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Exact results for a composite-fermion wave function
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It is noted that the radial distribution function and the interaction energy per particle can be exactly com-
puted for a class of composite fermion wave functions obtained at the mean-field level of the Chern-Simons
theory for the fractional quantum Hall effect. These results can be quite instructive and useful to test different
numerical methods and approximations used to study these phendr86t463-182@09)50308-1

The fractional quantum Hall efféctFQHE) results from  magnetic length. The fundamental property of the CF’s is
a strongly correlated incompressible liquid staéteormed at  that they experience a reduced effective fi@d=B(1
special uniform densitieg(v) of a two-dimensional(2D) —2mv) so that the liquid of strongly correlated electrons at
electronic system that is subjected to a very strong transvers is equivalent to a liquid of weakly interacting CF's Bt .
magnetic fieldB. The dominant sequence of fractional Hall Since the degeneracy of each Landau level is proportional to
states occurs when filling of the lowest Landau levelis the magnetic field, the degenerablf of each CF Landau
=p/(2mp+1), wherep=1,2,... andn=0,1,... are in- level will be smaller than the correspondihg for the elec-
tegers. Much of the theoretical work on FQHE is based ortrons and will be given byN% =Ng(1—2mv). As a result,
the study of the properties of a 2D fully spin-polarizegin-  the effective filling factor of CF’s will be an integer number
lesg system ofN interacting electrons embedded in a uni- v* =p and will correspond to stable electronic filling factors
form positive background. The electrons with charge(e  v=v*/(2mv* +1), wherev*=p=1,2,... is thenumber
>0) and massn, are considered confined in the-y plane  of filled CF Landau levels.
of area() and subjected to a perpendicular magnetic field There are two calculational schemes based on the intuitive
é:(0,0B), Wthh is generated from the Symmetric gaugephysics abOVe. One constructs eXpliCit Wa.Ve. funcﬁmﬂ@ib
vector potentialA(F)=[ — (B/2)y, (B/2)x,0]. We will con- tﬂe second Sdr‘]eme. employs a Chem‘s'm@?h f'e":l A
sider the thermodynamic limit of an infinite system defined: eoryehapproac to investigate the CF St"’.‘te' Alt oug the
as the limit ofN electrons in a sample of aré whereN wo schemes are based on the same physics, a precise quan-

and () go to infinity with the density kept constant. ']E|tat|\{e r&rlgtsloqshlpbbetween them is not clear. The wave
The many-electron system is described by the Hamilfunction¥,””given by

tonianH =K +V, whereK is the kinetic energy operator
N 2m
N \I’CS_H (Zj_zk)
> N v 7 —7 |2m
. o >\ 72 j<k | i k
2me;§=:1[ iV +eA(r))]? (1)

d,(B*), ©)
K=

where® (B*) is the Slater determinant wave function of
and filled Landau levels, evaluated at the magnetic field shown in
the argument, is obtained at the mean-field level of the CS
. N field theory and describes electronic fillings=p/(2mp
U= ulri-r-p(n3, [ drodr-r) D
: : So few many-body problems are solvable that a certain
p(V)2 ) ) L. interest may be attached to any model that is exactly solv-
+ Tf d rlf d*rav(|Fi—F2)) (@ able. Exact solutions, when available, enable one to gauge
the efficiency of different numerical methods and to care-
is the total electron-electron, electron-background, andully test many approximations.
background-background interaction potential, wheigr; It seems not to have been previously observed that an
— )= (1/4meq) (€’ €|z~ z]) is the interaction potential, exact solution for the radial distribution function and inter-
z;=x;+1y; is the location of thejth electron in complex action energy per particle can be obtained for the above CS
coordinates, and is the dielectric constant of the back- wave function. As we show in this article, the mathematics is
ground. simple, but the results are, however, quite instructive and the
It has become clear in recent years that many essentigbmparison with other numerical estimates is interesting. A
features of FQHE can be understood straightforwardly inpossible way to find the interaction energy per particle,
terms of a new kind of particle, called a composite fermion
(CP), which is a bound state of an electron and an even

CSy; C
number of vortices of the many-body quantum wave _1 <\P”S1V|‘PVS>_

)
C2 | o - 11000,

functior® formed at the electronic densitiesp(v) N (WS wes
=vl[27l4(B)?] where |o(B)=%/(eB) is the electronic (4)
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depends on the ability to compute exactly the radial distribuand its conjugate. Using a standard algebra, one can easily
tion functiong,(r,,) that in terms of\PSS is defined as prove that the contribution t9,(z;,2,) coming from thenth
CF Landau level is
N(N—1) [d?rg--d?ry|wE92

p(v)®  [d?ry--d?ry|wSH2’

(5) NE -1
20 @X 1(21) @ni(22)

gv(rlZ):

and for the system under consideration will depend only on
the interparticle spatial distance,=|;—F,|. For a general 2~ 2,2 NE -1
. . L2 . 1~ 2
many-body wave function, th_e radial dlSFI’IbUtIOﬂ function _ ( ) 2 ©F (21) 00y (22), (12)
can be computed only approximately, but in the present case 210(B*)%) =0
one observes thatr S 52=|d (B*)|2, and this corresponds

— (eX/nl n n Na—X
to a squared Slater determinantpf 1,2, . . . filled CF Lan- where Ln(x)=(e"/n!)(d"/dx")(x"e ") are the Laguerre

dau levels formed at the reduced magnetic figfd At this pplynqmlals of ordem=0,1,... . Byusing the formulas
. S given in Egs.(8) and(9) one can express the second term of
stage the calculation af,(rq,) is simpler and can be per- Eq. (12) as

formed exactly.
For a magnetic fiel®* applied in thez direction which, \*_;
as usual, is generated by a symmetric gauge vector potentiaE

*
» : . S ©01(21) ®0)(22)
A(r), the eigenstates of the ideal Hamiltonian =R

- T . 1 |z4]%+ 2,2 NsTlg ) g, !
Ho= —iAV+eA(r)]? 6 - ! )
"~2m, AT © 2a1o(E") exﬂ[ Ho BT .ZO nErcaEk
for the various CF Landau levets=0,1,2 . .. aregiven by (13

n In the thermodynamic limit both the density and the filling
factor v=N/Ng are kept constant as the number of electrons
N and the LL degenerad) go to infinity. Since the degen-
EE eracyN; of each CF Landau level is directly proportional to
X <Po,|(Z)8XF{ - WH (77 Ngthen also N —1) goes to infinity in the thermodynamic
o(BY) limit. At this point the summation overin Eq. (13) is ex-

|2

1
‘Pn,l(z): Wex;{ﬁuo(B*)sz'O(B )E

wherely(B*) is the CF’s magnetic length and tended from 0 toe and one obtains

(2=— Z}lou ® S e

2)= —— |55 z), z z
®o| \/§|I—| lO(B*) Po, “ ¢O,I( 1 ‘PO,I( 2)

1 |24]%+ 2,2 iz,
1 2| = —exp{— L 2 lex ! (14
2)= exg — , 9 27l o(B*)? 414(B*)? 2lo(B*)?
®0,0(2) 271 o(B* )2 F{ 41,(B¥) ©) o(B™) o(B*) o(B*)

. ) By substituting Eq(14) in Eqg. (12), one notes that, in the
andl=0,1,...,Ns —1) is the angular momentum quantum thermodynamic limit, the one-body density matpix(z; ,z,)
number for the CF's. The radial distribution functigi(r12)  given from Eq.(11) depends solely op and notNZ . After
will be given by some algebra, the statistical exchange term is found to be

1 complex
9,(r)=1-—[l,(r)l% (10
Os |Zl Z2|
L i Ip(21122) z L 2| (B*)
where the “statistical exchange” factor is computed from
21— 2,/

Landau state ig;=1, because we are considering fully spin- — = ex;{ I > }
polarized(spinles$ electrons(CF’s). The electronic density 4lo(B™) 2lo(B*)

p(v) is the same as the CF's density and theducedl one- (15)
body density matrixp,(;,r,) that corresponds to the dy-
namically uncorrelated state,(B*) is given by

| p(r12) =pp(F1,72)/ p(v) and the spin degeneragy of each
Xe ;{ (FyXF5),

but since the radial distribution function is found by applying
Eqg. (10), the phase factor ofy(z;,z,) disappears and we
p—1 N¥-1 obtain

ﬁp<z1,zz>=gsn20 ;O ot (z)eni(z), (1D

rf 1% rf 2
gv(r12):1_ex% 2] (B*) }[ 2 Ln(2| (B*) )] f
where we are using the complex coordinatemstead of the 0

Pn=0
two-dimensional vectors; . In the above equation, the sum (16)
is extended over all occupied CF states, wherg(z) and  wherer,,=|z;—2,| is the interparticle distance. From this
en1(2) are, respectively, the single particle wave functionresult one may erroneously think that the radial distribution
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TABLE I. Exact results for the interaction energy per partiale corresponding to the Chern-Simons
wave function,\lf‘,fS at fillings v=p/(2p+1). The interaction energy is in units of (Itéy)[e* elo(B)],
wherely(B) is the magnetic length of the electrons. In the fifth column we report the available variational
Monte Carlo results of Kamilla and JaiRef. 7) obtained in the spherical geometry.

m p - 2mz+1 Exact Ref. 7

1 1 1/3 _%\/gz —0.361 800 —0.3619(90)
1 2 2/5 _i_é\/%z —0.385343 —0.3848(16)
1 3 317 L 1_7;: —0.395990 —0.3947(15)
1 4 4/9 s 118: —0.402 064 —0.4007(16)
1 5 511 35208 5= —0.405 992

1 6 6/13 — 3447 \/ZEG: —0.408742

1 7 7/115 - ggg;g;g\/%: —0.410776

1 8 8/17 - ggggggg\/g: —0.412341

1 9 919 - %2\/;8: ~0.413583

1 10 10/21 — %5\/%: —0.414592

1 % 172 - % =—0.424413

function at fillings v=p/(2mp+ 1) will depend only onp expression by noting thaEﬁ;(l)Ln(x)=L’1),1(x), where
and not inm, but a deeper check tells that the dependence on¥(x) = (— 1)X(d/dx*)[L,«(x)] are the associated La-
m is “hidden” in the reduced fieldB* =B/(2mp+1) to  guerre polynomials of orden=0,1,... anddegreek
which the CF’s are subjected. We can further simplify this=q 1, ... .
Since both electrons and CF’'s have the same density, we
-0.250 —— T can relate the CF magnetic lengdt§(B*) to the true elec-

10.300 [ e e e e ] tronic magnetic lengthly(B) by the simple relation
-0.350 + . - 1.2 [ T T T T T T T 7
| . 11 ¢ .
-0.400 - T 1.0 e
> 0.9 .
0450 | et 0.8 ]
-0.500 - em=2 R 0.7 ]
e — 172 5 06 | ]
-0.550 ---- 14 0.5 | .
0.4 —13 ]
-0.600 L L . L L L L 1 L 0.3 g e 2/5 b
01 2 3 45 6 7 8 9 10 oo L] 12 1
P 0.1 | .
FIG. 1. Exact vglsues for the interaction energy per particle 00 46 8 1012 12 16 18 20
corresponding to¥ = for fillings v=p/(2p+1) (squarg and v tllo(B)
=p/(4p+1) (circle). In the p— limit we obtain the respective
results for fillings v=1/2 (dotted ling and v=1/4 (dashed ling FIG. 2. Radial distribution functiog,(r) for the first two states

The energies are expressed in the standard units obf the seriesv=p/(2p+1),p=1,2,... and for thdiling v=1/2
(U4mep)[€® el o(B)]. obtained as th@—oo limit of such a series.
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FIG. 3. Radial distribution functiog,(r) for the first two states
of the seriesv=p/(4p+1),p=1,2,... and for thdilling v=1/4
obtained as th@—cc limit of such a series.

lo(B*)2=1,(B)?(2mp+1), so finally the radial distribution

function corresponding t&S* for v=p/(2mp+1) is writ-
ten as

M2

2
|o(B)) }

)]
lo(B) (47

in terms of the natural dimensionless distangg/4(B).

1
- 2(2mp+1)
L 1
1o 22mpr 1)

gV(r12)=1—eXl{

The calculation of the interaction energy per particle cor-

responding to¥$*® for v=p/(2mp+1) follows from Eq.
(4), where after writingo(v) = p/[ 27l o(B*)?] we introduce
the dimensionless variable=r 1,/1,(B*) and obtain the en-

ergy in a simple one-dimensional integral form,
1 fxd ;{ x2)
= xexpg — =
2py2mp+1Jo 2
2\12 1 e?
2| 4meq ely(B)”
In the p— oo limit and for a nonzero value ah, the CS wave
function W& will correspond to the fillingv=1/(2m),

wherem=1,2, ... and, in this limit the radial distribution
function is found to be

X|Lp_y (18

Oy—1om(ri=1-4| ———m| ,

where J;(x) is the Bessel function of the first order. It is
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TABLE Il. Exact results for the interaction energy per particle
u, corresponding to the Chern-Simons wave functibfi® at fill-
ings v=p/(4p+1). The interaction energy is in units of
(U4mey)[ €% el o(B)], wherely(B) is the magnetic length of the
electrons.

p
m p Y 2mpr1 Exact
2 1 1/5 EES
2\ 75~ — 0280249
2 2 2/9 —-u \/E: —0.287217
16 18
T
2 3 3/13 . \ﬁ= —0.290577
26
T
2 4 4/17 — 171/ —=-0.292544
34
T
2 5 5/21 — 35208 \ﬁ= —0.293835
42
2 6 6/25 — 924747 \/g): —0.294748
ar
2 7 7129 — ggg;ggg\ﬁ%: —0.295428
v
2 8 8/33 — 91033507 /6—6= —0.295954
an
2 9 9/37 _ %g\/%: —0.296373
o
2 10 10/41 - —18350829195314256962705\/8:2 =—0.296715
2 o 1/4 - — —=-0.300105
373
4 1 e?

Ho=1am™ = 3 i Aeq €lo(B) (20

We calculated exactly the integrals appearing in @§) for
the first 10 valuesp=1,2,...,10 of theseries of fillings
wherem=1 and 2. The interaction energy per partialgis
shown in Fig. 1 for the series of states=p/(2p+1)
(square and v=p/(4p+1) (circle). In the p— limit the
results converge to the values given by ER0), respec-
tively, for the v=1/2 (dotted ling and v=1/4 state(dashed
line). In Figs. 2 and 3 we plot the radial distribution function
corresponding to the first two values pffor the series of
filings given, respectively, byv=p/(2p+1) and v
=p/(4p+1) and we compare them to the radial distribution
function of the states=1/2 and 1/4 obtained, respectively,
as thep— limit of each of such series and given by Eq.

interesting to note that this radial distribution function corre-(19).

sponds to a 2D system of fully-spin polarizeg€1) free
fermions whose Fermi radius is given t(v=1/(2m))

=1[Jmlo(B)].

A better and more instructive idea of these results is given
in Tables | and Il, where we display the exact analytical
values of energy for ten states of the foms=p/(2p+1)

The exact interaction energy per particle corresponding t@and »=p/(4p+1), respectively. Since different numerical

the v=1/(2m) state, wheran=1,2, . ..
plying Eq. (4) and we find that

iscomputed by ap-

methods and approaches have been used to study these phe-
nomena, we believe that these exact results can be quite use-
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ful to gauge their accuracy and their dependence on the nuntion energy per particle and as can clearly be seen, their
ber of particles. Extrapolation of finite number calculationsresults are very accurate for all the relevant fillings they have
in the thermodynamic limit are not always unambiguous andtonsidered, but eventually the method becomes more diffi-
the results we provide can be a good test of accuracy fogult to apply and less accurate for states in the1/2 limit.

different approximation schemes. For a long time the quan- |n summary, we have analytically computed the interac-
titative investigations of FQHE have been limited only to tjgn energy per particle for all states of FQHE that are de-
systems of a few number of particles, and only recently havgcriped by a CS wave function. We provide tables of exact

H 7
we been aware of a method developed by Kamilla and Jaingnaytical values of the interaction energy per particle for all

which enables a treatment of much bigger systems of 56056 states. The data can be used to further test the reliabil-
particles. By adopting this method to the spherical geometry;,

T . ity of different numerical methods employed on the study of

they used variational Monte Carlo techniques to compute th% HE.

expectation values of the interaction and kinetic energy per

particle for different wave functions, among them t&> This work was carried out at the Ames Laboratory, which

wave function. In the spherical geometry, they found that thés operated for the U.S. Department of Energy by lowa State
energies scale approximately linearly abl WhereN is the  University, and was supported by the Director for Energy

number of electrons. In Table | we compare directly ourResearch, Office of Basic Energy Sciences of the U.S. De-

exact results with theiN—o extrapolations of the interac- partment of Energy.
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