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The Fermi hypernetted-chain theory is applied to study the half-filled state of the fractional quantum Hall
effect in the thermodynamic limit. We study in detail the radial distribution function, the correlation energy,
and the quasiparticle-quasihole excitation spectrum of an unprojected Fermi wave function of the form
cpﬁirl'}‘zi J<k(zJ z)? Det{qﬁ,;(F)}, a possible candidate to describe the half-filled state. Adopting a technique
originating from nuclear physics, we compute the effective mass of the fermion excitations near the Fermi
surface for this wave function. We find it to be exactly the bare mass of the electron, in accordance with the
mean field approximation of not imposing the lowest Landau level constraint. Similar calculations were
performed on other related wave functions, which, based on the composite fermion picture, describe the
half-filled state of the electrons as a limit of infinite-filled composite fermion Landau levels.
[S0163-182698)01736-9

I. INTRODUCTION and

The fractional quantum Hall efféctFQHE) results from N R o
a strongly correlated incompressible liquid staiermed at V=z v(Ir,-—rk|)—peE f d?r v(|rj—r|)
special uniform densitieg,, of a two-dimensional2D) elec- J=k I=1
tronic system, subject to a strong transverse magnetic field Pe
B. For a completely spin-polarizedpinless system of elec- dzrlf d?rou(|ri—ryl), 3
trons the dominant sequence of fractional Hall states occurs
for filling factors of the lowest Landau levelLLL) v \herem, is the electron’s masg;=x;+iy; is the location

=p/(2p+1), wherep#0 is an integer. . . . - -
The first step in the FQHE explanation would be the studyOf the jth electron in complex coordinates,(|r;—ri)

_ 2 _ . . . . o
of the properties of a 2D fully spin-polarizédpinless sys- (1/47760)r(1e /6||Zj z) IIS the |nter<|'=10t|on poterlltlal, and
tem ofN interacting electrons emerging in a uniform positive cONtains the - electron-electron, - electron-background, and
. o ; background-background interaction potential.

background, with the magnetic fiefsl high anq temperature From a theoretical point of view, the occurrence of Hall
T IZ\;V’ ?I_ujg th?;]gnl?’ﬂtgfat;gnwogrl]derb?ezir:%!ﬁ/'g:i' ) plateaus at filling factors of th_e_forn_m: 1/m, m= 1,3,_5, can

5 ’ ) gies 0 be understood through the original ideas of Laughlivhich
X(e%elo), wherel,= y#i/eBis the magnetic length andis  jegcribed these states by a trial many-electron wave function
the dielectric constant of the background, are weak comparegk the Jastrow type:

to the Landau level splitting w., and so all electrons are
considered to remain in the LLL. Electrons with charge 2
—e (e>0) are considered as usual to be confined inxthe Y= H (z— 2 mH ex [< |z ) 4)
plane, subjected to the magnetic fidd=[0,0B8] generated 4|2

from the symmetric gauge vector potentiaK(F)
=[— (B/2)y, (B/2)x,0]. The many-electron system is de-
scribed by the Hamiltonian

By construction, this wave function lies entirely in the LLL
and describes a translationally invariant isotropic and incom-
pressible liquid of electrons at a densjiy= v/27r|§, corre-
TR sponding to the LLL filing factor v=1/m, where m
H=K+V, @) =1,3, . Incontrast, the behavior of such a system in the
vicinity of a filling factor with an even denominator, such as
v=1/2, is not well understood. A Laughlin-like Bose wave
function ¢5235,=11}L (z;—2z)?II}L, exp(-|z|%415) does
—|hV +eA(r)1? 2 not correctly describe such a situation and a different theory
2me E [ A )] @ is needed for such fillings.

with

K=
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The paper is organized as follows. Section Il presents guanta. Assuming a uniform density, the Chern-Simons flux
brief summary of the Chern-Simoi€S) theory at half fill-  quanta attached to the fermions are smeared out in a uniform
ing. Section Il presents a brief summary of the Fermimagnetic field of magnitude
hypernetted-chaiflFHNC) approach and its extension to
treat different correlated wave functions of the Fermi type. (b= peledbo. (10)

The method to compute the excitation spectrum near the
Fermi surface is described in Sec. IV. Numerical results aravith p, the average electronic density.
presented and discussed in Sec. V. Sec. VI is devoted to the At special filling factors v= ¢gp./B=1/0¢, Qe

conclusions. =24, ..., theapplied magnetic field precisely cancels the
Chern-Simons flux, so at the mean field level the system can
II. CHERN-SIMONS TRANSFORMATION be described as fermions in a zero magnetic field and should

_ _ therefore be a compressible Fermi-looking liquid state.
At v=1/2 the typical features of the FQHE, that is, the When v is away from 1¢., the applied magnetic field and

quantized o, = v (€?/h) and vanishingoyy,, are not ob- the Chern-Simons one do not cancel, so a residual effective
served, but nevertheless this state shows a broad minffmunfie|d

in p,, and exhibits, additionally, anomalous behavior in sur-

face acoustic wave propagatidfindicating a different type B* =B—(Qodbppe=B(1—0ev) (12)
of correlation. Numerical work by Haldaheuggested that
v=1/2 is not incompressible. is left over. Thus the mean field system is described as non-

Recently a theory of a compressible Fermi-liquid-like be-interacting fermions in a uniform fiel@®*. The effective
havior atv=1/2 was proposed by Halperin, Lee, and Réad. filling factor for these gauge transformed fermioms
According to this theory, a 2D system of electrons subjected- pe¢o/B* is 1,2, ... ,corresponding to the integer quan-
to an external perpendicular magnetic fidd with a LLL tum Hall effect_o_f these gauge transformed fermions. _
filing factor 1/2, can be transformed to a mathematically ~1he “true” filling factor of the electronsv=pe¢,/B is
equivalent system of fermions interacting with a Chern-ust »= (p/gep+1), which is precisely the composite fer-

Simons gauge field such that the average effective magnet/®ion (CF) Jain s_,erie%of FQHE states. The excitation gaps
field acting on the fermions is zero. for these quantized Hall states are naturally given by the

Let me mention some fundamental properties of thiscorresponding effective cyclotron frequency of the CF's:
transformation, supposing thgb(z;---zy)) is a solution of

~ Wl
the Schrdinger equatioirH®=E®. Then, for an even num- E,=hof=H SB , (12)
ber g, whereq,=2,4, .. ., thewave function g Mgap(¥)
N (z—z)% wheremg, (v) is the effective mass.
V(zy-z0) =11 '—’q |D (24 2y)) (5) In the following we concentrate on the filling=1/2,
i<j |zi—z% where several related wave functions have been employed to

) ) o Yy ) incorporate the physics of CF’s on it. They can be treated as
is a solution to the Sclbinger equatiorH’ ¥ =EW¥, with the limit of the series=p/(2p+1) for p— = and may have

different origins. The wave function

H' =K'+V (6)
(-2
- i~ Zk
and WS (B*)=lim Py H ]—2|(I)p(B*)> (13
N p—oo i<k |zj—z
N 1 - - -
K'=5- 21 {—iaV;+e[A(r))—a(r)]}?% (7)  appears as the mean field solution of the CS théavhjle
e =
> . . . N
wherea(r) is the Chern-Simons vector potential ‘1’551/2(5): lim P, jE[k (2, —Zk)2|®p(B)> (14)
. . R p—o
- - Qe N ZX(r—rj) _ _ .
a(r)= = (8) is due to the CF theory of Jain. In the above expressions,

C2n % r—r > AU oy !
! P.LL is the LLL projection operator andjcbp(B)) is the
and ¢, is the magnetic field flux quantum. The Chern- Slater determinant wave function pffilled Landau levels,

Simons magnetic fiel&(F) associated with the vector poten- evaluated at the _magnetic fielq shown in_ the argument. These
R two wave functions have different origins and different
tial a(r) is given by

short-distance behavior in the radial distribution function,

N but they both describe CF's at half filling since there are two

W DL > >N 2 vortices bound to each electron. From the CS theory, we
b(r)—VXa(r)—qe%JZl or=r)=p(r)Gedo. (9 know that at exactly= 1/2 the fermions "“see” no net mag-

. netic field, so they can form a Fermi sea, which does have a
wherep(r) is the local particle density. In other words, the uniform density. As a consequence we would expect that the
Chern-Simons transformation can be described as the exaealf-filled state should be well described by a Fermi many-
modeling of an electron as a fermion attachedqgtoflux  electron wave function of the form
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N

wremi=p I (- 2% Detlop(r)}, (15 ;)(FlaFZ):gsﬂE N(K) @ (1) @k(ra), (18)
i<k Kl<ke

wheregg(r) are normalized plane waves in two dimensions.Where the ground state occupation number for a fully spin
In order to have the correct density of the half-filled case polarized(spinless 2D ideal Fermi gasds=1) is
the Fermi surface of the fully spin polarized electrons must R
have the radiug-=1/,. Excited states involve the creation K= Lo Jkl<ke
of quasiparticle-quasihole pairs near this Fermi-like surface n(k)= 0 Ik (19)
- . v K> ke
and these excitations should have an effective nmasgk)

determined by interelectron interactions only. The interaction The normalized single-particle states of a 2D gas of free
energy per particlai(v)= (IN)((W,|V|¥ )(¥,|¥,)) is  electrons occupying an ardaare pg(r)= (1/yA) €XT and

computed for the unprojected wave functigf =7, and is  k_—1/1,. A trivial calculation of the statistical exchange fac-

compared with the respective values for the other un; SN _ne ;
. . orl(ry,rp)=p(ry,ry)/p gives
projected wave function®$>,,, and W¢F, (B), taken as (rur2)=p(rara2)le g

the limit of infinite filled Landau levels. o J1(Ker 1)

In this paper we employ the FHNC formalism to study in I(rl,r2)=2T, (20
detail the unprojected Fermi half-filled wave function Fl12
\I,Fermi

v—1/2- Within this formalism we incorporate a scheme to wherer ;,=
study the resulting Fermi excitations near the Fermi surfacgq,

and we compute the resulting effective mass of such excita- \yithin the permutation expansion method of Fantoni and

Ir,—r,| andJ;(x) is the first-order Bessel func-

tions. Rosatil® |®|2 may be expanded in the number of permuta-
tions of particles or the number of exchange factors. After

lll. THE FERMI HYPERNETTED-CHAIN FORMALISM insertion into the expansiofl7) the product may be ordered
FOR THE HALF-FILLED FERMI WAVE FUNCTION according to the number of particles involved. The resulting

The FHNC th . ful t f lculati cluster terms contain both kinds of correlations and may be
e eory 1S very uselul lo periorm calcuiations represented by cluster diagrams. As in the Bose case, the

in the thermodynamic limit for infinite systems of particles associated radial distribution functiar) is then given by

interacting via central, spin-independent potentials, wit . X . ) X )
Hamiltonian of the form of Eq(1). If such systems are de- h}jheeﬁnseudmto(;foalgiggrfglegedumble diagrams obeying well

scribed by trial functions of the Jastrow-Slater form, as is the - ;
; : ' One definesodal non-nodal (compositg¢, and elemen-
case, then the FHNC theory is applicable. A Jastrow—SIate{ary diagrams as in the Bose c(ase, pbut teﬁere are now four

trial wave function can quite generally be written as different types for each of them. The four different classes of
N nodal and elementary diagrams are generally denoted by
_ iy dd (direct-direc}, de (direct-exchange ee (exchange-
Wy=]] f(|r;—ri])|P), 16 )
) .1;[, (Iri r1|)| ) (16 exchangg and cc (circular-exchange The sums of non-

) . ) . nodal (composite diagrams of the four types are given by
where a possible choice fob) is a Slater determinant mak-

ing |¥) antisymmetric. . N . Xgo(r12) = F2(r o) eNad12 T Ead'1d — Ny (r 1) — 1, (21)
Let us show in some detail the quantities entering the

calculation of theWwf ™ wave function, which contains a Xge(T 19) = F2(r 1) €Nad(112 + Eaa(r1)

determinant of 2D normalized plane waves. The same tech-

nique is used to perform similar calculations #7°,,, and X[Nge(r12) + Eqe(r12) ] = Nae(r2),  (22)

WEF, (B) wave functions, so we skip a detailed description 5 Nuu(t19) 4 Ei(10)
of them. In order to calculate the interaction energy per par- Xeell'12) = f(r1p) € dd 127 =dd T2 Ng (1 15) + Eeel 1 12)
ticle (1/l\|)(<\IfV|V|\IfV>/(A\IfV|\If,,)) and the “kinetic” energy + [Nge(r 19) + Ege(F 12 |2— 94| Nee( T 1)
per particle (IN)((¥,|K|¥ (¥, |¥,)), we should find E | JalP1— N 03
the radial distribution functiog(|r;—r;|) through the appli- *Eoo(r12) = 1(r12/95|"] = Ned"12), 23
cation of the FHNC.

Because of the “healing” property of the factcb?(rij) Xoe(T12) = F2(1 1) e 112" Ead 112 Neg(r 1) + Eoe(T12)
—1=h(r;;)—0 asr;;—= the spatial correlations present in —1(r12/9e] +1(r12)/gs— Nee(T 12). (24)
the wave function may be ordered in powers of the function
h(ri;), The radial distribution function is composed of the compo-

nents
N N

N
|¥|2= 1+i2<j h(rij>+i2<j gl h(rijh(rg)+--- ||®|2. 9(r12) =1+ Xga(r 19+ Neg( 12) + 2[ Xge(r 1) + Nge(r 15)]
(17) + Xee(r12) + Negr12). (25

The (reduced single-particle density matrix for the dynami- The chain formation of the nodal diagrams is generated by
cally uncorrelated state is given by convolution equations
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whereC is a correlation operator anﬁ(n(l?)) is a 2D Fermi

gas wave function with occupatiom(l?). Let us compute
the energies of a quasiparticle/quasihole state obtained with

wave functions¥ ,(p) for |p|>ke andWy,(q) for |q|<ke:

Ndd(rlz)zpj dra[Xgqa(r19) +Nag(r191P(rsn), (26)

Nge(ri2) = Pf dFS[de(rB)Xee(rBZ) — Xae(r13) Xge(rs2)

W o(p)=Cd(n(K)+ 85 ), (34
+[Xae(F 19+ Noe( 119 IP(r5) ], 27 P P
Wh(q)=CP(n(k) = 4, (35
Nee(l’lz):pf dral Xge(r 13 Xde(T32) — Xga( 12 Xeel T 30) Let Ep(p) {;md En(q) be the gnergies obtained with these
wave functions. The energy differences
+[Xee(r13)+ Nee(r13)]P(r32)]1 (28) Ep(p)_ EO:e(p> kF)! (36)
> Eo—E =e(q<k 3
Nee(f1)=p [ 07~ 171910+ Xeclr o~ En(@)=e(a<ke) @7
give the single-particle energy to create a quasiparticle and a
+Neo(r13) [Xee(r32), (29 quasihole, respectively. The energy per particle obtained by
either adding or removing particles haviker kg is
with
Eolp) p 4
eke)=——+ N%Eo(f?)- (39)

P(rij):de(rij)+2Xde(rij)+Pf dry .
For a Fermi disk filled up t¢k|<kg the ground state energy
X[ XgalTit) Xed Tkj) = Xae(Tit) Xae( ) 1. (30)  of the system is only kinetic given bo(p) =z €N, where
er=(h2/2m)(4m/gs) p. We are dealing with the fully spin
The FHNC relations provide a closed set of equations foipolarized(spinles$ case, says is 1.
the nodal and non-nodal components appearing in 45— It is convenient to calculate the quasiparticle and quasi-
(24) and(26)—(29) only, if the elementary contributiorgle-  hole excitation energies(p>kg) ande(q<kg) by remov-
scribed by elementary diagrajare known. Several differ- ing a small fractionx<1 of particles' (xN is number of
ent approximation schemes are available for an appropriatemoved fermionsfrom a thin ring atk=kg (k=q) in mo-
evaluation of the elementary portions. However, at presennentum space and putting them into a thin ringatp (k
we neglect such diagrams adopting the so-called FHNC/G-kg) for the quasiparticléquasiholg case.
approximation, where the 0 means neglect of elementary dia- Up to terms linear irx we have
grams. In this approximation we sgf, ;=0, where the in-

dices are &,8)=(dd), (de), (e®), and €0). ExKIIN=Eo/N*+x[ze(k)ze(k)]. (39
For convenience, we substitutg] Fi—Fj|)2=eU(|ri‘rJ‘) in  The upper signs are for the quasiparticle casep> kg and
the expression of¥|? and then we separate the pseudopothe lower signs for the quasihole caseq<ke.

tential associated with the Jastrow past(r,,)=4In(z ' The “mlxgd” density matrix for these occupations is a

—z)|) into a short- and a long-ranged part, respectively, ~ simple function ofx, k, andr,:
Ud(F1p) = — 4Ko(Qry), (31) 10K, 12)=1(r1,12) X[ Jo(Kr 1) = Jo(Ker 12)]. (40)
Eq/N is the energy per particle of the system described by
Ui(r12)=4Ky(Qrqp) +41In(rqy). (320  the wave function of E¢(33), where no fermions have been

] ) B ~removed from the Fermi disk, whilé(x,k)/N is the energy
and the wave numbe® is a cutoff parameter of orderly.  particles is removed from the Fermi disk and placed on a
Furthermore, all nodal and non-nodal functions are separateghg at wave vectok in momentum space. Bot(x,k) and
into their respective short- and long-range parts and thg0 are calculated in the same way, by the FHNC method.
FHNC/0 equations are solved by a standard iterative proceyoting that E(x,k)/N=e(x,k), and Eq/N=e&,, the quasi-

dure. particle energy is written

1
IV. THE PARTICLE-HOLE EXCITATION SPECTRUM eqp(0) = (k) — e(kg) = —[e(x.k) — ], 41)
OF THE FERMI HALF-FILLED STATE X

In this section we report a method used to compute thavhereq=k—kg>0. Then the effective mase™ (k) is given
quasiparticle-quasihole Fermi excitations for the Fermi wavey
function W' e For a correlated 2D Fermi gas calculations * 2

v=1/2 > . m*(k) 7% k
of the ground state enerdy, are generally carried out with =—

the wave function

Me me d ’ (42)

Vo=Cd(n(k)), (33)  wherem, is the bare electron mass.
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FIG. 1. Radial distribution functiom(r) for the v=1/2 state FIG. 2. Smallr behavior ofg}€Tj(r) on a logarithmic scale

ermi

obtained from the unprojected Fermi wave functibh®) and the  In[g(r)] versus lfir/lp]. One observes thaf,~7)5(r), obtained from
projected Bose Laughlin-like wave functiohB2S5,. Calculations ~— the unprojected Fermi wave function, has an erronagif§(r)
were done neglecting the elementary diagrams, namely, within the- (T/10)* dependence instead of the correcti ¢)* one of the pro-
FHNC/O and HNC/O approximations, respectively, for the Fermijected case, suggested from exact numerical diagonalizaivefs
and Bose cases. 13).

V. RESULTS small+ behavior of the unprojected’®5(r) for the case
being. As shown in Fig. 2, we found that the radial distribu-

tion function has an erroneowg " (r)~(r/ly)* behavior

instead of the /l,)?> one suggested by exact numerical

diagonalizationg? which of course do not suffer from the
N R missing projection into the LLL. As a consequence, smaller

\PES{‘,"ZEH (zj—zk)2 Det{ oi(r)} (43 values of the unprojecteg’®'5(r) at shortr make the in-
J=k teraction energy per particle lower than the projected ones.

and other unprojected wave functions that incorporate the In the calculation ofg$S,(r) correspggding to the CS

physics of CF'’s at such filling. For the sake of simplicity, the wave function W$2, (B*)= lim . W52 p2p+1)(BY)

elementary diagrams were neglected, so calculations wetgp . a the unproiected S B*) is given b

performed within the so-called FHNC/O approximation. prol v=pizp+1)(B7) 18 G y

For any given wave functioW ,, which describes a given

In the present work we applied the FHNC theory to the
half-filled state of the FQHE, employing the unprojected
Fermi half-filled wave function

statev, we calculated the radial distribution functian(r) cs B (Zj—Zk)2
and the interaction energy per particle was computed from W2 p/<2p+1)(B*)_j1;[k |z,——zk|2 |(DP(B*)>’ (46)
1w VY, pe 2 > we observe that
UV_NW_?jd rlg,(r)—1Jv(|r]). (44
Except in the trivial case o %3, where the kinetic en- (WSS aps 1) (BH)P=]@(B*)|2, (47
ergy per particle is
R which is just a squared determinant of single-particle eigen-
1 W52§?2|K|\P'3251‘72_ 1 functions forp Landau levels, subjected to an effective mag-
N yBose |y Bose —oltWes 49 netic field B*, wherep=1,2,.... Inthis special case, the

calculation of the interaction energy per partiuﬁﬂtS pl(2p+1)
its calculation is not easy at all to perform within the FHNC is exact becausg(®> .+ 1)(r) can be exactly computed
approach, so we devoted our interest mainly to the calculayithin the FHNC framework.

tion of the interaction energy per particle. In Table | we show the exact results for the interaction
In Flg 1 we plot the radial distribution function energy per partidwcs Computed from the un-
Fermi Bose v=pl(2p+1)

9,-12(r), obtained from the unprojectedf, =", and¥, 2%,  projected CS wave function of E¢6). In the fourth column
wave functions. Its calculation in the Bose case was done byye show the approximated variational Monte CaNMC)
employing the Bose hypernetted-chaiitiNC) method,  results of Kamilla and Jaifi for some of these states.
which is rather standard and easier than the FHNC method. We stress again that our results are exact, without any
The ground state interaction energy per particle, obtainedpproximation, so it seems that the above VMC treatment
from the unprojectedw?e7;, was found to beuf®T  becomes less accurate for-1/2. A reasonable extrapola-
= —0.503(1/4req) (€%l €l ), a value rather lower than the tion of these values fop— gives an estimate
value suggested from exact diagonalizatiérsf small sys-
tems of electrons. 1 &2

The source of such discrepancy is the missing projection U(V:=S1/2: lim US:S j2pin~—0.425———, (49)
of ¥Fe ™ into the LLL. We performed a careful study of the p—oo PP 4meg €lo
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TABLE I. Interaction energies per particlg, expressed in units TABLE II. Interaction energies per particla, expressed in
(1/4meq) (€%l €l o), computed using the unprojected Chern-Simonsunits  (1/4reg)(€?/el), computed using the unprojected
wave function, ¥ 3(B*)=I11L,[ (2~ 2)%/|z;—z/*] ®,(B*) for ~ WiE o .1 (B) wave function. The values in the second column
fillings v= p/(2p+1). The values in the third column refer to the refer to the FHNC/O approximation, while in the third column we
FHNC/O0 results, which in this case are exact, while in the fourthreport the estimates of Jain and Kami(Ref. 17 obtained using
column we report the recent estimates of Kamilla and (Réef. 14 projected CF wave functions in the spherical geometry.
obtained from a variational Monte Carlo simulation in the spherical

geometry. v (FHNC/0) Ref. 17
B 0 FHNC/O Ref. 14 1/3 —0.40257 —0.409828(27)
2/5 —0.43054 —0.432804(62)
173 1 —0.361800 —0.3619(90) 37 —0.44510 —0.442281(62)
2/5 2 —0.385343 —0.3848(16) 4/9 —0.45300 —0.447442(115)
37 3 —0.395990 —0.3947(15) 5/11 —0.45796 —0.450797(175)
4/9 4 —0.402064 —0.4007(16) 6/13 —0.46137
5/11 5 —0.405992 7/15 —0.46386
6/13 6 —0.408742 8/17 —0.46576
7115 7 —0.410776
8/17 8 —0.412341
9/19 9 —0.413583 visible Fermi-looking features. On the contrary, the radial
10/21 10 —0.414592 distribution function obtained from the unprojected CF wave
function
which is higher than the exact diagonalization results at N
v=1/2. IQSFig. 3 we show thg interaction energy per particle wCF oi2ps1)(B*) = H (Zj—Zk)2|<Dp(B*)), (50)
valuesu,= ;op+1) @s a function op=1,2, .. .. i<k

The calculations employing the unprojecteHS™(B)
wave function are more difficult to perform, but the FHNC where B*=B1/(2p+1) for v=p/(2p+1), does have
theory needed to describe them is not different from the preFriedel-looking oscillations, in agreement with the results by
vious cases. A detailed description is given elsewh®sn Kamillaet al*® We computed the radial distribution function
we limit ourselves to the presentation of the results for theat »==6/13 corresponding to both wave functiods;(B)
interaction energy values for the filings= p/(2p+1) andW¥SF(B*) and the oscillations in thB* case are evident
given in Table Il. An extrapolation of these values for from Fig. 4.
—1/2 gives an estimate very close to the value for the As our major interest was concentrated in the unprojected

VB3¢ case: Fermi half filled wave functio£27, using the method
described in Sec. IV, we computed the particle-hole excita-
2 tion spectrum of this state by adopting a technique previ-
usE o= lim uSt 5.1~ —0.4799)—— — (49)  ously used in nuclear physi¢sThe supposedly low-energy
4req €l : L -
p—oe 0 =0 Fermi excitations should have an effective masqk) de-
termined by interelectron interactions only. Once we are able
and similarly forg, Z,,,(r). to calculate the interaction ground state energy per particle
The radial distribution functiorgffp,(zpﬂ)(r) obtained
from the unprojected? S& .. 1/(B) does not seem to have 12—
—— Unprojected 6/13 with B*
-0.350 I E. Unprojected 6/13 with B
-0.360 -, . 11 } i
« p/(2p+1
-0.370 | P2p+1) CS -
-0.380 | 1 @
_ o ] 10
£ 0390 .
-0.400 - . .
-0.410 | Tl ] ;
oL, .. 0.9 T HE1 L L L L
-0.420 - e 00 20 40 60 80 100 120 140
-0.430 " "o

0 2 4 6 8 10 12 14 16 18 20 _ . _
p FIG. 4. For the fractional fillingy=6/13, we show the radial

distribution function gF(r) obtained from the unprojected
FIG. 3. Interaction energy per particl> .. 1) for the un-  WSE¢ (B*) (solid line) and the unprojectedS ¢, {(B) (dotted
projected Chern-Simons wave functioh$® . ;)(B*) plotted line). For WS, (B*), Friedel-like oscillations oty$"(r)—1 are
as a function of the number of filled Landau levplsThe energies quite visible, in good agreement with the results of Kamdtaal.
are expressed in the standard units ¢Ad¢) (e?/ el ). (Ref. 16.
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0.020 - - . . effect. Calculations were done by neglecting the elementary
- diagrams on the cluster expansiongfr), namely, adopt-
0.016 . ing the so-called FHNC/O approximation. This technique,
which has the priority to treat exactly in the thermodynamic
0.012 | ] limit the many-body correlated systems, was employed to
Lu% study several unprojected wave functions used to describe
0.008 - _ this filling factor.
Our main interest was concentrated on an unprojected
0.004 |- | Fermi wave function?" 27" but calculations were extended
to other unprojected wave functions of the form
‘I'(V::S pl(2p+1) 1 ‘I'(V::F ozp+1)(B), and ‘I’S:F p/(2p+ 1)(5*),

0.000

100 104 108 112 116 120 possible candidates to describe thve 1/2 state as the limit
koks p—o. For the Fermi unprojected stat"®™ we studied

both ground state and excited state properties, while several
projected half-filled Fermi stat@ . The Fermi quasiparticle other ground state quantities such as the radial distribution
energyE,(q) computed from the interelectron correlations only function, structure factor, and interaction energy per particle
and expressed in the units of (Héy) (e elo) is given as a func- Were computed for the other wave functions.

FIG. 5. Fermi quasiparticle excitation spectrum for the un-
Fermi

tion of k/ke, whereq=k—kg andk is the corresponding Fermi The calculation of interaction energy.pe(rjsparticle for the
wave vector. Fok/ke~1 there is a linear dependencef®f,(q) on unprojected Chern-Simons wave functioh;> ;55 1y IS
qg. exact within the FHNC approach and this is an important

observation for future investigations. Among these un-

for several mixedPFe"Mi({r,} x) states, we are able to com- projected wave functions¥' 7%, ,(B) gives an estimate of
pute the quasiparticle and quasihole energies. the interaction energy and some other features, very similar
In Fig. 5 we plot the quasiparticle excitation spectrumto the w5255, case.
€qp(Q) as a function ofj=k—kg>0. It was found that in the The radial distribution function obtained from
. . . - CF . .
long-wavelength limit §—0), the quasiparticle excitation W — ,,,.1)(B) for p>1 does not have Fermi-looking fea-
energy expressed in units (1é,)(e’/ely) is linearly pro- tures, while® SF o/2p+1)(B¥) andWFET do. After comput-
portional toq expressed in units liy with «=0.082. In these  ing the Fermi quasiparticle/quasihole excitation spectrum for
units the unprojected £ e state, the resulting effective mass of
e.(Q)= ag (51) the quasiparticles close to the Fermi surfkeg/vas found to .
ar ' be exactly the bare mass of the electrons, in agreement with
From the above quasiparticle excitation spectrum, we comthe mean-field prediction of not imposing the LLL projec-
pute the effective mass* (k) of the Fermi excitations by tion.
applying Eq.(42). The accuracy of the method was tested to be high, so if a
Using the dielectric constant=12.6 appropriate for reasonable scheme to perform the LLL projection within the
GaAs and the magnetic fieB=10 T, taken from Halperin FHNC is found, then the calculation of the effective mass
et al,” we find with striking accuracy the result near the Fermi radius can be done accurately. Attempts in a

such direction are in progress.
m* (k=Kg)=me, (52
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