca
that for a finite open chain ofclassical spins that interact
PRB 600163-1829/99/60~14!/10122~12!/$15.00
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with nearest-neighbor~n-n! isotropic Heisenberg exchange
the partition function has been evaluated only in the abse
of an external magnetic field.12 For the related system, wher
the linear chain is closed so as to form a ‘‘Heisenberg ring
the calculation of the partition function and the equilibriu
equal-time spin-correlation function is extremely involve
Exact, unwieldy infinite series expansions of these quanti
were successfully derived13 many years ago, but only fo
zero applied field. With the introduction of an external ma
netic field the analytic calculation of the partition functio
has been an intractable problem even for small number
interacting moments.14

The purpose of this paper is to provide the full magne
equation of state~molecular magnetic moment! and equal-
time spin-correlation functions, versus temperature and
plied magnetic field, for molecular magnets containing ve
small numbers of interacting classical moments. In more
perimental terms, we calculate quantities that are dire
related to the temperature and applied field-dependent m
netization. The assumed interaction between moments is
isotropic Heisenberg exchange. In particular, we treat
case of a dimer, and arrays of moments with the geomet
of an equilateral triangle, a square, and a regular tetrahed
to mirror some of the synthetic molecular magnets ci
above. The special cases of the equilateral triangle an
regular tetrahedron of spins that interact via n-n antifer
magnetic exchange are of special interest because t
systems7,11 exhibit frustrated order at sufficiently low tem
peratures and weak magnetic fields. Finally, we remark
the present results are needed as part of the analy
calculations15 of the time-dependentspin-correlation func-
tions for these classical Heisenberg spin systems. The ti
dependent spin-correlation functions are vital for derivi
the analytical formulas for NMR and neutron-scattering m
surements.

In Sec. II B, after summarizing several basic, general f
10 122 ©1999 The American Physical Society
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PRB 60 10 123EQUATION OF STATE AND SPIN-CORRELATION . . .
mulas for a ring ofN equally spaced spins described by t
classical n-n Heisenberg model, we illustrate our method
evaluating the partition function for the case ofN53 spins
~equilateral triangle! in the presence of an external magne
field. In our calculations we exploit the fact that the Ham
tonian of the system is expressible solely in terms of the t
spin vector, and this quantity is included in an extend
phase-space integration. It is instructive to compare the c
sical Heisenberg results with the analogous quantum sys
with individual spinsS, and this is also provided in Sec. II B
For the sake of completeness, we also list our major res
for the regular tetrahedron in Sec II C and for the dimer
Sec II D. In Sec. III we focus on the rather complex case
a square array of spins with n-n interaction in the presenc
the magnetic field. For this system, we derive the partit
function after introducing a convenient pair of auxiliary va
ables to supplement the total spin vector and after integra
over a further extended phase space. For comparison
poses, we also provide results for the square array of qu
tum spins, withS51/2, . . . ,5/2. Finally, in Sec. IV we sum-
marize the present results and comment briefly on
obstacles to extending the present calculations to large
rays of spins, e.g., rings ofN>5 spins with n-n interactions
while noting several larger systems that can be dealt w
successfully.

II. CALCULATIONAL METHOD

A. General formulas

In this subsection we define our notation and list seve
standard thermodynamic relations for the classical Heis
berg model of a ring ofN equally spaced spins. We suppo
that the spins are coupled by n-n, isotropic exchange in
actions and they also interact with a uniform dc exter
magnetic fieldBW . We write the Hamiltonian of the system a

HN~B,J!5J(
i 51

N

SW i•SW i 112mBW •(
i 51

N

SW i . ~1!

The direction ofBW defines thez ~polar! axis, the spinsSi
W are

classical unit vectors whose orientations are specified by
polar and azimuthal angles,u i andw i , and these extend from
0 to p and 0 to 2p, respectively, and the cyclic bounda
condition,SW N11[SW 1, is applied. The n-n interaction betwee
spins can be either antiferromagnetic~AFM!, J.0, or ferro-
magnetic ~FM!, J52uJu,0. The Hamiltonian of Eq.~1!
provides the classical counterpart to the quantum Heisen
model,

ĤN~B,J!5JS(
i 51

N

SŴ i•SŴ i 112gmBBW •(
i 51

N

SŴ i , ~2!

of atomic ion spinsS ~expressed in units of\) with n-n
exchange interactionJS . ~Here and later in the text the car
symbol will be used for quantum operators.! This correspon-
dence is achieved by rescaling all quantum spin operator
the factorAS(S11). It thus follows thatJ5S(S11)JS and
the quantitym in Eq. ~1! is given bym5(gmB)AS(S11),
whereg is the Lande´ g factor for the given ion andmB is the
Bohr magneton. In subsequent sections of this paper
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compare results for the equilibrium magnetization and
n-n spin-correlation function for increasing values ofS. The
results rapidly approach the classical limit for increasingS.

The partition function for an arbitrary value ofB is given
by

ZN~B,J,T!5E •••E )
i 51

N

dV i exp@2bHN~B,J!#, ~3!

wheredV i5sinuiduidwi is an element of solid angle appro
priate to thei th spin, b51/(kBT), kB is Boltzmann’s con-
stant, andT is the absolute temperature of the system. In
much as all spins are equivalent, the magnetic moment
spin induced by the magnetic field is given bŷmz&
5^Mz&/N, where

^Mz&5mN^Siz&5
1

b

]

]B
ln ZN~B,J,T!. ~4!

The susceptibility per spin,xB(T)5(]/]B)^mz&, may be ob-
tained using Eq.~4! but it is also provided by the fluctuatio
relation in the form

xB~T!5m2b(
i 51

N

~^S1zSiz&2^S1z&
2!. ~5!

In the zero-field limit we havêSizSjz&5(1/3)^SW i•SW j& and
^Siz&50, so the zero-field susceptibility per spin,x0(T),
may be written as

x0~T!5
1

3
m2bx̃~T!, ~6!

in terms of a reduced susceptibility,x̃(T), given by

x̃~T!511(
j 52

N

^SW 1•SW j&. ~7!

In the high-temperature limit all of the correlation function

^SW 1•SW j >2& vanish and as expected, Eq.~6! reduces to Curie’s
law.

B. Equilateral triangle

1. Partition function

In this subsection we first derive a formula for the par
tion function, in the form of a one-dimensional integral, f
the equilateral triangle of spins. We then proceed to der
analytic expressions for the magnetic moment per spin
the n-n spin-correlation function as functions ofT andB, as
well as the zero-field susceptibility.

We start by showing that with the introduction of the tot
spin vector,SW 5SW 11SW 21SW 3 the calculation of the partition
function Z3(B,J,T) can readily be achieved. The success
our method will hinge on the fact that the Hamiltonia
H3(B,J) may be rewritten solely in terms ofSW , as

H3~B,J!5
J

2
~S223!2mBW •SW . ~8!



ef
e

a
e

t

he
e

ra
-

he

A

f

ion
its
ar-

q.

y

as

r is
on

y

the
tem
ard

d

10 124 PRB 60CIFTJA, LUBAN, AUSLENDER, AND LUSCOMBE
As it stands the integral in Eq.~3! for N53 is six-
dimensional. We note that the value of this integral is l
unchanged if we multiply the integrand by the thre
dimensional Diracd function,

d (3)~SW 2SW 12SW 22SW 3!5E d3k

~2p!3
exp@ ikW•~SW 2SW 12SW 22SW 3!#,

~9!

and then integrate overSW . Although we are now faced with a
twelve-dimensional integral the subsequent calculations
actually very straightforward. In particular, we exploit th

dependence ofH3(B,J) on SW , rather than the individual uni

vectors SW i ; the latter appear only in the argument of t
exponential of Eq.~9!. The integrations over each of th
three pairs of anglesu i ,w i ( i 51,2,3) are now trivially per-
formed. The remaining, ostensibly six-dimensional integ
depends only onSW andkW , although in actual fact it is imme
diately reducible to a one-dimensional integral of the form

Z3~a,b!5~4p!3 expS 3

2
aDK~a,b!, ~10!

where

K~a,b!5E
0

3

dSD3~S!expS 2
a

2
S2D sinh~bS!

bS
, ~11!

where we introduce the dimensionless quantitiesa5bJ, b
5mbB, andD3(S) denotes the integral

D3~S!54pS2E d3k

~2p!3
exp~ ikW•SW !S sin k

k D 3

. ~12!

Now one can readily evaluate the latter integral with t
result

D3~S!5H S2/2, 0<S<1

S~32S!/4, 1<S<3

0, S>3.

~13!

Note thatD3(S) is continuous at the merger pointsS51,3
but its first derivative is discontinuous at these points.
expected for the case of three unit spins, contributions
Z3(a,b) can only arise from values ofS in the interval (0,3);
henceD3(S) must necessarily vanish forS.3, and the up-
per limit in Eq.~11! reflects this. One can evaluateK(a,b) in
closed form and the final result forZ3(a,b) is
t
-

re

l

s
to

Z3~a,b!

~4p!3
5

1

4ab
@exp~23a!sinh~3b!23 exp~a!sinh~b!#

1A p

2a

exp@3a/21b2/~2a!#

8ab

3F3~a1b!erfS a1b

A2a
D 23~a2b!erfS a2b

A2a
D

2~3a1b!erfS 3a1b

A2a
D 1~3a2b!erfS 3a2b

A2a
D G ,

~14!

where erf(z) denotes the familiar error function~see, for ex-
ample, Chap. 7 of Ref. 16!, which is defined for any value o
the complex variablez. The properties of this function which
are useful in the present setting, including its connect
with the confluent hypergeometric function, and
asymptotic properties for large real and large imaginary
gument, are listed in the Appendix. In writing Eq.~14! we
have reached our goal of obtainingZ3(a,b) in a form valid
for either AFM or FM exchange interactions.

2. T50 K

Before proceeding to extract physical results from E
~10!, we consider the limiting case ofT50 K. For cases of
AFM exchange the energy expression, Eq.~8!, is minimized
for given B when SW is directed parallel toBW and when its
magnitude is given byS5mB/J. The linear growth ofSwith
increasing B applies for the regimeB,Bc , where Bc
[3J/m. By contrast, we haveS53 for B.Bc . For the re-
gimeB,Bc the explicit expression for the minimum energ
E0(B,J) is given byE0(B,J)52(3/2)J2(mB)2/(2J), and
thus the equilibrium spin-correlation function is given by

^SW 1•SW 2&5
1

3

]E0~B,J!

]J
52

1

2
1

1

6 S mB

J D 2

~T50 K, B,Bc!. ~15!

Note that, in the zero-field limit each spin can be pictured
being oriented with an angle of 120°@5 cos21(21/2)# with
respect to each of its two neighbors. This frustrated orde
modified as the field is applied, with the spin-correlati
function increasing quadratically withB until, when B
>Bc , it reaches the value unity~spins are collinear!. For FM
exchange and forT50 K the spins are collinear for an
value ofB.

3. General T, B

Turning now to nonzero temperatures, we first discuss
field dependence of the total magnetic moment of the sys
for fixed temperature. This quantity is given by the stand
thermodynamic relation

^Mz&5m
]

]b
ln Z3~a,b!. ~16!

Using Eq.~10! and performing the differentiation prescribe
in Eq. ~16!, one finds
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^Mz&
m

5
1

b S K1~a,b!

K~a,b!
21D , ~17!

where

K1~a,b!5E
0

3

dSD3~S!expS 2
a

2
S2D cosh~bS!, ~18!

andK(a,b) has already been defined in Eq.~11!. For weak
fields the quantity in parenthesis in Eq.~17! is of second
order inb and thuŝ Mz&/m is of first order, as expected. Fo
arbitrary fields it is straightforward to evaluate the integr
in Eq. ~18! and Eq.~11! using standard numerical integratio
methods. In Fig. 1 we display our results for^Mz&/(3m), the
magnetic moment per spin in units ofm, as a function of
mB/J for several values ofa, for AFM coupling. The results
derived in the previous subsection forT50 K are also in-
cluded.

The corresponding results for FM coupling are given
Fig. 2. One observes that the major difference between
two figures is that for AFM exchange the zero-field susc
tibility x0(T) remains finite in the low-temperature limi
whereas it diverges for FM exchange. This is a direct con
quence of the fact that in the case of AFM exchange

FIG. 1. Field-induced total magnetic moment per spin for a r
of N53 classical Heisenberg spins with AFM exchange for valu
of kBT/J listed in the legend. The low-field susceptibility remai
finite in the low-temperature limit as a result of frustrated magne
ordering.

FIG. 2. Field-induced total magnetic moment per spin for a r
of N53 classical Heisenberg spins with FM exchange for value
kBT/uJu listed in the legend. The low-field susceptibility diverges
the low-temperature limit as expected for ferromagnetic orderin
s

e
-

e-
e

reduced zero-field susceptibilityx̃(T) vanishes in the limit-
ing case of low-T and low-B values because, as seen fro
Eq. ~15!, the spin-correlation function approaches the va
21/2. That is, the low-temperature finite limit ofx0(T) is a
direct manifestation of the AFM order. A more detailed d
cussion ofx0(T) is provided in the following subsection.

It is of interest to compare Fig. 1 with the easily derive
corresponding figure appropriate to theN53 spin-1/2
Heisenberg model of ion spins with AFM exchange intera
tion (JS.0). Shown in Fig. 3 is the total equilibrium mag
netic moment in units ofgmB for the latter model versus
gmBB/JS for several choices ofkBT/JS . The dramatic fea-
ture in the latter figure is the very rapid change in magne
moment that occurs for very small changes ofB for fixed,
low temperatures. Those rapid changes are quantum in
gin, being a direct expression of the ground-state–fi
excited state energy level crossings as the field is increa
In particular, the changes in̂M̂ z&, at sufficiently low tem-
perature are especially striking in the immediate vicinity
the field valuegmBB/JS53/2 for which the ground state
~total spinS51/2, MS51/2) and the first excited state~total
spinS53/2, MS53/2) become degenerate, and there is n
ligible occupancy of all other states. For relatively small v
ues of quantum spinS, exact numerical results can be o
tained using standard diagonalization methods. In Fig. 4
show the magnetic moment per spin in units ofm
5gmBAS(S11) versusmB/J, where J5S(S11)JS , and
for kBT/J50.3 for theN53 quantum Heisenberg rings. Th
solid curves shown are for spinsS51/2, 1, 3/2, 2, 5/2, 7/2,
and 11/2. The dashed curve is the corresponding result
the classical Heisenberg model. For increasing values oS
the curves rapidly converge to the classical curve, altho
one notes that for lower values of temperature we n
higher values ofS in order to achieve a good convergence
the classical result. In the classical limit, i.e., individual spi
S with S→`, the Heisenberg Hamiltonian can be visualiz
in terms of a continuous distribution of eigenvalues for a

s

c

f

.

FIG. 3. Field-induced total magnetic moment of a ring ofN
53 spin 1/2 particles with AFM exchange. The curves are labe
by the numerical value of the dimensionless parameterkBT/JS ,
whereJS is the exchange interaction between the quantum sp
The rapid change in̂Mz& versusB at low temperatures is due to th
ground-state level crossing that occurs whenB5Bc , where
gmBBc /JS53/2; the ground state has total spin quantum num
S51/2 (3/2) forB,(.)Bc .
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value of the magnetic field, and thus there is an absenc
rapid changes in the magnetic moment of the system
occur forS51/2.

Returning to theN53 classical Heisenberg ring, the n-
spin-correlation function can be obtained using the formu

^SW 1•SW 2&52
1

N

]

]a
ln ZN~a,b!, ~19!

which for N53 leads to the result

^SW 1•SW 2&52
1

2
1

1

6

K2~a,b!

K~a,b!
. ~20!

The functionK2(a,b) is defined by

K2~a,b!5E
0

3

dSD3~S!S2 expS 2
a

2
S2D sinh~bS!

bS
,

~21!

and is easily evaluated by numerical integration methods
Fig. 5 we provide our results for the spin-correlation functi
as a function ofmB/J for several choices ofkBT/J for AFM
exchange. The details of the curve corresponding to thT
50 case have been discussed in the previous subsection
in particular we recall that forB50 the three spins can b
pictured as lying in a common plane with an angle of 12
between successive spins. For 0,mB/J,3 the correlation
function is given by Eq.~15!, whereas the spins are colline
if mB/J>3. By contrast, for any nonzero temperature t
spins become collinear only asymptotically in the largeB
limit. We also note that the value ofmB/J for which the
three spins may be pictured as mutually orthogonal,
when ^SW 1•SW 2& vanishes, increases monotonically with i
creasing temperature.

For the correspondingN53 spin-1/2 Heisenberg mode
with AFM exchange, one can readily derive the sp
correlation function, as a function ofgmBB/JS , and it is
shown in Fig. 6. For this system the common high-field lim
of the family of curves is of course given by11/4. Note that
for the caseT50 the correlation function is piecewise co

FIG. 4. Field-induced magnetic moment per spin in units ofm
5gmBAS(S11) as a function ofmB/J for a quantum ring ofN
53 spin-S particles with AFM exchange interaction (JS.0) and
for kBT/J50.3, whereJ5S(S11)JS . The curves shown are fo
S51/2 ~lowest curve!, 1, 3/2, 2, 5/2, 7/2, 11/2, and for the classic
Heisenberg model~dashed curve!.
of
at

In

and

°

.,

-

t

stant, being equal to21/4 whengmBB/JS,3/2 and equal to
11/4 whengmBB/JS.3/2. This behavior is a direct conse
quence of the ground-state–first-excited-state energy l
crossing, discussed earlier in this subsection, which occ
for gmBB/JS53/2.

In Fig. 7 we show the dependence of the spin-correlat
function of the classicalN53 Heisenberg ring with AFM
exchange on the variablekBT/J for several values ofmB/J.

We have already remarked that^SW 1•SW 2&51 at T50 if
mB/J>3. The new features are, first, the diverging slope
the curve corresponding tomB/J53 in the limit kBT/J→0,
and second, the merging of the family of curves for su
ciently large values ofkBT/J.

In Fig. 8 we display, for this same quantum system,
spin-correlation function versuskBT/JS for several values of
gmBB/JS . Note the qualitative difference in the low
temperature behavior according to whethergmBB/JS is less
than or exceeds the value 3/2. For the special c
gmBB/JS53/2 the correlation function can be shown to
given by

FIG. 5. Nearest-neighbor spin-correlation function for a ring
N53 classical Heisenberg spins with AFM exchange as a func
of magnetic field. The curves are labeled by the numerical valu
the dimensionless parameterkBT/J. For low magnetic fieldsB the
frustrated spin ordering persists over a rather wide-temperature
terval.

FIG. 6. Nearest-neighbor spin-correlation function for a ring
N53 Heisenberg spins~individual spinsS51/2) with AFM ex-
change as a function of magnetic field. The curves are labeled
the numerical value of the dimensionless parameterkBT/JS .
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^SŴ 1•SŴ 2&5
1

4
2

1

31exp~23bJS!
, ~22!

and in particular this function approaches the valu
21/(12) in the low-temperature limit. The features shown
Fig. 8 are all readily explained in terms of the ground-sta
first-excited state level crossing.

4. B50

In this subsection we show that in the zero-field limit w
can obtain results in closed form for the spin-correlat
function andx̃(T). We note that in this limit (b→0) the
factor sinh(bS)/(bS) in the integrand of Eq.~11! equals unity,
and one readily obtains the result

Z3~a,b50!5~4p!3 expS 3

2
aD 1

8a
A2p

a

3F3erfSAa

2D 2erfS 3Aa

2D G . ~23!

FIG. 7. Nearest-neighbor spin-correlation function for a ring
N53 classical Heisenberg spins with AFM exchange as a func
of temperature. The curves are labeled by the numerical value o
dimensionless parametermB/J. For low temperatures, asB is in-
creased the frustrated spin ordering gradually gives way to al
ment of the spins parallel to the magnetic field.

FIG. 8. Nearest-neighbor spin-correlation function for a ring
N53 Heisenberg spins~individual spinsS51/2) with AFM ex-
change as a function of temperature. The curves are labeled b
numerical value of the dimensionless parametergmBB/JS .
–

Of particular physical interest in the zero-field limit is th
n-n spin correlation function̂SW 1•SW 2& which can be obtained
from Eq. ~19! and forN53 we find the result

^SW 1•SW 2&52
1

2
1

1

2a
2

1

A2pa

expS 2
a

2
D 2 expS 2

9

2
aD

3erfSAa

2
D 2erfS 3Aa

2
D .

~24!

This expression can be used for either sign ofa, i.e., either
AFM or FM coupling. We first consider the case of AFM
coupling between n-n spins. In the low-temperature regi
(a@1), utilizing Eq. ~A5! we find

^SW 1•SW 2&~T→0!→2
1

2
1

kBT

2J
. ~25!

Besides providing a description of the frustrated spin ord
ing in the low-temperature limit, Eq.~25! gives quantitative
information regarding the leading corrections for low tem
peratures. In the case of FM coupling, the behavior

^SW 1•SW 2& is very different in the low-temperature regime, as
result of the fact that Eq.~A6! applies. The major conlusion
is that, instead of Eq.~25!, we obtain the result

^SW 1•SW 2&~T→0!→12
2kBT

3uJu
. ~26!

In particular, we verify the expected behavior for FM e
change interaction, namely, that in the low-temperature li
the three spins are aligned parallel to each other.

Note that forN53 the relation of Eq.~7! for the reduced
zero-field susceptibility per spin may be written asx̃(T)
5112^SW 1•SW 2&. We may then utilize Eq.~24! so as to obtain
the explicit functional dependence ofx̃(T) on T and the
result is displayed in Fig. 9 for both AFM and FM exchan
interaction. For very low temperatures one may use E
~24!, ~25!, and~26! to obtain

f
n
he

n-

f

the

FIG. 9. Reduced zero-field susceptibility per spin,x̃(T) @see Eq.
~6!# for equilateral triangle, square, and tetrahedron arrays of c
sical Heisenberg spins, as a function of the dimensionless param
kBT/uJu for FM and AFM exchange interaction.
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x̃~T→0!→ kBT

J
, ~27!

in the AFM case, whereas

x̃~T→0!→32
4kBT

3uJu
~28!

in the FM case. The latter formula is a special case of
general result, self-evident from Eq.~7!, that x̃(T→0)→N
for a ring with N spins interacting with n-n FM exchang
interaction.

It should be noted that for the corresponding17 quantum
Heisenberg system of three spins-1/2 one finds that for A
exchange interactionx̃(T)5(1/4)@322 tanh(3bJS/4)#, and
this quantity decreases monotonically from the value 3/4
T5` to the finite nonzero value, 1/4, in the low-temperatu
limit, contrary to the result of Eq.~27!. That is,x0(T) di-
verges proportionally to 1/T for the quantum system with
AFM exchange. This behavior at low temperatures is alre
evident in Fig. 3. A closely related result is that the n
spin-correlation function for this quantum system whenB

50 is given by^SŴ 1•SŴ 2&52(1/4)tanh(3bJS/4).

C. Tetrahedron

In this subsection we list the major formulas for the t
rahedron system where a single classical spin occupies
vertex. Each spin interacts with its three neighbors via
same isotropic Heisenberg exchange as well as with a
form B field. Following the method described in Sec. II A w
find that

Z~a,b!5~4p!4 exp~2a!E
0

4

dSD~S!expS 2
a

2
S2D sinh~bS!

bS
,

~29!
o
fin

s

el
th
e

r

y

-
ch
e
i-

whereS5uSW 11SW 21SW 31SW 4u and whereD(S) is given by

D~S!55
S2

16
~823S!, 0<S<2

S

16
~42S!2, 2<S<4

0, S.4.

~30!

By contrast to what we found for the three-spin ring, bo
D(S) and its first derivative are continuous at the merg
points S52 and 4. Although in practice it is usually mor
convenient to work with the expression provided in Eq.~29!,
one can find an explicit formula forZ(a,b) in closed form.
The equilibrium magnetic moment^Mz&/m versusB andT is
readily obtained by numerical integration of the integrals
sulting from differentiating the logarithm of Eq.~29! with
respect tob. We have also obtained̂SW 1•SW 2& as a function of
B andT. We do not provide any figures for this system, wi
the exception of Fig. 9, as they are very similar to tho
given in Sec. III B for theN53 ring.

In the zero-field limit (b→0) limit Eq. ~29! is readily
evaluated and we obtain

Z~a,b50!5~4p!4
exp~2a!

8a2
$A8pa@2 erf~A2a!

2erf~A8a!#14 exp~22a!2 exp~28a!23%.

~31!

Since the four spins are completely equivalent, the zero-fi
n-n spin-correlation function̂SW 1•SW 2& is easily calculated us
ing the relation̂ SW 1•SW 2&5(^S2&24)/12 and we find that
^SW 1•SW 2&52
1

3
1

1

4a
1

1

12a

4 exp~22a!2 exp~28a!23

A8pa@2 erf~A2a!2erf~A8a!#14 exp~22a!2 exp~28a!23
. ~32!
ults
-

This expression is valid for either sign ofa but its behavior
in the zero-temperature limit is very different for the tw
cases. Concentrating our attention on the AFM case we
that in the zero-temperature limit

^SW 1•SW 2&~T→0!→2
1

3
1

kBT

4J
. ~33!

We observe that atT50 the four AFM coupled spins in the
tetrahedron can be pictured as oriented in such a way a
give zero total spin and with an angle equal to cos21

(21/3) between any pair of spins. The reduced zero-fi
susceptibility can be computed for any temperature using
relation x̃(T)5113^SW 1•SW 2& as well as Eq.~32!. We find
that in the low-temperature limitx̃(T→0)→3kBT/(4J) for
AFM coupling, while for FM exchangex̃(T→0)→4. In
d

to

d
e

short, the spins exhibit frustration as for theN53 ring and
qualitatively in the same manner.

D. Dimer

For the sake of completeness we summarize a few res
for the ring ofN52 spins~dimers! whose interaction is de
scribed by the HamiltonianH2(B,J) that is specifically writ-
ten as

H2~B,J!5J8SW 1•SW 22mBW •~SW 11SW 2!, ~34!

whereJ852J. Again following the method of Sec. II B, we
find that the partition function is given by



-
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Z2~a,b!5~4p!2 exp~2a!E
0

2

dSD2~S!exp~2aS2!
sinh~bS!

bS
,

~35!

andD2(S) is given by

D2~S!5H S/2, 0,S,2

S/4, S52

0, S.2.

~36!

Evaluating Eq.~35! one finds the following relatively com
pact result
th

ro

y
av
tr

a
nd

nt
f
r

Z2~a,b!5~4p!2 exp~2a!

expS b2

4aD
4b

A p

4aFerfS 4a2b

A4a
D

2erfS 4a1b

A4a
D 12erfS b

A4a
D G . ~37!

The total equilibrium magnetic moment^Mz& induced by the
magnetic field is given by
^Mz&
m

5
b

2a
2

1

b
1

1

Apa

2 expS 2
b2

4aD2 expF2
~4a2b!2

4a G2 expF2
~4a1b!2

4a G
2erfS b

A4a
D 1erfF4a2b

A4a
G2erfF4a1b

A4a
G . ~38!
nal

e

-

Since the zero-field partition function is the same for bo
AFM and FM cases and is given by

Z2~a,b50!5~4p!2
sinh~2a!

2a
, ~39!

the zero-field spin correlation function is given by^SW 1•SW 2&
52L(2a), whereL(x)5coth(x)21/x is the Langevin func-
tion. In the low-temperature regime one finds that

^SW 1•SW 2&~T→0!→71

for AFM and FM exchange, respectively. The reduced ze
field susceptibility follows directly asx̃(T)511^SW 1•SW 2&
512L(2a) for both the AFM and FM cases.

III. SQUARE

A. Partition function

Evaluation of the partition function, Eq.~3!, by analytical
methods constitutes a serious challenge for a square arra
spins that interact via n-n exchange. However, we h
found that this calculation does become tractable upon in
ducing the pair of auxiliary variablesSW a5SW 11SW 3 , SW b5SW 2

1SW 4 as well as the total spin vectorSW 5SW a1SW b . In terms of
these variables the HamiltonianH4(B,J) may be written as

H4~B,J!5
J

2
~S22Sa

22Sb
2!2mBW •SW . ~40!

Following the same approach as in Sec. II, we introduce e
of these three auxiliary vectors by multiplying the integra
of Eq. ~3! by an appropiate three-dimensional Diracd func-
tion and then integrate over that vector. Once again an i
gral representation akin to Eq.~9! is introduced for each o
the d functions. One readily finds the following formula fo
the partition function,
-

of
e
o-

ch

e-

Z4~a,b!5~4p!4E
0

4

dSD4~S,a!expS 2
a

2
S2D sinh~bS!

bS
,

~41!

whereD4(S,a) is the double integral, given, for 0<S<4, by

D4~S,a!5
S

8E E
R(S)

dSadSb expFa

2
~Sa

21Sb
2!G , ~42!

where the integration is to be performed over the polygo
region labeledR(S), which is shown in Fig. 10. It is easily
shown that this region is the locus of all points that fulfill th
pair of inequalities uSW a2SW bu,S,Sa1Sb , for values 0
<Sa ,Sb<2. It should be noted thatR(S) is a triangular
region if 2<S,4. The functionD4(S,a) is identically zero
for S>4. Also note thatD4(S,a) is a function of two inde-
pendent variables, in contrast to theN53 ring system, where
the partition function was expressible@see Eqs.~10!–~12!# in
terms of a functionD3(S) of a single variable. We have

FIG. 10. For the evaluation of the functionD4(S,a) of Eq. ~42!,
the domain of integrationR(S) consists of the interior of the poly
gon ABCDE for the interval 0<S<2 and the interior of the tri-
angleA8BCDE8 for the interval 2<S<4. For S>4, D4(S,a) is
identically zero.
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found that it is possible to express the functionD4(S,a)
explicitly in terms of confluent hypergeometric functions
assorted variables. The expression is somewhat lengthy
it is available from the authors. One can thus easily obt
numerical values ofD4(S,a) of arbitrarily high accuracy.
Numerical evaluation of the one-dimensional integral in E
~41! thus reduces to being a very modest and straightforw
task. One can generate all thermodynamic quantities of
terest by differentiating the logarithm of the integral in E
~41! with respect to the variablesa andb, thereby producing
integrals of a similar form, and thus calculable by numeri
methods to any desired level of precision.

B. T50 K

At T50 K and for AFM exchange interaction the ener
expression, Eq.~40!, is minimized for givenB whenSa52,
Sb52, and whenSW is directed parallel toBW and with mag-
nitude S5mB/J. This linear growth ofS with increasingB
applies for the regimeB,Bc , whereBc[4J/m. By contrast,
we haveS54 for B.Bc . For the regimeB,Bc the explicit
form of the minimum energy is given byE0(B,J)524J
2(mB)2/(2J), and thus the equilibrium spin-correlatio
function is given by

^SW 1•SW 2&5
1

4

]E0~B,J!

]J
5211

1

8 S mB

J D 2

~T50 K, B,Bc!. ~43!

In particular, in the zero-field limit each spin can be pictur
as being antiparallel with respect to each of its two nei
bors. As the field is applied, the spin-correlation functi
increases quadratically withB and reaches the value unit
~spins are collinear! as B is increased to or is allowed t
exceed the valueBc . As explained, this system does n
exhibit frustration for FM exchange and forT50 K the spins
are collinear for any value ofB.

C. General T, weak magnetic fields

In this subsection we give the formulas for the zero-fie
susceptibility and the n-n as well as the next-neare
neighbor~n-n-n! spin-correlation functions for arbitrary tem
peratures in the weak magnetic field limit. The derivation
these quantities requires the functional form ofZ4(a,b)
through second order in the magnetic field. We will n
present any specific results for magnetic fields of arbitr
strength because the mathematical analysis becomes
complex and the results provide little new insight.

Referring back to Eq.~41! and expanding the field
dependent term sinh(bS)/(bS) to second order inb, one has

Z4~a,b!5Z4~a,b50!1b2Y4~a!1O~b4!, ~44!

where

Y4~a!5
1

6
~4p!4E

0

4

dSS2D4~S,a!expS 2
a

2
S2D . ~45!

It thus follows that the zero-field susceptibility per spin
given by
nd
in

.
rd
n-
.

l

-

t-

f

t
y
ite

x0~T!5
1

2
m2b

Y4~a!

Z4~a,b50!
. ~46!

Evaluation ofZ4(a,b50) is quite straightforward with the
result being

Z4~a,b50!5~4p!4
F~4a!

4a2
, ~47!

where the function18 F(z) is defined as

F~z!5E
0

1

du
cosh~uz!21

u
5F~2z!. ~48!

This function is analytic in the entire finite complexz plane
and thus its Taylor expansion in powers ofz has an infinite
radius of convergence. The Taylor expansion follows imm
diately upon substituting that of the function cosh(uz) in Eq.
~48! and integrating term by term, with the result being

F~z!5 (
n51

`
z2n

~2n!~2n!!
. ~49!

Also important for the present study are the leading t
terms of the asymptotic expansion ofF(z) for large real
positive or negative values ofz, given by

F~z!;
1

2

exp~ uzu!
uzu F11

1

uzu
1OS 1

uzu2D G , ~50!

as can easily be confirmed by starting from Eq.~48! and
integrating several times by parts.

Starting from the above result forZ4(a,b50) and using
Eq. ~19!, we find that the zero-field n-n spin-correlation fun
tion is given by

^SW 1•SW 2&5
1

2a S 12
cosh~4a!21

2F~4a! D . ~51!

FIG. 11. Normalized nearest-neighbor spin-correlation funct
for a ring of N54 quantum Heisenberg spinsS51/2,1,3/2,2,5/2
with AFM exchange interaction as a function ofkBT/J where J
5S(S11)JS for zero magnetic field. The dashed curve is the res
for the classical Heisenberg model. At zero temperature the norm

ized spin-correlation function̂ SŴ 1•SŴ 2&/@S(S11)# is given by
2(2S11)/(2S12).
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Note that^SW 1•SW 2& is an odd function ofa, so that for the
same value ofuJu and for the same temperature the value
this quantity for FM exchange has the opposite sign of
corresponding quantity for AFM exchange.

It is of interest to compare this result with the correspon
ing N54 quantum Heisenberg ring of spinS ions with n-n
AFM exchange interactionJS.0. In Fig. 11 we show the

n-n spin correlation function̂SŴ 1•SŴ 2&/@S(S11)# as a func-
tion of kBT/J, where J5S(S11)JS for the quantum spin
valuesS51/2,1,3/2,2, and 5/2. Once again we observe
rapid convergence of quantum results to that of the class
Heisenberg model for increasing values ofS.

Using Eq.~50! it follows that for very low temperature
(uau@1) we have

^SW 1•SW 2&~T→0!→6S 12
3

4

kBT

uJu D ~52!

to leading order in the small quantitykBT/uJu, where the
upper ~lower! sign applies to the case of FM~AFM! ex-
change. Finally, using Eq.~49! the leading behavior o

^SW 1•SW 2& for the high-temperature regime is given by

^SW 1•SW 2&~T→`!→2
2

3

J

kBT
. ~53!

The evaluation of the functionY4(a) is very tedious. We
find as our final result

Y4~a!5
1

3
~4p!4G~4a!, ~54!

where the new functionG(x) is given by

G~x!5
8

x2 F4

x
F~x!1

2

x
@12 exp~2x!#

2
2

x2
@cosh~x!21#21G . ~55!

Substitution of Eqs.~54! and ~55! into Eq. ~46! provides
x0(T). The result that one obtains in the high-temperat
limit reduces to Curie’s law. For very low temperatures t
limiting form of the reduced susceptibility x̃(T)
5(3/2)Y4(a)/Z4(a,b50) is given byx̃(T→0)→kBT/(2J)
for AFM exchange interactions, and byx̃(T→0)→4
25kBT/(2uJu) for FM exchange. The reduced susceptibil
is shown in Fig. 9 for rings withN53,4 and for the tetrahe
dron. We have already commented that in the case of
exchange the low-temperature limit should equal the num
of spins of the given system. What is perhaps surprising
that as the temperature is increased, already forkBT/uJu'1
the results for the two ring systems have merged. For
temperature and above, the correlations between spins re
the fact that each spin of the ring interacts with only tw
nearest-neighbors. For the tetrahedron array each spin i
acts with three nearest-neighbors and this is reflected in
larger value ofx̃(T). Finally, we note that the n-n-n spin
correlation function ^SW 1•SW 3& follows directly
f
e

-

e
al

e

M
er
is

is
ect

er-
he

from @see Eq. ~7!# the relation x̃(T)5112^SW 1•SW 2&1

^SW 1•SW 3& along with Eqs.~46! and ~51!.

IV. SUMMARY

In this paper we have studied in detail the properties
several classical Heisenberg magnetic systems consistin
small numbers of spins coupled by n-n isotropic exchan
interaction and that interact with a uniform external magne
field. By using a method that introduces auxiliary spin va
ables into the defining expression for the partition functio
we obtained the exact analytical formulas for the magne
moment induced by the external magnetic field for arbitra
temperature~i.e., the complete magnetic equation of stat!,
as well as the field and temperature dependence of the
spin-correlation function. The systems considered were sm
arrays of interacting spins, and specifically dimer, equilate
triangle, square, and regular tetrahedron geometries. Fo
of these systems we succeeded in expressing the part
function, the total magnetic moment, and the spin-correlat
function as one-dimensional integrals, a representation th
particularly convenient for the purpose of extracting high
accurate numerical values, figures, etc. The special case
the equilateral triangle and the regular tetrahedron exh
magnetic frustration for AFM exchange interaction, and
were able to obtain a complete description of the evolut
of the frustration as a function of temperature and field.
the special case of the equilateral triangle geometry, we g
detailed comparisons between our results for classical s
and the corresponding quantum system of individual sp
S51/2,1,3/2 . . . . Thereader can correctly anticipate that
the individual spin quantum numberS increases, the rapid
changes at low temperatures of magnetic moment versus
plied magnetic field rapidly wash out. The rapid changes t
occur for the case ofS51/2 are a direct consequence
ground-state level crossings. For increasingS the eigenvalue
spectrum proliferates, becoming continous in the largeS
limit, and the magnetic moment is a slowly varying functio
of applied field.

Despite the smallness of the systems we have conside
this study is timely for, as discussed in the Introductio
there is considerable experimental activity at present devo
to the synthesis and physical analysis of large organic m
ecules in which are embedded a very small number of p
magnetic ions, for dimers and arrays with the geometries
an equilateral triangle, square, and regular tetrahedron
very common choice5,10 of paramagnetic ion is Fe31 which
has spinS55/2 and for which the present results are direc
applicable, except for sufficiently low temperatures. The
are even indications19 that a classical Heisenberg model pr
vides a very satisfactory description of a ring of eight Cr31

ions, ~ion spin 3/2), again except at low temperatures.
compare theory with the results of experimental NMR a
neutron-scattering studies of these molecular magnets it
be necessary to utilize expressions for the general space-
two-spin-correlation functions. These theoretical expressi
have been derived and will be presented elsewhere.15 In fact,
the present results provide some of the vital ingredients
those derivations.

What are the prospects for succeeding in generalizing
present work to larger arrays of interacting Heisenberg sp
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including more complicated geometries? The trick of int
ducing two new auxiliary spin vectors, as we did in Sec.
for the ring of four spins, does not seem to be open to g
eralization for rings with five or more spins and n-n intera
tions. However, for specialized geometries and interactio
generalizations of the present methods are indeed poss
One example is that of a tetrahedron where three of the
spins interact with each other with one common value of
coupling constant that in turn differs from that coupling t
three spins to the fourth spin. The complex known as Fe
well described10 by such a model. For AFM exchange
turns out that the magnetic frustration of this system is a v
intricate function of temperature, magnetic field, and the
tio of the two coupling constants.20 A second example is tha
of an arbitrary numberN of spins that interact with all other
via a common isotropic exchange constant. This is the
tropic classical Heisenberg analogue of the well-kno
Kittel-Shore model,21 which involves interacting Ising spins
A third example is that of an array of six spins positioned
the vertices of a regular octahedron. It turns out22 that this
system also exhibits very interesting frustration effec
Whereas in the past these and other small systems m
have been considered as appropriate ‘‘recreational’’ proje
for mathematical physicists, because of the dramatic re
advances in synthesis chemistry these models are curr
of considerable experimental importance.
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APPENDIX A

For convenience we list here several formulas for the
ror function erf(z) that are germane to the present work. F
-
.
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any complex variablez this function is defined by

erf~z!5
2

Ap
E

0

z

dte2t2. ~A1!

Note that erf(2z)52erf(z) and its Taylor expansion,

erf~z!5
2

Ap
(
n50

`
~21!nz2n11

n! ~2n11!
, ~A2!

converges for all finitez. The relation

erf~z!5
2z

Ap
M S 1

2
,
3

2
,2z2D5

2z

Ap
exp~2z2!M S 1,

3

2
,z2D ,

~A3!

proves to be very helpful, where

M ~a,b,z!5 (
n50

`
~a!nzn

~b!nn!
, ~A4!

denotes the confluent hypergeometric function~see Chap. 13
of Ref. 16!, (a)051, and (a)n5a(a11)(a12)•••(a1n
21) for n>1. With the aid of Eq.~A3!, one can establish
the following two asymptotic formulas that are of impo
tance in the main text for investigating the low-temperatu
properties of the spin systems. Ifx denotes a real positive
variable, we have for thex@1 regime

erf~x!;12
1

Ap

exp~2x2!

x F12
1

2x2
1OS 1

x4D G , ~A5!

and

erf~ ix !;
i

Ap

exp~x2!

x F11
1

2x2
1OS 1

x4D G , ~A6!

wherei 5A21.
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