
PHYSICAL REVIEW B 15 MARCH 1999-IIVOLUME 59, NUMBER 12
Exact results for a composite-fermion wave function

Orion Ciftja
Ames Laboratory, Iowa State University, Ames, Iowa 50011

~Received 19 October 1998!

It is noted that the radial distribution function and the interaction energy per particle can be exactly com-
puted for a class of composite fermion wave functions obtained at the mean-field level of the Chern-Simons
theory for the fractional quantum Hall effect. These results can be quite instructive and useful to test different
numerical methods and approximations used to study these phenomena.@S0163-1829~99!50308-1#
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The fractional quantum Hall effect1 ~FQHE! results from
a strongly correlated incompressible liquid state2,3 formed at
special uniform densitiesr~n! of a two-dimensional~2D!
electronic system that is subjected to a very strong transv
magnetic fieldBW . The dominant sequence of fractional Ha
states occurs when filling of the lowest Landau level isn
5p/(2mp11), wherep51,2, . . . andm50,1, . . . are in-
tegers. Much of the theoretical work on FQHE is based
the study of the properties of a 2D fully spin-polarized~spin-
less! system ofN interacting electrons embedded in a un
form positive background. The electrons with charge2e(e
.0) and massme are considered confined in thex2y plane
of areaV and subjected to a perpendicular magnetic fi
BW 5(0,0,B), which is generated from the symmetric gau
vector potentialAW (rW)5@2(B/2)y,(B/2)x,0#. We will con-
sider the thermodynamic limit of an infinite system defin
as the limit ofN electrons in a sample of areaV, whereN
andV go to infinity with the density kept constant.

The many-electron system is described by the Ham
tonian Ĥ5K̂1V̂, whereK̂ is the kinetic energy operator

K̂5
1

2me
(
j 51

N

@2 i\¹W j1eAW ~rW j !#
2, ~1!

and

V̂5(
j ,k

N

v~ urW j2rWku!2r~n!(
j 51

N E d2rv~ urW j2rWu!

1
r~n!2

2 E d2r 1E d2r 2v~ urW12rW2u! ~2!

is the total electron-electron, electron-background, a
background-background interaction potential, wherev(urW j
2rWku)5(1/4pe0)(e2/euzj2zku) is the interaction potential
zj5xj1 iy j is the location of thej th electron in complex
coordinates, ande is the dielectric constant of the back
ground.

It has become clear in recent years that many esse
features of FQHE can be understood straightforwardly
terms of a new kind of particle, called a composite fermi
~CF!, which is a bound state of an electron and an ev
number of vortices of the many-body quantum wa
function4,5 formed at the electronic densitiesr(n)
5n/@2p l 0(B)2# where l 0(B)5A\/(eB) is the electronic
PRB 590163-1829/99/59~12!/8132~5!/$15.00
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magnetic length. The fundamental property of the CF’s
that they experience a reduced effective fieldB* 5B(1
22mn) so that the liquid of strongly correlated electrons
B is equivalent to a liquid of weakly interacting CF’s atB* .
Since the degeneracy of each Landau level is proportiona
the magnetic field, the degeneracyNs* of each CF Landau
level will be smaller than the correspondingNs for the elec-
trons and will be given byNs* 5Ns(122mn). As a result,
the effective filling factor of CF’s will be an integer numbe
n* 5p and will correspond to stable electronic filling facto
n5n* /(2mn* 11), wheren* 5p51,2, . . . is thenumber
of filled CF Landau levels.

There are two calculational schemes based on the intu
physics above. One constructs explicit wave functions4 while
the second scheme employs a Chern-Simons~CS! field
theory6 approach to investigate the CF state. Although
two schemes are based on the same physics, a precise
titative relationship between them is not clear. The wa
function Cn

CS given by

Cn
CS5)

j ,k

N
~zj2zk!

2m

uzj2zku2m Fp~B* !, ~3!

whereFp(B* ) is the Slater determinant wave function ofp
filled Landau levels, evaluated at the magnetic field shown
the argument, is obtained at the mean-field level of the
field theory and describes electronic fillingsn5p/(2mp
11).

So few many-body problems are solvable that a cert
interest may be attached to any model that is exactly s
able. Exact solutions, when available, enable one to ga
the efficiency of different numerical methods and to ca
fully test many approximations.

It seems not to have been previously observed that
exact solution for the radial distribution function and inte
action energy per particle can be obtained for the above
wave function. As we show in this article, the mathematics
simple, but the results are, however, quite instructive and
comparison with other numerical estimates is interesting
possible way to find the interaction energy per particle,

un5
1

N

^Cn
CSuV̂uCn

CS&

^Cn
CSuCn

CS&
5

r~n!

2
E d2r 12@gn~r 12!21#v~r 12!,

~4!
8132 ©1999 The American Physical Society



bu

o

n
a

s

-

n

m

m

n-

-

m

on

asily

of

g
ns

-
to
c

be

g

is
ion
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depends on the ability to compute exactly the radial distri
tion functiongn(r 12) that in terms ofCn

CS is defined as

gn~r 12!5
N~N21!

r~n!2

*d2r 3¯d2r NuCn
CSu2

*d2r 1¯d2r NuCn
CSu2 , ~5!

and for the system under consideration will depend only
the interparticle spatial distancer 125urW12rW2u. For a general
many-body wave function, the radial distribution functio
can be computed only approximately, but in the present c
one observes thatuCn

CSu25uFp(B* )u2, and this correspond
to a squared Slater determinant ofp51,2, . . . filled CF Lan-
dau levels formed at the reduced magnetic fieldB* . At this
stage the calculation ofgn(r 12) is simpler and can be per
formed exactly.

For a magnetic fieldB* applied in thez direction which,
as usual, is generated by a symmetric gauge vector pote
AW (rW), the eigenstates of the ideal Hamiltonian

Ĥ05
1

2me
@2 i\¹W 1eAW ~rW !#2 ~6!

for the various CF Landau levelsn50,1,2, . . . aregiven by

wn,l~z!5
1

A2nn!
expF uzu2

4l 0~B* !2GF2l 0~B* !
]

]zG
n

3H w0,l~z!expF2
uzu2

4l 0~B* !2G J , ~7!

wherel 0(B* ) is the CF’s magnetic length and

w0,l~z!5
1

A2l l !
F z

l 0~B* !G
l

w0,0~z!, ~8!

w0,0~z!5
1

A2p l 0~B* !2
expF2

uzu2

4l 0~B* !2G , ~9!

andl 50,1, . . . ,(Ns* 21) is the angular momentum quantu
number for the CF’s. The radial distribution functiongn(r 12)
will be given by

gn~r 12!512
1

gs
u l p~r 12!u2, ~10!

where the ‘‘statistical exchange’’ factor is computed fro
l p(r 12)5 r̂p(rW1 ,rW2)/r(n) and the spin degeneracygs of each
Landau state isgs51, because we are considering fully spi
polarized~spinless! electrons~CF’s!. The electronic density
r~n! is the same as the CF’s density and the~reduced! one-
body density matrixr̂p(rW1 ,rW2) that corresponds to the dy
namically uncorrelated stateFp(B* ) is given by

r̂p~z1 ,z2!5gs(
n50

p21

(
l 50

Ns* 21

wn,l* ~z1!wn,l~z2!, ~11!

where we are using the complex coordinateszi instead of the
two-dimensional vectorsrW i . In the above equation, the su
is extended over all occupied CF states, wherewn,l(z) and
wn,l* (z) are, respectively, the single particle wave functi
-

n

se

tial

and its conjugate. Using a standard algebra, one can e
prove that the contribution tor̂p(z1 ,z2) coming from thenth
CF Landau level is

(
l 50

Ns* 21

wn,l* ~z1!wn,l~z2!

5LnS uz12z2u2

2l 0~B* !2D (
l 50

Ns* 21

w0,l* ~z1!w0,l~z2!, ~12!

where Ln(x)5(ex/n!)(dn/dxn)(xne2x) are the Laguerre
polynomials of ordern50,1, . . . . By using the formulas
given in Eqs.~8! and~9! one can express the second term
Eq. ~12! as

(
l 50

Ns* 21

w0,l* ~z1!w0,l~z2!

5
1

2p l 0~B* !2 expF2
uz1u21uz2u2

4l 0~B* !2 G (
l 50

Ns* 21
1

l ! S z1* z2

2l 0~B* !2D l

.

~13!

In the thermodynamic limit both the density and the fillin
factorn5N/Ns are kept constant as the number of electro
N and the LL degeneracyNs go to infinity. Since the degen
eracyNs* of each CF Landau level is directly proportional
Ns then also (Ns* 21) goes to infinity in the thermodynami
limit. At this point the summation overl in Eq. ~13! is ex-
tended from 0 tò and one obtains

(
l 50

Ns* 21

w0,l* ~z1!w0,l~z2!

5
1

2p l 0~B* !2 expF2
uz1u21uz2u2

4l 0~B* !2 GexpF z1* z2

2l 0~B* !2G . ~14!

By substituting Eq.~14! in Eq. ~12!, one notes that, in the
thermodynamic limit, the one-body density matrixr̂p(z1 ,z2)
given from Eq.~11! depends solely onp and notNs* . After
some algebra, the statistical exchange term is found to
complex

l p~z1 ,z2!5H 1

p (
n50

p21

LnF uz12z2u2

2l 0~B* !2G J
3expF2

uz12z2u2

4l 0~B* !2GexpF i

2l 0~B* !2 U~rW13rW2!zUG ,
~15!

but since the radial distribution function is found by applyin
Eq. ~10!, the phase factor ofl p(z1 ,z2) disappears and we
obtain

gn~r 12!512expF2
r 12

2

2l 0~B* !2G H 1

p (
n50

p21

LnS r 12
2

2l 0~B* !2D J 2

,

~16!

where r 125uz12z2u is the interparticle distance. From th
result one may erroneously think that the radial distribut
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TABLE I. Exact results for the interaction energy per particleun corresponding to the Chern-Simon
wave function,Cn

CS at fillings n5p/(2p11). The interaction energy is in units of (1/4pe0)@e2/e l 0(B)#,
where l 0(B) is the magnetic length of the electrons. In the fifth column we report the available variat
Monte Carlo results of Kamilla and Jain~Ref. 7! obtained in the spherical geometry.

m p
n5

p

2mp11 Exact Ref. 7

1 1 1/3 2
1
2Ap

6
520.361 800 20.3619(90)

1 2 2/5 2
11
16Ap

10
520.385 343 20.3848(16)

1 3 3/7 2
107
128Ap

14
520.395 990 20.3947(15)

1 4 4/9 2
1971
2048Ap

18
520.402 064 20.4007(16)

1 5 5/11 2
35205
32768Ap

22
520.405 992

1 6 6/13 2
924747
786432Ap

26
520.408 742

1 7 7/15 2
2662079
2097152Ap

30
520.410 776

1 8 8/17 2
91033507
67108864Ap

34
520.412 341

1 9 9/19 2
27800473833
19327352832Ap

38
520.413 583

1 10 10/21 2
130215126675
85899345920Ap

42
520.414 592

1 ` 1/2 2
4

3p
520.424413
o

is

-

, we
function at fillingsn5p/(2mp11) will depend only onp
and not inm, but a deeper check tells that the dependence
m is ‘‘hidden’’ in the reduced fieldB* 5B/(2mp11) to
which the CF’s are subjected. We can further simplify th

FIG. 1. Exact values for the interaction energy per particleun

corresponding toCn
CS for fillings n5p/(2p11) ~square! and n

5p/(4p11) ~circle!. In the p→` limit we obtain the respective
results for fillingsn51/2 ~dotted line! and n51/4 ~dashed line!.
The energies are expressed in the standard units
(1/4pe0)@e2/e l 0(B)#.
n
expression by noting that(n50

p21Ln(x)5Lp21
1 (x), where

Ln
k(x)5(21)k(dk/dxk)@Ln1k(x)# are the associated La

guerre polynomials of ordern50,1, . . . and degree k
50,1, . . . .

Since both electrons and CF’s have the same density
can relate the CF magnetic lengthl 0(B* ) to the true elec-
tronic magnetic length l 0(B) by the simple relation

of
FIG. 2. Radial distribution functiongn(r ) for the first two states

of the seriesn5p/(2p11), p51,2, . . . and for thefilling n51/2
obtained as thep→` limit of such a series.
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l 0(B* )25 l 0(B)2(2mp11), so finally the radial distribution
function corresponding toCn

CS for n5p/(2mp11) is writ-
ten as

gn~r 12!512expF2
1

2~2mp11! S r 12

l 0~B! D
2G

3H 1

p
Lp21

1 F 1

2~2mp11! S r 12

l 0~B! D
2G J 2

, ~17!

in terms of the natural dimensionless distancer 12/ l 0(B).
The calculation of the interaction energy per particle c

responding toCn
CS for n5p/(2mp11) follows from Eq.

~4!, where after writingr(n)5p/@2p l 0(B* )2# we introduce
the dimensionless variablex5r 12/ l 0(B* ) and obtain the en-
ergy in a simple one-dimensional integral form,

un52
1

2pA2mp11
E

0

`

dx expS 2
x2

2 D
3FLp21

1 S x2

2 D G2 1

4pe0

e2

e l 0~B!
. ~18!

In thep→` limit and for a nonzero value ofm, the CS wave
function Cn

CS will correspond to the fillingn51/(2m),
wherem51,2, . . . and, in this limit the radial distribution
function is found to be

gn51/2m~r 12!5124F J1S 1

Am

r 12

l 0~B!D
1

Am

r 12

l 0~B!

G 2

, ~19!

where J1(x) is the Bessel function of the first order. It
interesting to note that this radial distribution function cor
sponds to a 2D system of fully-spin polarized (gs51) free
fermions whose Fermi radius is given bykF„n51/(2m)…
51/@Aml0(B)#.

The exact interaction energy per particle correspondin
the n51/(2m) state, wherem51,2, . . . iscomputed by ap-
plying Eq. ~4! and we find that

FIG. 3. Radial distribution functiongn(r ) for the first two states
of the seriesn5p/(4p11), p51,2, . . . and for thefilling n51/4
obtained as thep→` limit of such a series.
-

-

to

un51/2m52
4

3pAm

1

4pe0

e2

e l 0~B!
. ~20!

We calculated exactly the integrals appearing in Eq.~18! for
the first 10 values,p51,2, . . . ,10 of theseries of fillings
wherem51 and 2. The interaction energy per particleun is
shown in Fig. 1 for the series of statesn5p/(2p11)
~square! and n5p/(4p11) ~circle!. In the p→` limit the
results converge to the values given by Eq.~20!, respec-
tively, for the n51/2 ~dotted line! andn51/4 state~dashed
line!. In Figs. 2 and 3 we plot the radial distribution functio
corresponding to the first two values ofp for the series of
fillings given, respectively, by n5p/(2p11) and n
5p/(4p11) and we compare them to the radial distributi
function of the statesn51/2 and 1/4 obtained, respectivel
as thep→` limit of each of such series and given by E
~19!.

A better and more instructive idea of these results is giv
in Tables I and II, where we display the exact analytic
values of energy for ten states of the formn5p/(2p11)
and n5p/(4p11), respectively. Since different numeric
methods and approaches have been used to study these
nomena, we believe that these exact results can be quite

TABLE II. Exact results for the interaction energy per partic
un corresponding to the Chern-Simons wave functionCn

CS at fill-
ings n5p/(4p11). The interaction energy is in units o
(1/4pe0)@e2/e l 0(B)#, where l 0(B) is the magnetic length of the
electrons.

m p
n5

p

2mp11 Exact

2 1 1/5 2
1
2Ap

10
520.280249

2 2 2/9 2
11
16Ap

18
520.287217

2 3 3/13 2
107
128Ap

26
520.290577

2 4 4/17 2
1971
2048Ap

34
520.292544

2 5 5/21 2
35205
32768Ap

42
520.293835

2 6 6/25 2
924747
786432Ap

50
520.294748

2 7 7/29 2
2662079
2097152Ap

58
520.295428

2 8 8/33 2
91033507
67108864Ap

66
520.295954

2 9 9/37 2
27800473833
19327352832Ap

74
520.296373

2 10 10/41 2
130215126675
85899345920Ap

82
520.296715

2 ` 1/4 2
4

3p

1

&
520.300105
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ful to gauge their accuracy and their dependence on the n
ber of particles. Extrapolation of finite number calculatio
in the thermodynamic limit are not always unambiguous a
the results we provide can be a good test of accuracy
different approximation schemes. For a long time the qu
titative investigations of FQHE have been limited only
systems of a few number of particles, and only recently h
we been aware of a method developed by Kamilla and Ja7

which enables a treatment of much bigger systems of
particles. By adopting this method to the spherical geome
they used variational Monte Carlo techniques to compute
expectation values of the interaction and kinetic energy
particle for different wave functions, among them theCn

CS

wave function. In the spherical geometry, they found that
energies scale approximately linearly as 1/N whereN is the
number of electrons. In Table I we compare directly o
exact results with theirN→` extrapolations of the interac
m-

d
or
-

e
,
0
y,
e

er

e

r

tion energy per particle and as can clearly be seen, t
results are very accurate for all the relevant fillings they ha
considered, but eventually the method becomes more d
cult to apply and less accurate for states in then→1/2 limit.

In summary, we have analytically computed the intera
tion energy per particle for all states of FQHE that are d
scribed by a CS wave function. We provide tables of ex
analytical values of the interaction energy per particle for
these states. The data can be used to further test the rel
ity of different numerical methods employed on the study
FQHE.
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