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The microscopic approach for studying the half-filled state of the fractional quantum Hall effect is based on
the idea of proposing a trial Fermi wave function of the Jastrow-Slater form, which is then fully projected onto
the lowest Landau level. A simplified starting point is to drop the projection operator and to consider an
unprojected wave function. A recent study claims that such a wave function approximated in a Jastrow form
may still constitute a good starting point on the study of the half-filled state. In this paper we formalize the
effective hypernetted-chain approximation and apply it to the unprojected Fermi wave function, which de-
scribes the even-denominator-filling states. We test the above approximation by using the Fermi hypernetted-
chain theory, which constitutes the natural choice for the present case. Our results suggest that the approxi-
mation of the Slater determinant of plane waves as a Jastrow wave function may not be a very accurate
approximation. We conclude that the lowest Landau-level projection operator cannot be neglected if one wants
a better quantitative understanding of the phenomgs@163-18209)01416-7

I. INTRODUCTION N N
V=3 wlr-rdh-pen 3, [ o ol

The fractional quantum Hall effectFQHE) results from i<k =1
a strongly correlated incompressible liquid staiermed at pe(v)?
special uniform densitiep(») of a two-dimensional2D) + TJ dzflf d?ry v(ri—ra). (]
electronic system, subject to a strong-transverse magnetic
field B. For a fully spin-polarizedspinles$ system of elec-
trons with the spin degeneracy of each quantum stgte Here m, is the bare mass of the electrors=X;+iy; is
=1, the dominant sequence of fractional Hall states occurthe location of thejth electron in complex coordinates,

for filings of the lowest Landau levelLLL) v=p/  v(|rj—rl)=(1/4me;)e’/elzj—z] is the Coulomb-

(gep+1), wherege=2,4... is aneven integer andp interaction potential among charges, aNd contains the

=1,2,... is aninteger. electron-electron, electron-background, and background-
Much of the theoretical work on the FQHE is based onbackground interaction potential.

the study of the properties of a 2D fully spin-polarizsgin- From a theoretical point of view, the occurrence of Hall

les9 system ofN interacting electrons embedded in a uni- Plateaus at filling factors with odd denominators can be un-
form positive background, with the magnetic fiel8  derstood, to a great extent, through the original ideas of
high and temperaturd low, such that only the LLL is Laughlir’ and the composite fermiofCF) theory of Jairf
partially filled. At T=0, the interaction energies N contrastto the odd denominator fillings, the nature of
~ Y%(1/4meq) (€l el ), wherel,=AileB is the magnetic the groundstate at even denominators is still an intriguing
length ande is the dielectric constant of the background, areErOblerlT] qul_fnlg Lecgntlypkfli/a tbheory of a c%ng)preHssilbIe
assumed to be weak compared with the Landau-level split- o doC-1KE DEnavior b= 2/q. been proposed by Ral-

: _ '~ >FT5erin, Lee, and ReatHLR).®
ting w; and so all electrons are considered to remain in th Based on their theory, a 2D system of electrons subjected
LLL. §

. . to an external perpendicular magnetic fi@dwith the LLL
Efl_ect(;o_ns Wétg cTargeFeb(e>t03 tare con&de(;ed Ito be filling factor v=1/q,, is transformed to a mathematically
(r:lg?ic":‘ieel dllg—an Ap(f)n?/;msgr ej,i((:r? i ?hg spyer;?ﬁ;ri'gugg[lg;agéquivalent system of fermions interacting with a Chern-
Y ! Si field h that th ffecti ti
vector potential A(r)=(—By/2,Bx/2,0). The many- imons gauge field such that the average effective magnetic

] _ A field acting on the fermions is zero. The transformed Hamil-
electrop .system' is Fiescrlbed by the Hamiltontdm K+V tonian of the system is, thereforld, = K’ +V where
whereK is the kinetic energy operator

N K'= ! %{—if’LV-Jre[A(r-)—a(r-)]}2 ©)
N : J J J '
R=5— > [~V +eA(r)]2, 1) 2Me (=1
2me =1
The “Chern-Simons” vector potentiab(r) generates a
and “Chern-Simons” magnetic field
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N tions of the exact calculations with few electrons where the
b(r)=VXa(r)=0ge¢o E o(r—r))=p(r)dedo, (4 extrapolation to the thermodynamic limit is not totally unam-
=1 biguous. Both techniques are intrinsically approximated be-
where p(r) is the local particle density and, is the cause there is a class of cluster diagrams that cannot be fully
magnetic-field flux quantum. included in any closed form in the calculation of the radial
Assuming a uniform density(r) :pe( V), the electrons at distribution function. But differently from the EFHNC
special filling factors v=(¢q/B)pe(v)=1/qe Where g, method, the FHNC theory dqes not mvolvg approx!matlons
=2,4 ... feel no net magnetic field and in principle they can©f the many-body wave function, and in this sense it consti-
form a 2D gapless Fermi liquid, which is a compressibletutes a strong validity test for the EFHNC technique. The
state® Subsequent experimental observatiohthe geomet- unprojected radial distribution functlon obtained fro_m the
ric resonance of the charge carriers nearl/2 with ultra- EFHNC approach has a stronger oscillatory behavior than
sound waves moving perpendicular to the applied magnetithat observed by Chakrabort).The FHNC results support
field indicated the existence of a Fermi surface at half-filling.this conclusion and are n better qualitative agreement with
Parallel to the HLR approach, there is an ongoing effort toPther numerical results: Within the framework of the
develop a microscopic approach te=1/q. by explicitly EFHNC approach we can prove analytically that the radial
writing a trial Fermi wave function as a starting point. Suchdistribution function obtained from the unprojected Fermi
a trial wave function is writteh? as the product of the Wave function always has an incorrect short-range behavior

Laughlin state for bosons at=1/q, with the Slater determi- due to the LLL missing projection.

nant of free fermions at the corresponding density Since the application of the EFHNC approach for the un-
projected Fermi wave function of E5) is not straightfor-
*Piir{}‘&e: pLLL[\If‘fgSl‘fquet{<pk(r)}], (59 ward, in Sec. Il we present a detailed description of the

EFHNC formalism we used. Numerical results are presented
where the Laughlin wave function for bosons:at 1/q., is  and discussed in Sec. Ill, while Sec. IV is devoted to the

written as conclusions.
N N
Bose _ _>1\q —_19.12/212
‘I’v=1/qe_j1:[k (z=29 ejﬂl exp(—|z|%45).  (6) Il. THE EFFECTIVE HYPERNETTED-CHAIN
A FORMALISM FOR THE
The operatolP, | | is the LLL projection operator and,(r) EVEN-DENOMINATOR-FILLING STATE

are normalized 2D plane waves, which fill the Fermi disk up Integral equation techniques such as the hypernetted-

to ke(v). The resulting theory is essentially equivafetu . 4
: chain(HNC) theory for boson$ or the FHNC formalism for
t_he HLR _theory, though.m the HLR approach a transforma-fermién§4 germit gn accurate evaluation of the radial distri-
tion that involved attaching delta-function fluxes to the elec- . ; o . .
bution function and related quantities associated with a Ja-

trons was employed. The wave function of Ef) has been strow or a Jastrow-Slater wave function
tested numericalf/and it has been found that the theoretical W : W wave tunction. .
In particular they are extremely useful for calculations

picture gives a good description of small size systems at that are performed in the thermodynamic limit. They have

=1/2. . Lo .
: een extensively and successfully applied in studies of quan-
Up to now, we are not aware of many-body schemes th b fluids such as liquid¢He, 3He, and nuclear matter. Re-

chl?:tisth deeg(r:?ijsggOgyggfnﬂa;rtahea:hﬁ%g‘; ?]?r::?cd"t:ﬂihig cld tly, these methods have also been applied to problems in
v=1/0, y ' the newly developing areas of condensed matter theory such

simplified starting point is to drop the projection operator s the physics related to the FQHE. Because the FHNC
from Eq. (5 and to consider a simpler U“prrVOJeCted Fermitheory was developed to treat Jastrow-Slater wave functions
wave function. In a recent paper, Chakrabotfyresented a _of the form of Eq.(5) whereP,, , is dropped out, applying it
many-body approach to calculate the ground-state propertleta this case is a natural step

of the hali-filled state by using the above unprojected Fermi For odd denominator fillings where the Slater determinant
wave function. In his approach the squared Slater determi-

. . . Eonsists of single-particle states describing the Landau lev-
nant of the unprojected wave function was approximated b¥els, the FHNC has been appliédand proved to be rather

a Jastrow wave function with only two-body correlations Minvolved. A simpler and straightforward approximation of

it. If we do not consider the projection operator, the wave ;
function of Eq.(5) is of the Jastrow-Slater form, which can zg;?;)?ﬁgé's_}ghe EFHNC approach, known also as the Lado

?he dlrelg:tlly ttrr]eal'iszléyt;[]he Feth' hypernetted-cl‘@hﬂ;IC) f In this approach one views the square of the Slater deter-
eory.~In the ! eory there are no approximations ol iyt a5 some positive-valued function and writes it in the
the wave function, but since this theory is more complicate orm

than its Bose counterpart, the idea to write the Slater deter-
minant as a Jastrow wave function looks quite attractive be-

cause it simplifies the calculation of many quantities. N
In this paper we studied the even-denominator-filling |Det{<pk(r)}|2=ex;{ Wy(rij)
states ¢=1/2 and 1/4) of the FQHE by adopting the effec- i<]
tive hypernetted-chaifEFHNC) technique and the FHNC N
t_heory. These methods aI_Iovy us to compute _physmal_qu_anu- + E AGRIRD RS @)
ties on the thermodynamic limit, without having the limita- i<j<k
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The Pauli principle can be thought of as an operator thavertex correction. It has been provédhat such a series can
introduces many-body correlations between particles in anabe recast into a series of irreducible diagrams with the full
ogy to the(pseudgpotential describing the dynamic correla- one-body density(r) being the vertex correction. Since the
tions. Retaining only the two-body correlations in Ef). we  full density is a constant, then the HNC equations for the

have approximately radial distribution function are exactly the same as for a Ja-
strow wave function without the single-particle term and at
N density po(v)=v/(27l3).
|Det{¢k(r)}|2~ex;{z w(rij)}, (8 To construct the potential(r ;) for a given determinant
1<l we require that the HNC evaluation gfr,,) recovers the

. ) i exactradial distribution function of the noninteracting sys-
wherew(r;;) is the two-body cqrrelatlonpseupl();potentlal. tem Gigeal(r12)=1—(1/9)|ligeal(r12)|> Where the exact
In a next step of a systematic approximation scheme, Ongiaiistical-exchange factor for the 2D ideal Fermi gas is de-
may include triplet correlation factors etc., until the reqwredfined as (ror )—Z)(r £.)/ (). The(reduced single
ideal\'1,!2)— 1:12 e . -

accuracy is achieved. This approximation greatly simplifies__ " ; . : s

the analysis of the problem and the calculation of the radiaPartICIe density matrix for the Slater determinant is given by
distribution function, which is the only quantity needed to
compute the interaction energy per particle. One has

ﬁ(rl,r2>=gs‘klg2k( ) n(k)ep(r)ee(rs) (13

N N N
|‘I";§'1",};e 2~H f(rij)ZH eX[{W(rij)]H eXp(—|ZJ-|2/2|(2)) where the ground-state occupation number for a fully spin-
=] =] =1 polarized(spinles$ 2D ideal Fermi gasds=1) is
N N
=11 Try2LL ext=lz7215), ) 1, |kl=ke(»)

"K=10, [K>ke(r). (149

where the effective correlation factor is given by
The normalized single-particle states of a 2D ideal Fermi gas

_ 1 of electrons occupying an area are plane wavespy(r)
f(rij):f(rij)exr{iw(rij)} (10 =(1/JA)EX. The Fermi radius that corresponds to the den-
sity pe(v) is ke(v)=(1Ny)V2v/gs and a trivial calculation
and gives
f(ry)=(rp)% an g kel .
|dea|( 1 2) kF(V)r]_Z ’ ( )
By using the Bose HNC theory one can express the radial
distribution function wherer 1,=|r,—r4| andJ;(x) is the first-order Bessel func-
tion.
_ The static structure function associated with the radial dis-
N(N—-1) I . ) X
g(ry)= — tribution functiongiqea(r) is defined as
pe(v)
— . _ F
J’ d2r3~ . ‘der |\If5§'{}ge(rl- 3 rN)|2 Sideal(K) =1+ pe(¥)[Gigeal(r) — 11", (16)
X ) . where[f(r)]" denotes the 2D Fourier transform of a func-
szrl d?ry d?rge - d?ry[WESTR (ry---r\)[2 tion f(r), while [f(k)]7 " is the inverse 2D Fourier trans-

form. For a spin-polarizedspinles$ 2D ideal Fermi gas of
(120 electrons we have

as a series of cluster terms, associated with linked diagrams.

The difference with respect to the case of the standard Ja- _ —1-4
. . K . . . gldeal(rlz)

strow wave function, in which the single-particle term is not

present, is that the diagrams are not irreducible and each

vertex brings thauncorrelatedone-body density,(r) as a  and the static-structure factdiis given by

{ k K { k 2} =2k ()
_ = 14
Seea(0=1 7| 2| 2k V' | 2ke(0)) | ] 19

1, k=2ke(v).

Ji[Ke(v)r 2] 2

Ke(v)rop

17

2
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The above prescription on constructingr ,,) leads us to a U(r 1) =29Ko(Qry) +2gIn(r )
(pseudgpotential of the form . SO =
. L [[Seea0—2)""
- [Sigeal(k) — 117 “peM | Sdealk) '
W(r12) =1l G121~ o =6 } 7 o

(19) whereKy(x) is the modified Bessel functio is the cutoff
parameter of order llf, and the relation

where the radial distribution functiogyge,(r12) and the as- 2202

sociated structure functioB;ye, (k) correspond to the dy- ; —Zm

namically uncorrelated 2D ideal Fermi gas. By substituting J d*r e'q’[ln(r)+KO(Qr)]=q2(q2+Q2) (30

Egs.(17) and(18) in Eq. (19) we obtain an explicit expres-

sion forw(r,) and consequently, due to Eq8) and(10),  holds. The splitting should be done in such a way that

we arrive at ~ _
u(r12) + N(r1p) =us(ri2) + Ng(r1o), (31

N
whem 2= T exu(ry)], (200
e i<j
N(r12) +X(r12) = Ng(r 12) + Xs(r 12). (32
where u(ri;) =2 Inf(rj)) +w(r;;)=2gn(rj) +w(rj). The ra-  The final set of equations is solved by initially setting
dial distribution function is then found by applying the fol- N_(r,,)=0 in the equation
lowing Bose EFHNC equations:
- Xs(r12) =exgd Us(r12) +Ng(r12) +E(r19) ] —Ng(ri) — 1.
X(r2) =exgu(rip) + N(rp) +E(rip)]=N(rp—1, (33

21 Then we perform a 2D Fourier transformX§(r 1,) to obtain

XE(q). Later, we computexF(q)=XE(q)+uf(q), so that

N(r 1) = pe( v)f d2r 3X(r13) [ X(rzp) +N(ra)], NF(q) is easily computed from Eq24). Straightforwardly
22 N&(a)=NF(q)+uf(q) and by applying an inverse 2D Fou-

rier transform on it we obtain the nei(r,). This proce-

and dure goes on until the desired accuracy is reached and the
pair-distribution function is obtained from
9(rip) =1+ X(rp) +N(ryp). (23
g(r12)=1+Xy(r12) + Ng(rgo). (34)

The generation of diagrams contributing d¢ér ;,) must go . ,
through a self-consistent procedure. As a first approximatio] '€ computation of(r;,) allows us to find several other
(and a good onewe neglect the contribution of the elemen- related quantities like the interaction energy per particle and
tary diagrams<E(r,,) and adopt the so-called EFHNC/O ap- the static structure factor. In the next section we show the
proximation, where the “0” means neglect of eIementaryreSUItS we found for two even-denominator-filling states cor-
diagrams. The summation of the nodal diagrax(s,) is responding to the fractional fillings= 1/, whereg.,=2 and
easily performed in the Fourier space resulting in .

XF(q)? . RESULTS
1-pe()XF(q) (24) In this paper we applied the EFHNC method and the
FHNC theory to study the even-denominator-filling state of

In order to handle the 2D logarithmi¢pseudgpotential the FQHE described by the unprojected Fermi wave function

U(ry), the standard procedure is to separafe;,), the \Ifﬁir{‘,};e. Since the unprojected Fermi wave function is of

nodal functionN(r,), and the non-nodalcompositeé func-  the Jastrow-Slater form we believe that the first choice on its

NF(a) = pe(v)

tion X(r,) in their short-range and long-range parts: study is the application of the FHNC theory, which differ-
ently from the EFHNC approach does not rely on any ap-
U(r 1) =Us(r12) +U(r 1), (25)  proximation of the wave function. A detailed description of

this formalism is given elsewhet& and here we limit our-
~ selves to report the results we have obtained. Since the
N(r12) =Ns(r1) —ui(rip, (26 FHNC theory is much more complicated than its Bose coun-
terpart, the idea to “bosonize” the Fermi wave function is

and certainly very attractive; therefore, we applied the EFHNC
~ approach.
X(r12) =Xs(raz) +uy(ro). (27) This approach contains an approximation of the originally
N ~ ) unprojected Jastrow-Slater wave function since the radial
The decomposition ofi(r;,) is done as follows: distribution function is computed by approximating the

5 squared Slater determinant of plane waves with a Bose-
Ug(r12)= —20eKo(Qr12) +IN[Gigeal(F12) 1, (28  Jastrow wave function. The utility of this treatment is based
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1.2 . . . sponding to the 2D ideal Fermi gas, the Bose wave function
ol SN\ w858, and the unprojected Fermir’ )} wave function,

/ | by employing different techniques. As seen in Fig. 1, the
unprojected radial distribution function obtained from the
I f FHNC/0 theory has more pronounced peaks than that ob-
o6l 1 tained by the EFHNC/0 approach and both are not in agree-

/i ment with respective resultS,where very little oscillatory

0.4 - v,-"',’ o 1;2 g’g:; HNG/0 structure ing(r) has been found. Finite-size calculations for
- - -~ 1/2 Fermi EFHNC/0 N=9 spin-polarized electrons confined to the LLL on a
02r /5 —— 1/2Fermi FHNC/0 | spherical surfaceconfirm the existence of some sort of
0.0 7 , , ‘ “Friedel-like” oscillations on the behavior ofj(r) for the
00 20 40 680 80 100 filling »=1/2. The radial distribution function for the exact
rllo N=9 ground state has been found indistinguishable from

that corresponding to the projected Fermi wave function,
half-filling statev=1/2 as a function of the dimensionless distance SU99esting that the Fermi trial wave function is a good varia-
r/l, for the 2D ideal Fermi gagsolid), the Bose wave function of tlanez?!nistate. Based on the CF theory one may think of the
Eq. (6) (by applying the Bose HNC/O technique, doftexhd the V', =75, Wave function as the limitgg—o) of the CF wave
unprojected Fermi wave function of E¢) from the EFHNC/O  fynction due to Jaiﬁ,

(dashed and the FHNC/Q(solid circles method. In all cases the

calculations were performed by neglecting the elementary dia- CE o & Bose *

grams, and the “0” denotes this choice. \Pv=p/(qep+l)(B )= PLLL[\I’FU%CDP(B )1 (37)

FIG. 1. We plot the radial distribution functiog(r) for the

on the fact that many related physical quantities can now bwhere ®,(B*) is the Slater determinant wave function of
easily computed. It has been arglfethat this approach p-filled CF Landau levels, evaluated at the magnetic field
should be a suitable approximation for the fully projectedB* =B/(gep+1). Fillings of the formv=p/(2p+1) de-
wave function atv=1/2 since one may think that the only scribed by both the projected and the unprojected CF wave
effect of theP, | operator is to make the wave function very function have been extensively studied by Kamitieal.'

Laughlin-like (but with the correct statistitsThis argument ~ USing Monte Carlo techniques. o _
looks attractive, but certainly needs reliability testing. In a range of filling factors in the vicinity of the half-filled

It is known that both the EFHNC and the FHNC tech- State (for instance 6/13) they observed oscillations of the
niques are intrinsically approximate because there is a set éfdial distribution function for both the projected and the
cluster diagramscorresponding to the so-called elementaryUnprojectedf cases finding that the LLL projection basically
diagrams that cannot be fully included in any closed form. réduces the magnitude of these peaks. At this stage it is
Several schemes have been devised to include such clusfeatural to expect that the oscillations on the radial distribu-
diagrams at various levels of approximation. The simplestion function will persist atv=1/2 as well. The application
approximation of totally neglecting these terms leads to reli0f the FHNC/O theory to the unprojected Fermi wave func-
able results, so in this paper we adopt the so-calledion of Eqg. (5) indeed gives support to this picture. Strong

EFHNC/0 and FHNC/O approximation, whet®’’ means OScillatory behavior ing(r) is observed in agreement with

neglect of elementary diagrams. our expegtations. The priority of these_tecggiiques is to treat
In both methods the interaction-energy per particle isthe unprojected many-body wave functidt) =), exactly at

computed from the same formula the thermodynamic limit. It would be highly desirable to
Formi e Formi incorporate the LLL projection within these schemes in order
1 (VST I VIVETh) to directly compare the results with other finite-size

calculations’ Although unprojected, these calculations still
contribute to fill the gap between finite-size simulation esti-
mates and results exactly at the thermodynamic limit.
:M 2 - Both EFHNC/0 and FHNC/0 methods do not include the
2 d<r [gv=l/qe(r) 1] U(|r|)! (35) . . . . .
elementary diagrams in the solution of the respective integral
equations, while the EFHNC/0 approach still contains a sec-
ond approximation of the Fermi wave function in a
bosonized form. A comparison between the respective radial

uV=l/q =N i i
e Fermi Fermi
N <‘I,v:l/qe|q,1/:l/qe>

while the “kinetic-energy” per particle is expected to be
greater than the lowest cyclotron energy

1 (whermi R |ghermiy 1 distribution functions at fillingr=1/2 suggests that “the
S T e, (36)  bosonization” of the wave functiotf, which is the funda-
N <«1f52f{;1;e|\1r553",1;e> 2 mental idea behind the EFHNC approach, does not approxi-

. mate very wellg(r) and has non-negligible differences with
because the unprojected wave funcﬂbﬁi%‘e does noten- i
tirely lie within the LLL. At present our interest is devoted In Fig. 2 we plot the static-structure fact&q) for the
only to the calculation of the interaction-energy per particlehalf-filled state obtained from the 2D ideal Fermi gas, the
and not to the calculation of the “kinetic-energy” per par- Bose wave function of Eq(6), and the unprojected Fermi
ticle. wave function. One observes that the EFHNC/O
In Fig. 1 we plot the radial distribution function corre- “bosonized” structure factor is smoother than the one ob-



PRB 59 EFFECTIVE HYPERNETTED-CHAIN STUDY OF EVEN. .. 10 199
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0.0 L& : : 0.0 ' ' : :
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aql, ql,
FIG. 2. We plot the static structure fact&q) for filling v FIG. 4. We plot the static structure fact8¢q) for the fillings

=1/2 as a function ofjl, for the 2D ideal Fermi gassolid), the  »=1/q, whereq.=2,4 obtained from the unprojected Fermi wave
Bose wave function of Eq6) (dotted and the unprojected Fermi function \pﬁif{}g by applying the EFHNC/0 approximation.
wave function Eq(5) employing both the EFHNC/(dashed and ¢

the FHNC/O(solid circleg technique. . . .
( 3 a on a given function as &dz; and as a result displaces the

tained from the FHNC/0 method. In Figs. 3 and 4 we plot thel th electron by an amount proportionallid from the center
radial distribution function and the static structure factor cor-Of the vortex.

responding to the unprojected Fermi wave function for the BY applying the EFHNC/O approach to the unprojected
filings »=1/2 and 1/4 obtained from the EFHNC/O ap- half-filled Fermi wave function we obtain a/(o)® depen-
proach. dence ofg(r) for smallr. With no LLL projection, the plane

The interaction-energy per particle obtained from thesevaves do not act as operators so the number of zeros on each
wave functions is shown in Table I. The valug_,, for the  electron will be three, where two zeros are coming from the
unprojected¥ e wave function is lower than the value Jastrow part and a single zero comes from the Slater deter-
suggested from exact diagonalizations of small systems of utinant as required by the Pauli principle. In this case the
to 12 electron® in the spherical geometry shown in the plane waves of the unprojected wave function cannot dis-
fourth row of Table I. We believe that the source of this place the zeros o 7°3%, . In addition, the Slater determi-
discrepancy is the missing projection ﬂffirﬂ;e into the  nant brings its own zero related to the antisymmetrization
LLL. As shown in Fig. 5 we found that the unprojected condition. By these arguments we could have anticipated that
radial distribution function obtained from the EFHNC/0 ap- Within the EFHNC/O treatment, the unprojected radial distri-
proach has an erroneous,_q(r—0)=(r/lp)® and bution function should behave asg,-yj (r—0)
9,—14(r —0)=(r/15)*° behavior for the respective fillings =(r/1,)2@*1) for the corresponding fillings= 1/q, where
v=1/2 and 1/4. Je=2,4.

Exact numerical diagonalizatioﬁ%,which of course treat The LLL projection corrects this discrepancy, because the
the electrons as fully prog'ected, suggest a different depensgjection operatoP,,, makes the plane waves act as op-
dence, for instance alo)” dependence for the filling 1/2. erators on the Laughlin-like wave function. The above physi-
This arises because in the fully LLL projected Hilbert spacecy| arguments are expressed in mathematical form by recall-
of Laughlin’s Jastrow-like wave functions, the plane-wavejnq that the unprojected Fermi wave functions corresponding
state,(r;) =exp(k-r;) acts as an operator; namelj acts g ,=1/2 andv=1/4 have different Jastrow factors and dif-

ferent Slater determinants, since the respective Fermi disk

12 [ e ' radiuskg(v) is filling dependent.
10 b In the smalle limit one has g(r—0)~exgugr—0)]
- and by using EQ.(28) and the formula lim.,oKq(Qr)
08| 7 = —In(Qr/2)— vy we obtain that
506 1 . . .
L TABLE I. We show the interaction-energy per particie_ 1,
04 . in 1/4mey(e?/ely) units computed from the unprojected Fermi
—— 1/2 Fermi EFHNG/0 wave function® 71! | wherege=2 and 4. Our results were ob-
o2 [ i 1/4 Fermi EFHNC/0 ] . . e o
tained within the EFHNC/0 approximation. In the fourth row we
00 4L . . ‘ report the exact diagonalization results of Famal. (Ref. 19.
0.0 4.0 80 120 160 200
r/lo v Wave function Method u,
FIG. 3. We plot the radial distribution functiog(r) for the 1/2 phem EFHNC/O —0.4961
even-denominator-filling stater=1/g, where q.=2,4 obtained 1/4 qIEiT/E EEFHNC/0 —0.3624

Fermi

from the unprojected Fermi wave functioir; 7, within the 1/2  Exact diagonalization Ref. 19  —0.469+0.005
EFHNC/0 approximation.
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8.6 ' ' projected Fermi wave functioﬁrfir{}‘q'e, which describes the
126 even-denominator-filling statg,=2,4 of the FQHE.
-16.6 Both EFHNC and FHNC calculations were performed by
20.5 _ neglecting the so-called elementdnyr bridge diagrams on
g 246 | _' ] the cluster expansion of the radial distribution function,
£ 286 | . 1 adopting the EFHNC/0 and FHNC/0 approximations, where
' - “0” means neglect of elementary diagrams. The EFHNC
826 1 e—o12 ] approach incorporates also a second approximation since it
366 [ oL A treats the original Fermi wave function as a bosonized Ja-
-40.6 * ‘ . ‘ ' strow function.
30 27 24 21 18 -15 -1.2

The unprojected radial distribution function obtained from
the FHNC/O theory has more pronounced peaks than that
FIG. 5. The smalk- behavior of the radial distribution function obtained from the EFHNC/O approach and both are not in
g(r) for filings »v=1/2 (circled and »v=1/4 (squaredi where  agreement with recent resuftsvhere very little oscillatory
In[g(r)] versus Ifir/lp] is plotted. Within the EFHNC/O approxima- pehavior has been found.
tion, we havegv=1/_2(_r—>0)~(”'0)6 and g, yu(r—0)~(r/lo)* We first find numerically and then prove analytically that
for the respective fillings=1/2 and 1/4. the unprojected radial distribution function does not have the
correct short-range behavior of the projected case for the
+20ey+ |n[9idea|(fﬂo)]} fillings v= 1/9, Whereqe=_2 and 4. We prove tha_t the sma_ll-
r behavior of the unprojected radial distribution function
(38)  g(r) is given by Iig(r—0)]~(20.+2)In(t/lo) and we explain
where y=0.577 ... is theEuler constant. For states of that this is due to the missing LLL projection of the wave
the form v=1/g, where g, is even, the behavior of function. Since there is no LLL projection, the plane waves
IN[Gigea(r—0)] is given by Idggea(r—0)]~2INke(x)r]  ©f the Slater determinant do not act as operators to displace
—In(4), implying that the electrons from the center of the vortex to give the correct
small+ behavior.
r The FHNC/0 study reveals strong “oscillations” on the
In[g(r—>0)]~(2qe+2)ln(5 +e(v,y), (39 unprojected radial distribution function. This oscillatory be-
i ) havior has been se&nin a range of filling factors in the
wherec(v, y) is an irrelevant constant that dependsioand jcinity of the half-filled state(for instance filling 6/13) for
12 The unprojected radial dlstnbutlon.functlon in the snrall- pqip projected and unprojected wave functions and in finite-
limit has a ¢/15)®% component coming from the Jastrow gjze calculations of few electrons confined to the LLL on a
part of the Fermi wave function, while the contribution of the spherical surfacd,and our findings are in good qualitative
Slater determinant is proportional t@/{y)?, the same for agreement with them.
both fillings v=1/2 and 1/4, irrespective of their different Compared to the FHNC/O results we see that the
Fermi radiuskg(v) values. EFHNC/0 approach smoothes the peaks of the radial distri-
Although we do not explicitly include the projection op- pytion function and loses part of its structure.
eratorP,  in the Fermi wave function and instead use its  Although we perform our calculations by using an un-
unprojected counterpart, the Jastrow factor provides a gooprojected wave function, the Jastrow factor provides some
projection?! which should be particularly effective as far as amount of projection onto the LLL; however, a better under-
ground-state properties are concerned. However, to achievesganding of other quantities, such as the excitation spectrum,
deeper understanding of the even-denominator-filling stateeeds the inclusion of the full LLL projection.
and to study other guantities, such as the excitation spectrum, These results suggest that the approximation of the Slater
these results strongly suggest that the full LLL projection isdeterminant of plane waves as a Bose Jastrow wave function,
needed. namely the “bosonization” of the unprojected Fermi wave
Unfortunately, such a projection leads to a wave functionfunction (not the unprojected Fermi wave function itgelf
that cannot be treated directly within the EFHNC and FHNCmay not constitute an enough accurate approximation to give
formalism because the structure of a determinant of singlea highly reliable quantitative evaluation of the radial distri-
particle orbitals is lost. A more general projection schemepution function and related quantities.
applied to few-electron systems in a spherical geonfétry,
seems promising. Such a scheme introduces a many-body
dependence on all single-particle orbitals, which, however, ACKNOWLEDGMENTS
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In[r/lo]

g(rH0)~exp{ quln(%

IV. CONCLUSIONS
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