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Fermi-hypernetted-chain study of unprojected wave functions to describe the half-filled state
of the fractional quantum Hall effect
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The Fermi hypernetted-chain theory is applied to study the half-filled state of the fractional quantum Hall
effect in the thermodynamic limit. We study in detail the radial distribution function, the correlation energy,
and the quasiparticle-quasihole excitation spectrum of an unprojected Fermi wave function of the form
cn51/2

Fermi5P j ,k
N (zj2zk)

2 Det$fkW(rW)%, a possible candidate to describe the half-filled state. Adopting a technique
originating from nuclear physics, we compute the effective mass of the fermion excitations near the Fermi
surface for this wave function. We find it to be exactly the bare mass of the electron, in accordance with the
mean field approximation of not imposing the lowest Landau level constraint. Similar calculations were
performed on other related wave functions, which, based on the composite fermion picture, describe the
half-filled state of the electrons as a limit of infinite-filled composite fermion Landau levels.
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I. INTRODUCTION

The fractional quantum Hall effect1 ~FQHE! results from
a strongly correlated incompressible liquid state2 formed at
special uniform densitiesre of a two-dimensional~2D! elec-
tronic system, subject to a strong transverse magnetic
BW . For a completely spin-polarized~spinless! system of elec-
trons the dominant sequence of fractional Hall states oc
for filling factors of the lowest Landau level~LLL ! n
5p/(2p11), wherepÞ0 is an integer.

The first step in the FQHE explanation would be the stu
of the properties of a 2D fully spin-polarized~spinless! sys-
tem ofN interacting electrons emerging in a uniform positi
background, with the magnetic fieldBW high and temperature
T low, such that only the LLL would be partially filled.

At T50, the interaction energies;n1/2(1/4pe0)
3(e2/e l 0), wherel 05A\/eB is the magnetic length ande is
the dielectric constant of the background, are weak compa
to the Landau level splitting\vc , and so all electrons ar
considered to remain in the LLL. Electrons with char
2e (e.0) are considered as usual to be confined in thex-y

plane, subjected to the magnetic fieldBW 5@0,0,B# generated
from the symmetric gauge vector potentialAW (rW)
5@2 (B/2) y, (B/2) x,0#. The many-electron system is de
scribed by the Hamiltonian

Ĥ5K̂1V̂, ~1!

with

K̂5
1

2me
(
j 51

N

@2 i\¹W j1eAW ~r j !#
2 ~2!
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V̂5(
j ,k

N

v~ urW j2rWku!2re(
j 51

N E d2r v~ urW j2rWu!

1
re

2

2 E d2r 1E d2r 2v~ urW12rW2u!, ~3!

whereme is the electron’s mass,zj5xj1 iy j is the location
of the j th electron in complex coordinates,v(urW j2rWku)
5 (1/4pe0)(e2/euzj2zku) is the interaction potential, andV̂
contains the electron-electron, electron-background,
background-background interaction potential.

From a theoretical point of view, the occurrence of H
plateaus at filling factors of the formn51/m, m51,3,5, can
be understood through the original ideas of Laughlin,3 which
described these states by a trial many-electron wave func
of the Jastrow type:

cm5)
j ,k

N

~zj2zk!
m)

j 51

N

expS 2
uzj u2

4l 0
2 D . ~4!

By construction, this wave function lies entirely in the LL
and describes a translationally invariant isotropic and inco
pressible liquid of electrons at a densityre5n/2p l 0

2, corre-
sponding to the LLL filling factor n51/m, where m
51,3, . . . . Incontrast, the behavior of such a system in t
vicinity of a filling factor with an even denominator, such a
n51/2, is not well understood. A Laughlin-like Bose wav
function cn51/2

Bose 5P j ,k
N (zj2zk)

2P j 51
N exp(2uzju2/4l 0

2) does
not correctly describe such a situation and a different the
is needed for such fillings.
7898 © 1998 The American Physical Society
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The paper is organized as follows. Section II present
brief summary of the Chern-Simons~CS! theory at half fill-
ing. Section III presents a brief summary of the Fer
hypernetted-chain~FHNC! approach and its extension t
treat different correlated wave functions of the Fermi typ
The method to compute the excitation spectrum near
Fermi surface is described in Sec. IV. Numerical results
presented and discussed in Sec. V. Sec. VI is devoted to
conclusions.

II. CHERN-SIMONS TRANSFORMATION

At n51/2 the typical features of the FQHE, that is, t
quantizedsxy5n (e2/h) and vanishingsxx , are not ob-
served, but nevertheless this state shows a broad minim4

in rxx and exhibits, additionally, anomalous behavior in s
face acoustic wave propagation,5 indicating a different type
of correlation. Numerical work by Haldane6 suggested tha
n51/2 is not incompressible.

Recently a theory of a compressible Fermi-liquid-like b
havior atn51/2 was proposed by Halperin, Lee, and Rea7

According to this theory, a 2D system of electrons subjec
to an external perpendicular magnetic fieldBW , with a LLL
filling factor 1/2, can be transformed to a mathematica
equivalent system of fermions interacting with a Che
Simons gauge field such that the average effective magn
field acting on the fermions is zero.

Let me mention some fundamental properties of t
transformation, supposing thatuF(z1¯zN)& is a solution of
the Schro¨dinger equationĤF5EF. Then, for an even num
ber qe , whereqe52,4, . . . , thewave function

C~z1•••zN!5)
i , j

N
~zi2zj !

qe

uzi2zj uqe
uF~z1•••zN!& ~5!

is a solution to the Scho¨dringer equationĤ8C5EC, with

Ĥ85K̂81V̂ ~6!

and

K̂85
1

2me
(
j 51

N

$2 i\¹W j1e@AW ~r j !2aW ~r j !#%
2, ~7!

whereaW (rW) is the Chern-Simons vector potential

aW ~rW !5
qe

2p
f0(

j 51

N
zW3~rW2rW j !

urW2rW j u2
~8!

and f0 is the magnetic field flux quantum. The Cher
Simons magnetic fieldbW (rW) associated with the vector poten
tial aW (rW) is given by

bW ~rW !5¹W 3aW ~rW !5qef0(
j 51

N

d~rW2rW j !5r~rW !qef0 , ~9!

wherer(rW) is the local particle density. In other words, th
Chern-Simons transformation can be described as the e
modeling of an electron as a fermion attached toqe flux
a

i

.
e
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he

m
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-
.
d

-
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quanta. Assuming a uniform density, the Chern-Simons fl
quanta attached to the fermions are smeared out in a unif
magnetic field of magnitude

^bW &5reqef0 , ~10!

with re the average electronic density.
At special filling factors n5 f0re /B 51/qe , qe

52,4, . . . , theapplied magnetic field precisely cancels t
Chern-Simons flux, so at the mean field level the system
be described as fermions in a zero magnetic field and sh
therefore be a compressible Fermi-looking liquid sta
When n is away from 1/qe , the applied magnetic field an
the Chern-Simons one do not cancel, so a residual effec
field

B* 5B2qef0re5B~12qen! ~11!

is left over. Thus the mean field system is described as n
interacting fermions in a uniform fieldB* . The effective
filling factor for these gauge transformed fermionsp
5ref0 /B* is 1,2, . . . ,corresponding to the integer quan
tum Hall effect of these gauge transformed fermions.

The ‘‘true’’ filling factor of the electronsn5ref0 /B is
just n5 (p/qep11), which is precisely the composite fe
mion ~CF! Jain series8 of FQHE states. The excitation gap
for these quantized Hall states are naturally given by
corresponding effective cyclotron frequency of the CF’s:

Eg5\vc* 5\
eB*

mgap* ~n!
, ~12!

wheremgap* (n) is the effective mass.
In the following we concentrate on the fillingn51/2,

where several related wave functions have been employe
incorporate the physics of CF’s on it. They can be treated
the limit of the seriesn5p/(2p11) for p→` and may have
different origins. The wave function

Cn51/2
CS ~B* !5 lim

p→`

P̂LLL )
j ,k

N
~zj2zk!

2

uzj2zku2
uFp~B* !& ~13!

appears as the mean field solution of the CS theory,9 while

Cn51/2
CF ~B!5 lim

p→`

P̂LLL )
j ,k

N

~zj2zk!
2uFp~B!& ~14!

is due to the CF theory of Jain. In the above expressio
P̂LLL is the LLL projection operator anduFp(B)& is the
Slater determinant wave function ofp filled Landau levels,
evaluated at the magnetic field shown in the argument. Th
two wave functions have different origins and differe
short-distance behavior in the radial distribution functio
but they both describe CF’s at half filling since there are t
vortices bound to each electron. From the CS theory,
know that at exactlyn51/2 the fermions ‘‘see’’ no net mag
netic field, so they can form a Fermi sea, which does hav
uniform density. As a consequence we would expect that
half-filled state should be well described by a Fermi man
electron wave function of the form
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Cn51/2
Fermi5 P̂LLL )

j ,k

N

~zj2zk!
2 Det$wkW~rW !%, ~15!

wherewkW(rW) are normalized plane waves in two dimension
In order to have the correct density of the half-filled ca

the Fermi surface of the fully spin polarized electrons m
have the radiuskF51/l 0 . Excited states involve the creatio
of quasiparticle-quasihole pairs near this Fermi-like surf
and these excitations should have an effective massm* (k)
determined by interelectron interactions only. The interact
energy per particleu(n)5 (1/N)(^CnuV̂uCn&/^CnuCn&) is
computed for the unprojected wave functionCn51/2

Fermi and is
compared with the respective values for the other
projected wave functionsCn51/2

CS and Cn51/2
CF (B), taken as

the limit of infinite filled Landau levels.
In this paper we employ the FHNC formalism to study

detail the unprojected Fermi half-filled wave functio
Cn51/2

Fermi . Within this formalism we incorporate a scheme
study the resulting Fermi excitations near the Fermi surf
and we compute the resulting effective mass of such exc
tions.

III. THE FERMI HYPERNETTED-CHAIN FORMALISM
FOR THE HALF-FILLED FERMI WAVE FUNCTION

The FHNC theory is very useful to perform calculatio
in the thermodynamic limit for infinite systems of particle
interacting via central, spin-independent potentials, w
Hamiltonian of the form of Eq.~1!. If such systems are de
scribed by trial functions of the Jastrow-Slater form, as is
case, then the FHNC theory is applicable. A Jastrow-Sl
trial wave function can quite generally be written as

uC&5)
i , j

N

f ~ urW i2rW j u!uF&, ~16!

where a possible choice foruF& is a Slater determinant mak
ing uC& antisymmetric.

Let us show in some detail the quantities entering
calculation of theCn51/2

Fermi wave function, which contains a
determinant of 2D normalized plane waves. The same te
nique is used to perform similar calculations onCn51/2

CS and
Cn51/2

CF (B) wave functions, so we skip a detailed descripti
of them. In order to calculate the interaction energy per p
ticle (1/N)(^CnuV̂uCn&/^CnuCn&) and the ‘‘kinetic’’ energy
per particle (1/N)(^CnuK̂uCn&/^CnuCn&), we should find
the radial distribution functiong(urW i2rW j u) through the appli-
cation of the FHNC.

Because of the ‘‘healing’’ property of the factorf 2(r i j )
215h(r i j )→0 asr i j→` the spatial correlations present
the wave function may be ordered in powers of the funct
h(r i j ),

uCu25F11(
i , j

N

h~r i j !1(
i , j

N

(
k, l

N

h~r i j !h~r kl!1•••G uFu2.

~17!

The ~reduced! single-particle density matrix for the dynam
cally uncorrelated state is given by
.
,
t

e

n

-

e
a-

h

e
er

e

h-

r-

n

r̂~rW1 ,rW2!5gs (
ukuW<kF

n~kW !wkW
* ~rW1!wkW~rW2!, ~18!

where the ground state occupation number for a fully s
polarized~spinless! 2D ideal Fermi gas (gs51) is

n~kW !5H 1, ukW u<kF

0, ukW u.kF .
~19!

The normalized single-particle states of a 2D gas of f
electrons occupying an areaA arewkW(rW)5 (1/AA) eikW•rW and
kF51/l 0 . A trivial calculation of the statistical exchange fa
tor l (rW1 ,rW2)5 r̂(rW1 ,rW2)/r gives

l ~rW1 ,rW2!52
J1~kFr 12!

kFr 12
, ~20!

wherer 125urW22rW1u andJ1(x) is the first-order Bessel func
tion.

Within the permutation expansion method of Fantoni a
Rosati,10 uFu2 may be expanded in the number of permu
tions of particles or the number of exchange factors. Af
insertion into the expansion~17! the product may be ordere
according to the number of particles involved. The result
cluster terms contain both kinds of correlations and may
represented by cluster diagrams. As in the Bose case,
associated radial distribution functiong(r ) is then given by
the sum of all linked irreducible diagrams obeying we
defined topological rules.10

One definesnodal, non-nodal ~composite!, and elemen-
tary diagrams as in the Bose case, but there are now
different types for each of them. The four different classes
nodal and elementary diagrams are generally denoted
dd ~direct-direct!, de ~direct-exchange!, ee ~exchange-
exchange!, and cc ~circular-exchange!. The sums of non-
nodal ~composite! diagrams of the four types are given by

Xdd~r 12!5 f 2~r 12!e
Ndd~r 12!1Edd~r 12!2Ndd~r 12!21, ~21!

Xde~r 12!5 f 2~r 12!e
Ndd~r 12!1Edd~r 12!

3@Nde~r 12!1Ede~r 12!#2Nde~r 12!, ~22!

Xee~r 12!5 f 2~r 12!e
Ndd~r 12!1Edd~r 12!@Nee~r 12!1Eee~r 12!

1uNde~r 12!1Ede~r 12!u22gsuNcc~r 12!

1Ecc~r 12!2 l ~r 12!/gsu2#2Nee~r 12!, ~23!

Xcc~r 12!5 f 2~r 12!e
Ndd~r 12!1Edd~r 12!@Ncc~r 12!1Ecc~r 12!

2 l ~r 12!/gs#1 l ~r 12!/gs2Ncc~r 12!. ~24!

The radial distribution function is composed of the comp
nents

g~r 12!511Xdd~r 12!1Ndd~r 12!12@Xde~r 12!1Nde~r 12!#

1Xee~r 12!1Nee~r 12!. ~25!

The chain formation of the nodal diagrams is generated
convolution equations
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Ndd~r 12!5rE drW3@Xdd~r 13!1Ndd~r 13!#P~r 32!, ~26!

Nde~r 12!5rE drW3@Xdd~r 13!Xee~r 32!2Xde~r 13!Xde~r 32!

1@Xde~r 13!1Nde~r 13!#P~r 32!#, ~27!

Nee~r 12!5rE drW3@Xde~r 13!Xde~r 32!2Xdd~r 13!Xee~r 32!

1@Xee~r 13!1Nee~r 13!#P~r 32!#, ~28!

Ncc~r 12!5rE drW3@2 l ~r 13!/gs1Xcc~r 13!

1Ncc~r 13!#Xcc~r 32!, ~29!

with

P~r i j !5Xdd~r i j !12Xde~r i j !1rE drWk

3@Xdd~r ik!Xee~r k j!2Xde~r ik!Xde~r k j!#. ~30!

The FHNC relations provide a closed set of equations
the nodal and non-nodal components appearing in Eqs.~21!–
~24! and~26!–~29! only, if the elementary contributions~de-
scribed by elementary diagrams! are known. Several differ-
ent approximation schemes are available for an approp
evaluation of the elementary portions. However, at pres
we neglect such diagrams adopting the so-called FHN
approximation, where the 0 means neglect of elementary
grams. In this approximation we setEa,b50, where the in-
dices are (a,b)5(dd), (de), (ee), and (cc).

For convenience, we substitutef (urW i2rW j u)25eU(urW i2rW j u) in
the expression ofuCu2 and then we separate the pseudop
tential associated with the Jastrow partU(r 12)54 ln(uz1
2z2u) into a short- and a long-ranged part, respectively,

Us~r 12!524K0~Qr12!, ~31!

Ul~r 12!54K0~Qr12!14 ln~r 12!. ~32!

The functionK0(x) is the standard modified Bessel functio
and the wave numberQ is a cutoff parameter of order 1/l 0 .
Furthermore, all nodal and non-nodal functions are separ
into their respective short- and long-range parts and
FHNC/0 equations are solved by a standard iterative pro
dure.

IV. THE PARTICLE-HOLE EXCITATION SPECTRUM
OF THE FERMI HALF-FILLED STATE

In this section we report a method used to compute
quasiparticle-quasihole Fermi excitations for the Fermi wa
functionCn51/2

Fermi . For a correlated 2D Fermi gas calculatio
of the ground state energyE0 are generally carried out with
the wave function

C05ĈF„n~kW !…, ~33!
r

te
nt
/0
a-

-

ed
e
e-

e
e

whereĈ is a correlation operator andF„n(kW )… is a 2D Fermi
gas wave function with occupationsn(kW ). Let us compute
the energies of a quasiparticle/quasihole state obtained
wave functionsCp(pW ) for upW u.kF andCh(qW ) for uqW u,kF :

Cp~pW !5ĈF„n~kW !1dpW ,kW…, ~34!

Ch~qW !5ĈF„n~kW !2dqW ,kW…, ~35!

Let Ep(p) and Eh(q) be the energies obtained with the
wave functions. The energy differences

Ep~p!2E05e~p.kF!, ~36!

E02Eh~q!5e~q,kF! ~37!

give the single-particle energy to create a quasiparticle an
quasihole, respectively. The energy per particle obtained
either adding or removing particles havingk5kF is

e~kF!5
E0~r!

N
1

r

N

]

]r
E0~r!. ~38!

For a Fermi disk filled up toukW u<kF the ground state energ
of the system is only kinetic given byE0(r)5 1

2 eFN, where
eF5(\2/2m)(4p/gs) r. We are dealing with the fully spin
polarized~spinless! case, sogs is 1.

It is convenient to calculate the quasiparticle and qua
hole excitation energiese(p.kF) and e(q,kF) by remov-
ing a small fractionx!1 of particles11 (xN is number of
removed fermions! from a thin ring atk5kF (k5q) in mo-
mentum space and putting them into a thin ring atk5p (k
5kF) for the quasiparticle~quasihole! case.

Up to terms linear inx we have

E~x,k!/N5E0 /N1x@6e~k!7e~kF!#. ~39!

The upper signs are for the quasiparticle casek5p.kF and
the lower signs for the quasihole casek5q,kF .

The ‘‘mixed’’ density matrix for these occupations is
simple function ofx, k, andr 12:

l ~x,k,r 12!5 l ~rW1 ,rW2!6x@J0~kr12!2J0~kFr 12!#. ~40!

E0 /N is the energy per particle of the system described
the wave function of Eq.~33!, where no fermions have bee
removed from the Fermi disk, whileE(x,k)/N is the energy
per particle of our system when a small fractionx!1 of
particles is removed from the Fermi disk and placed on
ring at wave vectork in momentum space. BothE(x,k) and
E0 are calculated in the same way, by the FHNC meth
Noting that E(x,k)/N5e(x,k), and E0 /N5e0 , the quasi-
particle energy is written

eqp~q!5e~k!2e~kF!5
1

x
@e~x,k!2e0#, ~41!

whereq5k2kF.0. Then the effective massm* (k) is given
by

m* ~k!

me
5

\2

me

k

]

]q
eqp~q!

, ~42!

whereme is the bare electron mass.
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V. RESULTS

In the present work we applied the FHNC theory to t
half-filled state of the FQHE, employing the unproject
Fermi half-filled wave function

Cn51/2
Fermi5)

j ,k

N

~zj2zk!
2 Det$wkW~rW !% ~43!

and other unprojected wave functions that incorporate
physics of CF’s at such filling. For the sake of simplicity, t
elementary diagrams were neglected, so calculations w
performed within the so-called FHNC/0 approximation.

For any given wave functionCn , which describes a given
staten, we calculated the radial distribution functiongn(r )
and the interaction energy per particle was computed fro

un5
1

N

CnuV̂uCn

CnuCn
5

re

2 E d2r @gn~r !21#v~ urWu!. ~44!

Except in the trivial case ofCn51/2
Bose , where the kinetic en-

ergy per particle is

1

N

Cn51/2
Bose uK̂uCn51/2

Bose

Cn51/2
Bose uCn51/2

Bose
5

1

2
\vc , ~45!

its calculation is not easy at all to perform within the FHN
approach, so we devoted our interest mainly to the calc
tion of the interaction energy per particle.

In Fig. 1 we plot the radial distribution function
gn51/2(r ), obtained from the unprojectedCn51/2

Fermi andCn51/2
Bose

wave functions. Its calculation in the Bose case was done
employing the Bose hypernetted-chain~HNC! method,
which is rather standard and easier than the FHNC meth
The ground state interaction energy per particle, obtai
from the unprojectedCn51/2

Fermi , was found to beun51/2
Fermi

520.503(1/4pe0)(e2/e l 0), a value rather lower than th
value suggested from exact diagonalizations12 of small sys-
tems of electrons.

The source of such discrepancy is the missing projec
of Cn51/2

Fermi into the LLL. We performed a careful study of th

FIG. 1. Radial distribution functiong(r ) for the n51/2 state
obtained from the unprojected Fermi wave functionCn51/2

Fermi and the
projected Bose Laughlin-like wave functionCn51/2

Bose . Calculations
were done neglecting the elementary diagrams, namely, within
FHNC/0 and HNC/0 approximations, respectively, for the Fer
and Bose cases.
e

re

a-

y

d.
d

n

small-r behavior of the unprojectedgn51/2
Fermi(r ) for the case

being. As shown in Fig. 2, we found that the radial distrib
tion function has an erroneousgn51/2

Fermi(r );(r / l 0)4 behavior
instead of the (r / l 0)2 one suggested by exact numeric
diagonalizations,13 which of course do not suffer from th
missing projection into the LLL. As a consequence, sma
values of the unprojectedgn51/2

Fermi(r ) at shortr make the in-
teraction energy per particle lower than the projected on

In the calculation ofgn51/2
CS (r ) corresponding to the CS

wave function Cn51/2
CS (B* )5 lim

p→`
Cn5 p/(2p11)

CS (B* ) ,

where the unprojectedCn5 p/(2p11)
CS (B* ) is given by

Cn5 p/~2p11!
CS ~B* !5)

j ,k

N
~zj2zk!

2

uzj2zku2
uFp~B* !&, ~46!

we observe that

uCn5 p/~2p11!
CS ~B* !u25uFp~B* !u2, ~47!

which is just a squared determinant of single-particle eig
functions forp Landau levels, subjected to an effective ma
netic field B* , wherep51,2, . . . . In this special case, the
calculation of the interaction energy per particleun5 p/(2p11)

CS

is exact becausegn5 p/(2p11)
CS (r ) can be exactly computed

within the FHNC framework.
In Table I we show the exact results for the interacti

energy per particleun5 p/(2p11)
CS computed from the un-

projected CS wave function of Eq.~46!. In the fourth column
we show the approximated variational Monte Carlo~VMC!
results of Kamilla and Jain14 for some of these states.

We stress again that our results are exact, without
approximation, so it seems that the above VMC treatm
becomes less accurate forn→1/2. A reasonable extrapola
tion of these values forp→` gives an estimate

un51/2
CS 5 lim

p→`

un5 p/~2p11!
CS '20.425

1

4pe0

e2

e l 0
, ~48!

e
i

FIG. 2. Small-r behavior ofgn51/2
Fermi(r ) on a logarithmic scale

ln@g(r)# versus ln@r/l0#. One observes thatgn51/2
Fermi(r ), obtained from

the unprojected Fermi wave function, has an erroneousgn51/2
Fermi(r )

;(r / l 0)4 dependence instead of the correct (r / l 0)2 one of the pro-
jected case, suggested from exact numerical diagonalizations~Ref.
13!.
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which is higher than the exact diagonalization results
n51/2. In Fig. 3 we show the interaction energy per parti
valuesun5 p/(2p11)

CS as a function ofp51,2, . . . .
The calculations employing the unprojectedCn

CF(B)
wave function are more difficult to perform, but the FHN
theory needed to describe them is not different from the p
vious cases. A detailed description is given elsewhere,15 so
we limit ourselves to the presentation of the results for
interaction energy values for the fillingsn5 p/(2p11)
given in Table II. An extrapolation of these values forn
→1/2 gives an estimate very close to the value for
Cn51/2

Bose case:

un51/2
CF 5 lim

p→`

un5 p/~2p11!
CF '20.479~9!

1

4pe0

e2

e l 0
~49!

and similarly forgn51/2
CF (r ).

The radial distribution functiongn5p/(2p11)
CF (r ) obtained

from the unprojectedCn5 p/(2p11)
CF (B) does not seem to hav

TABLE I. Interaction energies per particleun expressed in units
(1/4pe0)(e2/e l 0), computed using the unprojected Chern-Simo
wave function,Cn

CS(B* )5P j ,k
N @(zj2zk)

2/uzj2zku2# Fp(B* ) for
fillings n5 p/(2p11). The values in the third column refer to th
FHNC/0 results, which in this case are exact, while in the fou
column we report the recent estimates of Kamilla and Jain~Ref. 14!
obtained from a variational Monte Carlo simulation in the spheri
geometry.

n p FHNC/0 Ref. 14

1/3 1 20.361800 20.3619(90)
2/5 2 20.385343 20.3848(16)
3/7 3 20.395990 20.3947(15)
4/9 4 20.402064 20.4007(16)

5/11 5 20.405992
6/13 6 20.408742
7/15 7 20.410776
8/17 8 20.412341
9/19 9 20.413583

10/21 10 20.414592

FIG. 3. Interaction energy per particleun5 p/(2p11)
CS for the un-

projected Chern-Simons wave functionCn5 p/(2p11)
CS (B* ) plotted

as a function of the number of filled Landau levelsp. The energies
are expressed in the standard units (1/4pe0)(e2/e l 0).
t

-

e

e

visible Fermi-looking features. On the contrary, the rad
distribution function obtained from the unprojected CF wa
function

Cn5 p/~2p11!
CF ~B* !5)

j ,k

N

~zj2zk!
2uFp~B* !&, ~50!

where B* 5B 1/(2p11) for n5 p/(2p11), does have
Friedel-looking oscillations, in agreement with the results
Kamilla et al.16 We computed the radial distribution functio
at n56/13 corresponding to both wave functionsCn

CF(B)
andCn

CF(B* ) and the oscillations in theB* case are eviden
from Fig. 4.

As our major interest was concentrated in the unprojec
Fermi half filled wave functionCn51/2

Fermi , using the method
described in Sec. IV, we computed the particle-hole exc
tion spectrum of this state by adopting a technique pre
ously used in nuclear physics.11 The supposedly low-energ
Fermi excitations should have an effective massm* (k) de-
termined by interelectron interactions only. Once we are a
to calculate the interaction ground state energy per part

s

h

l

TABLE II. Interaction energies per particleun expressed in
units (1/4pe0)(e2/e l 0), computed using the unprojecte
Cn5 p/(2p11)

CF (B) wave function. The values in the second colum
refer to the FHNC/0 approximation, while in the third column w
report the estimates of Jain and Kamilla~Ref. 17! obtained using
projected CF wave functions in the spherical geometry.

n (FHNC/0) Ref. 17

1/3 20.40257 20.409828(27)
2/5 20.43054 20.432804(62)
3/7 20.44510 20.442281(62)
4/9 20.45300 20.447442(115)

5/11 20.45796 20.450797(175)
6/13 20.46137
7/15 20.46386
8/17 20.46576

FIG. 4. For the fractional fillingn56/13, we show the radia
distribution function gn

CF(r ) obtained from the unprojected
Cn56/13

CF (B* ) ~solid line! and the unprojectedCn56/13
CF (B) ~dotted

line!. For Cn56/13
CF (B* ), Friedel-like oscillations ofgn

CF(r )21 are
quite visible, in good agreement with the results of Kamillaet al.
~Ref. 16!.
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for several mixedCn51/2
Fermi($rW i%,x) states, we are able to com

pute the quasiparticle and quasihole energies.
In Fig. 5 we plot the quasiparticle excitation spectru

eqp(q) as a function ofq5k2kF.0. It was found that in the
long-wavelength limit (q→0), the quasiparticle excitation
energy expressed in units (1/4pe0)(e2/e l 0) is linearly pro-
portional toq expressed in units 1/l 0 with a50.082. In these
units

eqp~q!5aq. ~51!

From the above quasiparticle excitation spectrum, we co
pute the effective massm* (k) of the Fermi excitations by
applying Eq.~42!.

Using the dielectric constante512.6 appropriate for
GaAs and the magnetic fieldB510 T, taken from Halperin
et al.,7 we find with striking accuracy the result

m* ~k5kF!5me , ~52!

in accordance with the mean field prediction of not impos
the LLL constraint. This indicates the high accuracy of t
adapted method used to compute the Fermi excitation s
trum in a 2D problem, like the FQHE. Further, the urge
need of a LLL projection scheme incorporated to the FHN
theory is pointed out.

VI. CONCLUSIONS

The Fermi hypernetted-chain theory was applied to
study the filling factorn51/2 of the fractional quantum Hal

FIG. 5. Fermi quasiparticle excitation spectrum for the u
projected half-filled Fermi stateCn51/2

Fermi . The Fermi quasiparticle
energyEqp(q) computed from the interelectron correlations on
and expressed in the units of (1/4pe0)(e2/e l 0) is given as a func-
tion of k/kF , whereq5k2kF and kF is the corresponding Ferm
wave vector. Fork/kF'1 there is a linear dependence ofEqp(q) on
q.
.

-

g

c-
t

e

effect. Calculations were done by neglecting the elemen
diagrams on the cluster expansion ofgn(r ), namely, adopt-
ing the so-called FHNC/0 approximation. This techniqu
which has the priority to treat exactly in the thermodynam
limit the many-body correlated systems, was employed
study several unprojected wave functions used to desc
this filling factor.

Our main interest was concentrated on an unprojec
Fermi wave functionCn51/2

Fermi , but calculations were extende
to other unprojected wave functions of the for
Cn5 p/(2p11)

CS , Cn5 p/(2p11)
CF (B), and Cn5 p/(2p11)

CF (B* ),
possible candidates to describe then51/2 state as the limit
p→`. For the Fermi unprojected stateCn51/2

Fermi we studied
both ground state and excited state properties, while sev
other ground state quantities such as the radial distribu
function, structure factor, and interaction energy per part
were computed for the other wave functions.

The calculation of interaction energy per particle for t
unprojected Chern-Simons wave functionCn5 p/(2p11)

CS is
exact within the FHNC approach and this is an importa
observation for future investigations. Among these u
projected wave functions,Cn51/2

CF (B) gives an estimate o
the interaction energy and some other features, very sim
to theCn51/2

Bose case.
The radial distribution function obtained from

Cn5 p/(2p11)
CF (B) for p@1 does not have Fermi-looking fea

tures, whileCn5 p/(2p11)
CF (B* ) andCn51/2

Fermi do. After comput-
ing the Fermi quasiparticle/quasihole excitation spectrum
the unprojectedCn51/2

Fermi state, the resulting effective mass
the quasiparticles close to the Fermi surfacekF was found to
be exactly the bare mass of the electrons, in agreement
the mean-field prediction of not imposing the LLL proje
tion.

The accuracy of the method was tested to be high, so
reasonable scheme to perform the LLL projection within t
FHNC is found, then the calculation of the effective ma
near the Fermi radius can be done accurately. Attempts
such direction are in progress.
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