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Effective hypernetted-chain study of even-denominator-filling state
of the fractional quantum Hall effect
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The microscopic approach for studying the half-filled state of the fractional quantum Hall effect is based on
the idea of proposing a trial Fermi wave function of the Jastrow-Slater form, which is then fully projected onto
the lowest Landau level. A simplified starting point is to drop the projection operator and to consider an
unprojected wave function. A recent study claims that such a wave function approximated in a Jastrow form
may still constitute a good starting point on the study of the half-filled state. In this paper we formalize the
effective hypernetted-chain approximation and apply it to the unprojected Fermi wave function, which de-
scribes the even-denominator-filling states. We test the above approximation by using the Fermi hypernetted-
chain theory, which constitutes the natural choice for the present case. Our results suggest that the approxi-
mation of the Slater determinant of plane waves as a Jastrow wave function may not be a very accurate
approximation. We conclude that the lowest Landau-level projection operator cannot be neglected if one wants
a better quantitative understanding of the phenomena.@S0163-1829~99!01416-2#
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I. INTRODUCTION

The fractional quantum Hall effect1 ~FQHE! results from
a strongly correlated incompressible liquid state2 formed at
special uniform densitiesre(n) of a two-dimensional~2D!
electronic system, subject to a strong-transverse magn
field B. For a fully spin-polarized~spinless! system of elec-
trons with the spin degeneracy of each quantum stategs

51, the dominant sequence of fractional Hall states occ
for fillings of the lowest Landau level~LLL ! n5p/
(qep11), where qe52,4 . . . is an even integer andp
51,2, . . . is aninteger.

Much of the theoretical work on the FQHE is based
the study of the properties of a 2D fully spin-polarized~spin-
less! system ofN interacting electrons embedded in a un
form positive background, with the magnetic fieldB
high and temperatureT low, such that only the LLL is
partially filled. At T50, the interaction energie
;n1/2(1/4pe0)(e2/e l 0), where l 05A\/eB is the magnetic
length ande is the dielectric constant of the background, a
assumed to be weak compared with the Landau-level s
ting \vc and so all electrons are considered to remain in
LLL.

Electrons with charge2e (e.0) are considered to b
confined in a 2D plane, subjected to a perpendicular m
netic fieldB5“3A(r ), whereA(r ) is the symmetric gauge
vector potential A(r )5(2By/2,Bx/2,0). The many-
electron system is described by the HamiltonianĤ5K̂1V̂

whereK̂ is the kinetic energy operator

K̂5
1

2me
(
j 51

N

@2 i\“ j1eA~r j !#
2, ~1!

and
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V̂5(
j ,k

N

v~ ur j2r ku!2re~n!(
j 51

N E d2r v~ ur j2r u!

1
re~n!2

2 E d2r 1E d2r 2 v~ ur12r2u!. ~2!

Here me is the bare mass of the electrons,zj5xj1 iy j is
the location of the j th electron in complex coordinates
v(ur j2r ku)5(1/4pe0)e2/euzj2zku is the Coulomb-
interaction potential among charges, andV̂ contains the
electron-electron, electron-background, and backgrou
background interaction potential.

From a theoretical point of view, the occurrence of H
plateaus at filling factors with odd denominators can be
derstood, to a great extent, through the original ideas
Laughlin3 and the composite fermion~CF! theory of Jain.4

In contrast to the odd denominator fillings, the nature
the groundstate at even denominators is still an intrigu
problem and only recently has a theory of a compress
Fermi-liquid-like behavior atn51/qe been proposed by Hal
perin, Lee, and Read~HLR!.5

Based on their theory, a 2D system of electrons subjec
to an external perpendicular magnetic fieldB, with the LLL
filling factor n51/qe , is transformed to a mathematicall
equivalent system of fermions interacting with a Che
Simons gauge field such that the average effective magn
field acting on the fermions is zero. The transformed Ham
tonian of the system is, therefore,Ĥ85K̂81V̂ where

K̂85
1

2me
(
j 51

N

$2 i\“ j1e@A~r j !2a~r j !#%
2. ~3!

The ‘‘Chern-Simons’’ vector potentiala(r ) generates a
‘‘Chern-Simons’’ magnetic field
10 194 ©1999 The American Physical Society
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b~r !5“3a~r !5qef0 (
j 51

N

d~r2r j !5r~r !qef0 , ~4!

where r(r ) is the local particle density andf0 is the
magnetic-field flux quantum.

Assuming a uniform densityr(r )5re(n), the electrons at
special filling factors n5(f0 /B)re(n)51/qe where qe
52,4 . . . feel no net magnetic field and in principle they c
form a 2D gapless Fermi liquid, which is a compressib
state.6 Subsequent experimental observation7 of the geomet-
ric resonance of the charge carriers nearn51/2 with ultra-
sound waves moving perpendicular to the applied magn
field indicated the existence of a Fermi surface at half-fillin

Parallel to the HLR approach, there is an ongoing effor
develop a microscopic approach ton51/qe by explicitly
writing a trial Fermi wave function as a starting point. Su
a trial wave function is written8,9 as the product of the
Laughlin state for bosons atn51/qe with the Slater determi-
nant of free fermions at the corresponding density

Cn51/qe

Fermi 5 P̂LLL@Cn51/qe

Bose Det $wk~r !%#, ~5!

where the Laughlin wave function for bosons atn51/qe is
written as

Cn51/qe

Bose 5)
j ,k

N

~zj2zk!
qe)

j 51

N

exp~2uzj u2/4l 0
2!. ~6!

The operatorP̂LLL is the LLL projection operator andwk(r )
are normalized 2D plane waves, which fill the Fermi disk
to kF(n). The resulting theory is essentially equivalent8 to
the HLR theory, though in the HLR approach a transform
tion that involved attaching delta-function fluxes to the ele
trons was employed. The wave function of Eq.~5! has been
tested numerically9 and it has been found that the theoretic
picture gives a good description of small size systems an
51/2.

Up to now, we are not aware of many-body schemes
include the projection operator that can be applied to the
of states described byCn51/qe

Fermi at the thermodynamic limit. A

simplified starting point is to drop the projection opera
from Eq. ~5! and to consider a simpler unprojected Fer
wave function. In a recent paper, Chakraborty10 presented a
many-body approach to calculate the ground-state prope
of the half-filled state by using the above unprojected Fe
wave function. In his approach the squared Slater dete
nant of the unprojected wave function was approximated
a Jastrow wave function with only two-body correlations
it. If we do not consider the projection operator, the wa
function of Eq.~5! is of the Jastrow-Slater form, which ca
be directly treated by the Fermi hypernetted-chain~FHNC!
theory.11 In the FHNC theory there are no approximations
the wave function, but since this theory is more complica
than its Bose counterpart, the idea to write the Slater de
minant as a Jastrow wave function looks quite attractive
cause it simplifies the calculation of many quantities.

In this paper we studied the even-denominator-filli
states (n51/2 and 1/4) of the FQHE by adopting the effe
tive hypernetted-chain~EFHNC! technique and the FHNC
theory. These methods allow us to compute physical qua
ties on the thermodynamic limit, without having the limit
ic
.
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tions of the exact calculations with few electrons where
extrapolation to the thermodynamic limit is not totally unam
biguous. Both techniques are intrinsically approximated
cause there is a class of cluster diagrams that cannot be
included in any closed form in the calculation of the rad
distribution function. But differently from the EFHNC
method, the FHNC theory does not involve approximatio
of the many-body wave function, and in this sense it con
tutes a strong validity test for the EFHNC technique. T
unprojected radial distribution function obtained from t
EFHNC approach has a stronger oscillatory behavior t
that observed by Chakraborty.10 The FHNC results suppor
this conclusion and are in better qualitative agreement w
other numerical results.9,12 Within the framework of the
EFHNC approach we can prove analytically that the rad
distribution function obtained from the unprojected Fer
wave function always has an incorrect short-range beha
due to the LLL missing projection.

Since the application of the EFHNC approach for the u
projected Fermi wave function of Eq.~5! is not straightfor-
ward, in Sec. II we present a detailed description of
EFHNC formalism we used. Numerical results are presen
and discussed in Sec. III, while Sec. IV is devoted to t
conclusions.

II. THE EFFECTIVE HYPERNETTED-CHAIN
FORMALISM FOR THE

EVEN-DENOMINATOR-FILLING STATE

Integral equation techniques such as the hypernet
chain~HNC! theory for bosons13 or the FHNC formalism for
fermions14 permit an accurate evaluation of the radial dist
bution function and related quantities associated with a
strow or a Jastrow-Slater wave function.

In particular they are extremely useful for calculatio
that are performed in the thermodynamic limit. They ha
been extensively and successfully applied in studies of qu
tum fluids such as liquid4He, 3He, and nuclear matter. Re
cently, these methods have also been applied to problem
the newly developing areas of condensed matter theory s
as the physics related to the FQHE. Because the FH
theory was developed to treat Jastrow-Slater wave funct
of the form of Eq.~5! whereP̂LLL is dropped out, applying it
to this case is a natural step.

For odd denominator fillings where the Slater determin
consists of single-particle states describing the Landau
els, the FHNC has been applied11 and proved to be rathe
involved. A simpler and straightforward approximation
such theory is the EFHNC approach, known also as the L
approximation.15

In this approach one views the square of the Slater de
minant as some positive-valued function and writes it in
form

uDet$wk~r !%u25expF(
i , j

N

w2~r i j !

1 (
i , j ,k

N

w3~r i ,r j ,r k!1•••G . ~7!
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The Pauli principle can be thought of as an operator t
introduces many-body correlations between particles in a
ogy to the~pseudo!potential describing the dynamic correl
tions. Retaining only the two-body correlations in Eq.~7! we
have approximately

uDet$wk~r !%u2'expF(
i , j

N

w~r i j !G , ~8!

wherew(r i j ) is the two-body correlation~pseudo!potential.
In a next step of a systematic approximation scheme,

may include triplet correlation factors etc., until the requir
accuracy is achieved. This approximation greatly simplifi
the analysis of the problem and the calculation of the ra
distribution function, which is the only quantity needed
compute the interaction energy per particle. One has

uCn51/qe

Fermi u2')
i , j

N

f ~r i j !
2)

i , j

N

exp@w~r i j !#)
j 51

N

exp~2uzj u2/2l 0
2!

5)
i , j

N

f̃ ~r i j !
2)

j 51

N

exp~2uzj u2/2l 0
2!, ~9!

where the effective correlation factor is given by

f̃ ~r i j !5 f ~r i j !expF1

2
w~r i j !G , ~10!

and

f ~r i j !5~r i j !
qe. ~11!

By using the Bose HNC theory one can express the ra
distribution function

g~r 12!5
N~N21!

re~n!2

3

E d2r 3•••d2r N uCn51/qe

Fermi ~r1•••rN!u2

E d2r 1 d2r 2 d2r 3•••d2r NuCn51/qe

Fermi ~r1•••rN!u2

,

~12!

as a series of cluster terms, associated with linked diagra
The difference with respect to the case of the standard
strow wave function, in which the single-particle term is n
present, is that the diagrams are not irreducible and e
vertex brings theuncorrelatedone-body densityr0(r ) as a
at
l-

e

s
l

al

s.
a-
t
ch

vertex correction. It has been proved16 that such a series ca
be recast into a series of irreducible diagrams with the
one-body densityr(r ) being the vertex correction. Since th
full density is a constant, then the HNC equations for t
radial distribution function are exactly the same as for a
strow wave function without the single-particle term and
densityre(n)5n/(2p l 0

2).
To construct the potentialw(r 12) for a given determinant

we require that the HNC evaluation ofg(r 12) recovers the
exact radial distribution function of the noninteracting sy
tem gideal(r 12)512(1/gs)u l ideal(r 12)u2 where the exact
statistical-exchange factor for the 2D ideal Fermi gas is
fined asl ideal(r1 ,r2)5 r̂(r1 ,r2)/re(n). The~reduced! single-
particle density matrix for the Slater determinant is given

r̂~r1 ,r2!5gs (
uku<kF~n!

n~k!wk* ~r1!wk~r2! ~13!

where the ground-state occupation number for a fully sp
polarized~spinless! 2D ideal Fermi gas (gs51) is

n~k!5H 1, uku<kF~n!

0, uku.kF~n!.
~14!

The normalized single-particle states of a 2D ideal Fermi
of electrons occupying an areaA are plane waveswk(r )
5(1/AA)eikr . The Fermi radius that corresponds to the de
sity re(n) is kF(n)5(1/l 0)A2n/gs and a trivial calculation
gives

l ideal~r1 ,r2!52
J1@kF~n!r 12#

kF~n!r 12
, ~15!

wherer 125ur22r1u andJ1(x) is the first-order Bessel func
tion.

The static structure function associated with the radial d
tribution functiongideal(r ) is defined as

Sideal~k!511re~n!@gideal~r !21#F, ~16!

where@ f (r )#F denotes the 2D Fourier transform of a fun
tion f (r ), while @ f (k)#F21

is the inverse 2D Fourier trans
form. For a spin-polarized~spinless! 2D ideal Fermi gas of
electrons we have

gideal~r 12!5124UJ1@kF~n!r 12#

kF~n!r 12
U2

, ~17!

and the static-structure factor17 is given by
Sideal~k!5H 2

p
FarcsinF k

2kF~n!
G1

k

2kF~n!
A12F k

2kF~n!
G2G , k<2kF~n!

1, k>2kF~n!.

~18!
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The above prescription on constructingw(r 12) leads us to a
~pseudo!potential of the form

w~r 12!5 ln@gideal~r 12!#2
1

re~n! F @Sideal~k!21#2

Sideal~k! GF21

,

~19!

where the radial distribution functiongideal(r 12) and the as-
sociated structure functionSideal(k) correspond to the dy
namically uncorrelated 2D ideal Fermi gas. By substitut
Eqs.~17! and ~18! in Eq. ~19! we obtain an explicit expres
sion for w(r 12) and consequently, due to Eqs.~9! and ~10!,
we arrive at

uCn51/qe

Fermi u25)
i , j

N

exp@ ũ~r i j !#, ~20!

where ũ(r i j )52 ln f(rij)1w(rij)52qeln(rij)1w(rij). The ra-
dial distribution function is then found by applying the fo
lowing Bose EFHNC equations:

X~r 12!5exp@ ũ~r 12!1N~r 12!1E~r 12!#2N~r 12!21,
~21!

N~r 12!5re~n!E d2r 3X~r 13!@X~r 32!1N~r 32!#,

~22!

and

g~r 12!511X~r 12!1N~r 12!. ~23!

The generation of diagrams contributing tog(r 12) must go
through a self-consistent procedure. As a first approxima
~and a good one! we neglect the contribution of the eleme
tary diagramsE(r 12) and adopt the so-called EFHNC/0 a
proximation, where the ‘‘0’’ means neglect of elementa
diagrams. The summation of the nodal diagramsN(r 12) is
easily performed in the Fourier space resulting in

NF~q!5re~n!
XF~q!2

12re~n!XF~q!
. ~24!

In order to handle the 2D logarithmic~pseudo!potential
ũ(r 12), the standard procedure is to separateũ(r 12), the
nodal functionN(r 12), and the non-nodal~composite! func-
tion X(r 12) in their short-range and long-range parts:

ũ~r 12!5ũs~r 12!1ũl~r 12!, ~25!

N~r 12!5Ns~r 12!2ũl~r 12!, ~26!

and

X~r 12!5Xs~r 12!1ũl~r 12!. ~27!

The decomposition ofũ(r 12) is done as follows:

ũs~r 12!522qeK0~Qr12!1 ln@gideal~r 12!#, ~28!
g

n

ũl~r 12!52qeK0~Qr12!12qeln~r 12!

2
1

re~n! H @Sideal~k!21#2

Sideal~k! J F21

, ~29!

whereK0(x) is the modified Bessel function,Q is the cutoff
parameter of order 1/l 0, and the relation

E d2r eiqr@ ln~r !1K0~Qr !#5
22pQ2

q2~q21Q2!
~30!

holds. The splitting should be done in such a way that

ũ~r 12!1N~r 12!5ũs~r 12!1Ns~r 12!, ~31!

and

N~r 12!1X~r 12!5Ns~r 12!1Xs~r 12!. ~32!

The final set of equations is solved by initially settin
Ns(r 12)50 in the equation

Xs~r 12!5exp@ ũs~r 12!1Ns~r 12!1E~r 12!#2Ns~r 12!21.
~33!

Then we perform a 2D Fourier transform ofXs(r 12) to obtain
Xs

F(q). Later, we computeXF(q)5Xs
F(q)1ũl

F(q), so that
NF(q) is easily computed from Eq.~24!. Straightforwardly
Ns

F(q)5NF(q)1ũl
F(q) and by applying an inverse 2D Fou

rier transform on it we obtain the newNs(r 12). This proce-
dure goes on until the desired accuracy is reached and
pair-distribution function is obtained from

g~r 12!511Xs~r 12!1Ns~r 12!. ~34!

The computation ofg(r 12) allows us to find several othe
related quantities like the interaction energy per particle a
the static structure factor. In the next section we show
results we found for two even-denominator-filling states c
responding to the fractional fillingsn51/qe whereqe52 and
4.

III. RESULTS

In this paper we applied the EFHNC method and t
FHNC theory to study the even-denominator-filling state
the FQHE described by the unprojected Fermi wave funct
Cn51/qe

Fermi . Since the unprojected Fermi wave function is

the Jastrow-Slater form we believe that the first choice on
study is the application of the FHNC theory, which diffe
ently from the EFHNC approach does not rely on any a
proximation of the wave function. A detailed description
this formalism is given elsewhere,18 and here we limit our-
selves to report the results we have obtained. Since
FHNC theory is much more complicated than its Bose co
terpart, the idea to ‘‘bosonize’’ the Fermi wave function
certainly very attractive; therefore, we applied the EFHN
approach.

This approach contains an approximation of the origina
unprojected Jastrow-Slater wave function since the ra
distribution function is computed by approximating th
squared Slater determinant of plane waves with a Bo
Jastrow wave function. The utility of this treatment is bas
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on the fact that many related physical quantities can now
easily computed. It has been argued10 that this approach
should be a suitable approximation for the fully project
wave function atn51/2 since one may think that the on
effect of theP̂LLL operator is to make the wave function ve
Laughlin-like ~but with the correct statistics!. This argument
looks attractive, but certainly needs reliability testing.

It is known that both the EFHNC and the FHNC tec
niques are intrinsically approximate because there is a se
cluster diagrams~corresponding to the so-called elementa
diagrams! that cannot be fully included in any closed form
Several schemes have been devised to include such cl
diagrams at various levels of approximation. The simpl
approximation of totally neglecting these terms leads to r
able results, so in this paper we adopt the so-ca
EFHNC/0 and FHNC/0 approximation, where‘‘0’’ means
neglect of elementary diagrams.

In both methods the interaction-energy per particle
computed from the same formula

un51/qe
5

1

N

^Cn51/qe

Fermi uV̂uCn51/qe

Fermi &

^Cn51/qe

Fermi uCn51/qe

Fermi &

5
re~n!

2 E d2r @gn51/qe
~r !21# v~ ur u!, ~35!

while the ‘‘kinetic-energy’’ per particle is expected to b
greater than the lowest cyclotron energy

1

N

^Cn51/qe

Fermi uK̂uCn51/qe

Fermi &

^Cn51/qe

Fermi uCn51/qe

Fermi &
.

1

2
\vc , ~36!

because the unprojected wave functionCn51/qe

Fermi does not en-

tirely lie within the LLL. At present our interest is devote
only to the calculation of the interaction-energy per parti
and not to the calculation of the ‘‘kinetic-energy’’ per pa
ticle.

In Fig. 1 we plot the radial distribution function corre

FIG. 1. We plot the radial distribution functiong(r ) for the
half-filling staten51/2 as a function of the dimensionless distan
r / l 0 for the 2D ideal Fermi gas~solid!, the Bose wave function o
Eq. ~6! ~by applying the Bose HNC/0 technique, dotted! and the
unprojected Fermi wave function of Eq.~5! from the EFHNC/0
~dashed! and the FHNC/0~solid circles! method. In all cases the
calculations were performed by neglecting the elementary
grams, and the ‘‘0’’ denotes this choice.
e

of

ter
t

i-
d

s

sponding to the 2D ideal Fermi gas, the Bose wave funct
Cn51/2

Bose , and the unprojected FermiCn51/2
Fermi wave function,

by employing different techniques. As seen in Fig. 1, t
unprojected radial distribution function obtained from t
FHNC/0 theory has more pronounced peaks than that
tained by the EFHNC/0 approach and both are not in ag
ment with respective results,10 where very little oscillatory
structure ing(r ) has been found. Finite-size calculations f
N59 spin-polarized electrons confined to the LLL on
spherical surface9 confirm the existence of some sort o
‘‘Friedel-like’’ oscillations on the behavior ofg(r ) for the
filling n51/2. The radial distribution function for the exac
N59 ground state has been found indistinguishable fr
that corresponding to the projected Fermi wave functi
suggesting that the Fermi trial wave function is a good va
tional state. Based on the CF theory one may think of
Cn51/qe

Fermi wave function as the limit (p→`) of the CF wave

function due to Jain,4

Cn5p/~qep11!
CF ~B* !5 P̂LLL@Cn51/qe

Bose Fp~B* !#, ~37!

where Fp(B* ) is the Slater determinant wave function
p-filled CF Landau levels, evaluated at the magnetic fi
B* 5B/(qep11). Fillings of the formn5p/(2p11) de-
scribed by both the projected and the unprojected CF w
function have been extensively studied by Kamillaet al.12

using Monte Carlo techniques.
In a range of filling factors in the vicinity of the half-filled

state ~for instance 6/13) they observed oscillations of t
radial distribution function for both the projected and t
unprojected12 cases finding that the LLL projection basical
reduces the magnitude of these peaks. At this stage
natural to expect that the oscillations on the radial distrib
tion function will persist atn51/2 as well. The application
of the FHNC/0 theory to the unprojected Fermi wave fun
tion of Eq. ~5! indeed gives support to this picture. Stron
oscillatory behavior ing(r ) is observed in agreement wit
our expectations. The priority of these techniques is to tr
the unprojected many-body wave functionCn51/qe

Fermi exactly at

the thermodynamic limit. It would be highly desirable
incorporate the LLL projection within these schemes in ord
to directly compare the results with other finite-si
calculations.9 Although unprojected, these calculations st
contribute to fill the gap between finite-size simulation es
mates and results exactly at the thermodynamic limit.

Both EFHNC/0 and FHNC/0 methods do not include t
elementary diagrams in the solution of the respective inte
equations, while the EFHNC/0 approach still contains a s
ond approximation of the Fermi wave function in
bosonized form. A comparison between the respective ra
distribution functions at fillingn51/2 suggests that ‘‘the
bosonization’’ of the wave function,10 which is the funda-
mental idea behind the EFHNC approach, does not appr
mate very wellg(r ) and has non-negligible differences wit
it.

In Fig. 2 we plot the static-structure factorS(q) for the
half-filled state obtained from the 2D ideal Fermi gas, t
Bose wave function of Eq.~6!, and the unprojected Ferm
wave function. One observes that the EFHNC
‘‘bosonized’’ structure factor is smoother than the one o

-
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tained from the FHNC/0 method. In Figs. 3 and 4 we plot
radial distribution function and the static structure factor c
responding to the unprojected Fermi wave function for
fillings n51/2 and 1/4 obtained from the EFHNC/0 a
proach.

The interaction-energy per particle obtained from the
wave functions is shown in Table I. The valueun51/2 for the
unprojectedCn51/2

Fermi wave function is lower than the valu
suggested from exact diagonalizations of small systems o
to 12 electrons19 in the spherical geometry shown in th
fourth row of Table I. We believe that the source of th
discrepancy is the missing projection ofCn51/qe

Fermi into the

LLL. As shown in Fig. 5 we found that the unprojecte
radial distribution function obtained from the EFHNC/0 a
proach has an erroneousgn51/2(r→0)5(r / l 0)6 and
gn51/4(r→0)5(r / l 0)10 behavior for the respective filling
n51/2 and 1/4.

Exact numerical diagonalizations,20 which of course treat
the electrons as fully projected, suggest a different dep
dence, for instance a (r / l 0)2 dependence for the filling 1/2
This arises because in the fully LLL projected Hilbert spa
of Laughlin’s Jastrow-like wave functions, the plane-wa
statewk(r j )5exp(ik•r j ) acts as an operator; namelyzj* acts

FIG. 3. We plot the radial distribution functiong(r ) for the
even-denominator-filling staten51/qe where qe52,4 obtained
from the unprojected Fermi wave functionCn51/qe

Fermi within the
EFHNC/0 approximation.

FIG. 2. We plot the static structure factorS(q) for filling n
51/2 as a function ofql0 for the 2D ideal Fermi gas~solid!, the
Bose wave function of Eq.~6! ~dotted! and the unprojected Ferm
wave function Eq.~5! employing both the EFHNC/0~dashed! and
the FHNC/0~solid circles! technique.
e
-
e

e

p

n-

e

on a given function as 2]/]zj and as a result displaces th
j th electron by an amount proportional touku from the center
of the vortex.

By applying the EFHNC/0 approach to the unproject
half-filled Fermi wave function we obtain a (r / l 0)6 depen-
dence ofg(r ) for small r. With no LLL projection, the plane
waves do not act as operators so the number of zeros on
electron will be three, where two zeros are coming from
Jastrow part and a single zero comes from the Slater de
minant as required by the Pauli principle. In this case
plane waves of the unprojected wave function cannot d
place the zeros ofCn51/qe

Bose . In addition, the Slater determi

nant brings its own zero related to the antisymmetrizat
condition. By these arguments we could have anticipated
within the EFHNC/0 treatment, the unprojected radial dis
bution function should behave asgn51/qe

(r→0)

5(r / l 0)2(qe11) for the corresponding fillingsn51/qe where
qe52,4.

The LLL projection corrects this discrepancy, because
projection operatorP̂LLL makes the plane waves act as o
erators on the Laughlin-like wave function. The above phy
cal arguments are expressed in mathematical form by re
ing that the unprojected Fermi wave functions correspond
to n51/2 andn51/4 have different Jastrow factors and d
ferent Slater determinants, since the respective Fermi
radiuskF(n) is filling dependent.

In the small-r limit one has g(r→0);exp@ũs(r→0)#
and by using Eq.~28! and the formula limr→0K0(Qr)
52 ln(Qr/2)2g we obtain that

FIG. 4. We plot the static structure factorS(q) for the fillings
n51/qe whereqe52,4 obtained from the unprojected Fermi wav
function Cn51/qe

Fermi by applying the EFHNC/0 approximation.

TABLE I. We show the interaction-energy per particleun51/qe

in 1/4pe0 (e2/e l 0) units computed from the unprojected Ferm
wave functionCn51/qe

Fermi , whereqe52 and 4. Our results were ob
tained within the EFHNC/0 approximation. In the fourth row w
report the exact diagonalization results of Fanoet al. ~Ref. 19!.

n Wave function Method un

1/2 Cn51/2
Fermi EFHNC/0 20.4961

1/4 Cn51/4
Fermi EFHNC/0 20.3624

1/2 Exact diagonalization Ref. 19 20.46960.005
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g~r→0!;expF2qelnS Qr

2 D12qeg1 ln@gideal~r→0!#G ,
~38!

where g50.5772 . . . is the Euler constant. For states o
the form n51/qe where qe is even, the behavior o
ln@gideal(r→0)# is given by ln@gideal(r→0)#;2 ln@kF(n)r#
2ln(4), implying that

ln@g~r→0!#;~2qe12!lnS r

l 0
D1c~n,g!, ~39!

wherec(n,g) is an irrelevant constant that depends onn and
g. The unprojected radial distribution function in the smalr
limit has a (r / l 0)2qe component coming from the Jastro
part of the Fermi wave function, while the contribution of th
Slater determinant is proportional to (r / l 0)2, the same for
both fillings n51/2 and 1/4, irrespective of their differen
Fermi radiuskF(n) values.

Although we do not explicitly include the projection op
erator P̂LLL in the Fermi wave function and instead use
unprojected counterpart, the Jastrow factor provides a g
projection,21 which should be particularly effective as far a
ground-state properties are concerned. However, to achie
deeper understanding of the even-denominator-filling s
and to study other quantities, such as the excitation spect
these results strongly suggest that the full LLL projection
needed.

Unfortunately, such a projection leads to a wave funct
that cannot be treated directly within the EFHNC and FHN
formalism because the structure of a determinant of sin
particle orbitals is lost. A more general projection schem
applied to few-electron systems in a spherical geometr22

seems promising. Such a scheme introduces a many-b
dependence on all single-particle orbitals, which, howev
can be handled by introducing state-dependent correlat
in the wave function in close analogy to ‘‘backflow
correlations23 of liquid 3He.

IV. CONCLUSIONS

In this paper we applied the EFHNC approach and
FHNC theory to study, in the thermodynamic limit, the u

FIG. 5. The small-r behavior of the radial distribution function
g(r ) for fillings n51/2 ~circled! and n51/4 ~squared!, where
ln@g(r)# versus ln@r/l0# is plotted. Within the EFHNC/0 approxima
tion, we havegn51/2(r→0);(r / l 0)6 and gn51/4(r→0);(r / l 0)10

for the respective fillingsn51/2 and 1/4.
od

e a
te
m,
s

n

e-
,

dy
r,
ns

e

projected Fermi wave functionCn51/qe

Fermi , which describes the

even-denominator-filling stateqe52,4 of the FQHE.
Both EFHNC and FHNC calculations were performed

neglecting the so-called elementary~or bridge! diagrams on
the cluster expansion of the radial distribution functio
adopting the EFHNC/0 and FHNC/0 approximations, whe
‘‘0’’ means neglect of elementary diagrams. The EFHN
approach incorporates also a second approximation sin
treats the original Fermi wave function as a bosonized
strow function.

The unprojected radial distribution function obtained fro
the FHNC/0 theory has more pronounced peaks than
obtained from the EFHNC/0 approach and both are no
agreement with recent results10 where very little oscillatory
behavior has been found.

We first find numerically and then prove analytically th
the unprojected radial distribution function does not have
correct short-range behavior of the projected case for
fillings n51/qe whereqe52 and 4. We prove that the smal
r behavior of the unprojected radial distribution functio
g(r ) is given by ln@g(r→0)#;(2qe12)ln(r/l0) and we explain
that this is due to the missing LLL projection of the wav
function. Since there is no LLL projection, the plane wav
of the Slater determinant do not act as operators to disp
the electrons from the center of the vortex to give the corr
small-r behavior.

The FHNC/0 study reveals strong ‘‘oscillations’’ on th
unprojected radial distribution function. This oscillatory b
havior has been seen12 in a range of filling factors in the
vicinity of the half-filled state~for instance filling 6/13) for
both projected and unprojected wave functions and in fin
size calculations of few electrons confined to the LLL on
spherical surface,9 and our findings are in good qualitativ
agreement with them.

Compared to the FHNC/0 results we see that
EFHNC/0 approach smoothes the peaks of the radial di
bution function and loses part of its structure.

Although we perform our calculations by using an u
projected wave function, the Jastrow factor provides so
amount of projection onto the LLL; however, a better und
standing of other quantities, such as the excitation spectr
needs the inclusion of the full LLL projection.

These results suggest that the approximation of the Sl
determinant of plane waves as a Bose Jastrow wave func
namely the ‘‘bosonization’’ of the unprojected Fermi wav
function ~not the unprojected Fermi wave function itse!
may not constitute an enough accurate approximation to g
a highly reliable quantitative evaluation of the radial dist
bution function and related quantities.
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