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Application of Fermi-hypernetted-chain theory to composite-fermion quantum Hall states
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The Fermi-hypernetted-chaifFHNC) theory and the effective hypernetted-chain method are applied to
study the composite-fermio{CF) states of the fractional quantum Hall effect. Using this theory we compute,
in the thermodynamic limit, the correlation energy, radial distribution function, and static structure factor for
all unprojected CF wave functions. The unprojected excitation gaps=fdi/3,1/5 were obtained by adopting
in the FHNC a scheme previously used to compute nuclear matter excitation spectra. The results obtained so
far are consistent with Monte Carlo simulations and small-number exact diagonalizations.
[S0163-182697)04444-3

[. INTRODUCTION strongly correlated electrons Btis equivalent to a liquid of
weakly interacting CF’s aB*; the FQHE is regarded as the
The fractional quantum Hall effectFQHE) results from  integer quantum Hall effect of composite fermions. The
a strongly correlated incompressible fluid statéormed at  stable fractional filling factors obtained in this way are
special densitiep of a two-dimensional electronic system in v=p/(qesp*1), whereq,=0,2,4 ... is theeven number of
the extreme quantum limit of a strong perpendicular magvortices attached to each electron gmnet 1,2,3 ... is the
netic field B>5 T), low temperature T<2 K), and high  corresponding number of CF Landau levels. For sake of sim-
mobility of electrons f>10° cn?/V's). For fully spin-  plicity we confine the discussion below to the special filling
polarized(spinles$ electrons, the most pronounced states ocfactors v=p/(gqep+1), where the corresponding CF filling
cur when filling of the lowest Landau levélLL ) is v=1/m, factor isv* =p.

wherem=1,3,5... is an oddnteger? The many-electron Let us denote the ground state of noninteracting electrons
system is described by the Hamiltonii=K +V, wherek ~ atv*=p by |®). The corresponding wave function for the
is the kinetic energy operator CF'’s is obtained by attachingy vortices to each electron in

the statd®,), which amounts to correlatingb,) by multi-
. 1 XN . . ) plication with a Jastrow factofl;_(zj—z)%. Thus the
K=— > [~ihV;+eAr))] (1) electronic ground state at=p/(q.p+1) is described by the

2me =1 trial CF wave function
and
N
N 2 N =F
o . . [Wer)=PLi ] (z—20% @p), 3
V:Vee+Veb+Vbb=E—+z V(2)+ Vs cF) LLLj<k i 2k p)
<k elzj—z] =1

@) introduced by Jaifi,whereP| |, is the lowest-Landau-level
is the total electron-electron, electron-neutralizing back-projection operator. For the special case of the ground state
ground, and background-background interaction energiest v=1/(q.+1), namely, forp=1, the CF wave function is
wheree>0 is the charge magnitude of the electreris the  identical to the Laughlin wave functichyhich is already
dielectric constant of background, amd, is the electron known to be a very accurate representation of the exact
mass. ground state av=1,1/3,1/5. There is also strong evidence
The origin of electronic states at so-called higher-ordeifor the validity of the CF theory from several numerical stud-
FQHE states ab=p/q has been less clear. Jafrhas pro- ies performed mainly on few-electron systeffs.
posed a remarkably simple picture to explain the origin of Exact calculations in particular are limited to systems
the FQHE by introducing the idea of a particle called a com-with few electrons and extrapolation to the thermodynamic
posite fermion(CF), which is an electron carrying an even limit is not totally unambiguous. The difficulty becomes
number of vortices of the wave function. The fundamentalmore severe asv—1/2. The Fermi-hypernetted-chain
property of the CF’s is that they experience an effective field FHNC) technique seems very attractive in this respect, as it
*=B—gepgp, Wheregy=h/e is the quantum of the mag- treats the many-particle fermionic system exactly in the ther-
netic flux andq. is an even integer. Thus the liquid of modynamic limit.
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In this paper we apply the FHNC theory and the effective- 1 L

hypernetted-chaifEFHNC) method to the unprojected CF o=—(—iaV+eA)? (6)

wave functions of the FQHE corresponding to filling factors 2me

v=p/(Qep+1), whereg.,=0,2,4 andp=1,2,3,.... This . _ .

represents a step towards a more systematic study in whigﬁr the various Landau levels=0,1,2 ... aregiven by

the projection onto the LLL will be taken into account. We N

find that FHNC theory provides a simple and powerful tool In,m)= o m(2) = 1 z (2 i)

to deal with unprojected CF wave functions for both ground- ’ nm 2'n1 4|c2) 09z

state and excited-state properties. The results obtained so far

)

are consistent with previous calculations performed on sys- zZ*
tems with a finite number of electrons. X <P0,m(z)e><p( - F) ] @)
The scheme of the paper is as follows. In Sec. Il we 0
discuss how to apply FHNC theory to the unprojected CFRynere
wave functions. In Sec. Ill we develop a simpler scheme that
approximates the FHNC equations to compute the radial dis- 1 Z\™
tribution function. The calculation of the quasiparticle- @om(2)= —( —) ?o,d2), ®)
quasihole excitation spectrum for a specific case is presented ’ 2™m!\ 1o ’
in Sec. IV. Section V is devoted to the results and conclu-
sions. 1 77
QDO,O(Z) mex% 4|g) ) 9
Il. APPLICATION OF FERMI-HYPERNETTED-CHAIN
THEORY FOR THE COMPOSITE-FERMION STATES where ¢ is the magnetic length anth=0,1, ... is the

) ) angular momentum quantum number. The manifold of states

Integral equation tecrr]fgll%ues such as hypernetted-chaifjith energys w,(n+ 1/2) constitutes thath Landau level.
(HNC) theory for tl)g)so or Fermi-hypernetted-chain  The first step in the application of FHNC theory is the
theory for fermions"*?allow for a realistic evaluation of the knowledge of an orthonormal set of single-particle wave
radial distribution function and related quantities for Jastrows,ctions that fully describe the unperturbed Fermi system.
and Jastrow-Slater wave functions. In particular, they are exrq jjlystrate this idea, let us first consider the simple case
tremely useful when calculations must be performed strictly,,— 1 ptained fop=1 andg,=0. The CF wave function
in the thermodynamic fimit. , , JWEED s in this case the Vandermonde determinant of

Generally speaking, FHNC theory is applied on Fermi

systems described by a many-body wave function of th(?s(;rr]gt:]ee-pcz;rggisltai\;e%ym(z) of Eq. (8). The density matrix

form
Ng—1
N pr=1(21,22)= 2 0} (21 Pom(Z2)
[w)=11 f(rple). @ m=0
1 1z, 2,/?
Theeket|d>> is a Slater determinagt OI single-particle states B 2W|3ex 4 12
@,(r) for fermions andf(r;;)=f(|r;—rj|) is the so-called
dynamical correlation factor. More elaborate trial wave func- 1 .
tions, containing, for instance, triplet and/or backflow corre- xXexg — I(z)(zl 2-217;)|, (10

lations, can also be handled with the FHNC theory.

Thef radidal disltribllJtion flénctiorg(rlz) is eXprzss(le;tﬁS a whereN; is the degeneracy of each Landau level. We ob-

sum of irreducible cluster diagrams constructed wijhthe ~ _ _ 2 ;

. o . o serve thatp,_1(z,2) =p,, Wherep,=1/27l1j is the density
bosonic” bond h(fii)*:f([ijzzjl and(ii) the “statistical correspoéds to= 11. For the cla5®=1,oqe in Eq.(3) is
exchange” bond (r;,rj)=p(r;,rj)/p, wherep is the par-  equal to zero and the uncorrelated radial distribution function

ticle density,p(r;,r;) is the uncorrelated one-body density is simply

matrix

gy=1(zl,22)=1—e"7pl‘zl‘22|2. (11

p(rTN=0s2 @X(M)ea(r)), (5)  For CF states, at filling:=1/(q.+1) (the Laughlin states
@ one needs the full machinery of FHNC theory. In this case

. _ _ only the LLL orbitals are occupied; therefore the statistical
andgs=1 is the spin degeneracy for the case of interest. Inexchange term is

Eq. (5), the sum ovek is extended over all occupied single-
particle statesp,(r). 1)z,-2, _

For a magnetic fiel® in the z direction, with a symmet- IV(zl,22)=exp< 2 |—2) exdid(z1,29)], (12)
ric gauge vector potentiaﬁ\z %éx r, the eigenstates of the °
ideal Hamiltonian with the phase factop(z,,z,) given by
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1 1 . The intrinsic Landau leve{LL) mixing of the CF wave
#(21,25) = —5T10pSIN(0,— 61) = — (r,Xry),. (13 functions implies a projec_tion. onto .the. LLL. The Jastrow
215 215 factor provides a good projectidfwhich is particularly ef-
. ) o fective as far as ground-state properties are concerned. How-
It is known that the FHNC technique is intrinsically ap- eyer, to study other quantities, such as the excitation spec-
proximate because there is a set of.cluster diagr@mse-  ym the full LLL projection seems to be needed.
sponding to the so-calledlementarydiagrams that cannot Unfortunately, such a projection leads to a wave function
be fully included in any closed form. Several schemes havenat cannot be treated directly within the FHNC formalism
been devised to include such cluster diagrams at various leysecayse the structure of a determinant of single-particle or-
els of approximation. The simplest approximation of totally a5 is lost. One can adopt the projection technique used by
neglecting these ternjghe FHNC technique at zeroth order gonestedf to calculate the excitation gaps of
(F_HNC/O)] leads to reliable results and we have adopted it in, — 1/3,1/5.1/7, which, however, is limited to Slater determi-
this paper. nants spanning two Landau levels only. The extension of

The full formalism of FHNC/0 theory fo_r t_he Laughlin - g,ch a technique to more LL's appears to be numerically
states has been reported elsewHétgere we limit ourselves inaccessible.

to the generalization of such a scheme to the unprojected CF 5 more general projection scheme, applied to few-

states. _ electron systems in a spherical geométsgems to be more
As in a standard computation, we separate the CF pseudgiomising. Such a scheme introduces a many-body depen-
potential U(r1,) = 2¢In(|z,~2zl) into short- and long-range  gence on all single-particle orbitals, which, however, can be

parts handled by introducing state-dependent correlations in the
wave function, in close analogy to ‘“backflow”
Us(ri2) = =20eKo(Qra2), 19 correlationd® of liquid *He.
U(r12) = 20eKo(Qr1) + 2qeln(r 1) (15)

lll. EFFECTIVE HYPERNETTED-CHAIN METHOD
Ko(x) is the modified Bessel function an@ is a cutoff
parameter of order 4. Furthermore, all nodal and non-
nodal functions are split into their short- and long-range part
so that the FHNC/0 scheme can be applied directly.
Knowing that the general CF state of the form
v=p/(gep+1) is described by the trial CF wave function of orm

In this section, we summarize the effective hypernetted-
ghain (EFHNQ) method!® also known as the Lado
approximation'’ The square modulus of the Slater determi-
nant|®|2, a positive-value function, can be written in the

Eq. (3), the one-body density matrix is written as N N
p—1 Ng—1 |®|223XF{; WZ(rij)+i<lZ<k W(T; :Fj T+,
p21.2)= 2 2 ehn(Z)enm(z2).  (16) (19
n=0 m=0

) A which emphasizes the fact that the Pauli principle introduces
One can easily prove that the contributiorptdz;,z;) COM-  many-hody correlations between particles in analogy to the

ing from thenth Landau level is pseudopotential describing the dynamic correlations. Within
- the EFHNC approximation only two-body correlatidhare
ot N 21— 2,/ retained in Eq(19), namely,
2 (Pn,m(zl)‘Pn,m(Zz):Ln Y
m=0 2|0 N
Ns—1 |®|2%exp{2 W(rij)} (20)
i<j

X mE_O ®om(Z1) eom(Z2),
In the next step of the systematic approximation scheme, one
(17) may include triple correlation factors, etc., until the required

: i hieved.
whereL (x) are the Laguerre polynomials of order After accuracy 1S ac L S
some algebra, the statistical exchange term turns out to be . The EFHNC. approximation grea_tly S|mpl|f|e_s the calcula-
tion of the radial distribution functioff which is the only

p-1 |2,— 2,2 quantity needed to compute the interaction energy per par-
IV(zl,zz)={ 20 Ln(%) / } ticle. Within this approximation one has
0

% F{ |21_Zz|2) [{i(ﬂxa)
exp — ————|exg —5(roXryq),
412 213
(18)

The systematic knowledge of the statistical exchange term f(rij)zf(rij)exq%w(rij)]. (22
I,(z4,2,) for all the fractional states=p/(g.p+1) enables

us to readily apply the FHNC theory to all the unprojected To construct the pseudopotentia(r) for a given Slater
CF states. determinant we require that the HNC evaluation of the radial

n=
N N N

|\I,|2:i];[j f(ri])zi]-;[j exqw(rij)]:L_[j 7(rij)2, (21

with the effective correlation factor
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distribution functiongync(r) for |®|? reproduces thexact  tral excitations are obtained by promoting a single CF to the

radial distribution function of the noninteracting system,next higher CF Landau level. For instance, a low-energy
namely, band of excited states above the1/(q.+1) ground state

is constructed by promoting a CF from the lowest pseudo-

1 Landau level to the first excited pseudo-Landau level.
Innc(Fi) = Jexact M) = 1= —lexact i[> (23) The excitation gaps can be calculated by adopting a tech-
9s nique introduced by Friedman and Pandharipahdfe the
This prescription leads us to the pseudopotential context of nuclear matter. Suppose we havieandau levels
filed. The statistical exchange correlation associated with
-1
1] [Seract k) — 1712 F |Dp) is 1 [(p.r12) and the interaction energy per particle

W(I’) = |n[gexac(r)] - ;

. (29 Ug (P) is a functional off (r) andl (p,r). Promoting a CF

Sexact ) from the pth LL to the (p+1)th one will produce a corre-
where Seyao(k) =1+ p[Gexaclr) — 117, [f(r)]" denotes the |ated wave functior{W ) that is orthogonal tqW¢g) be-
two-dimensional Fourier transform of a functidifr), and  cause of angular momentum conservation. The quasiparticle-
[f(k)]F_1 is the two-dimensional inverse Fourier transform quasihole excitation introduces a new statistical exchange
of f(k). For a Slater determinant with-filled Landau levels term in the cluster diagrams of the radial distribution func-

we get tion, given by
p2\ (Pt r2 2 p—1 Ng—1
—1_ _ - h 1 *
gexac{r)_ 1 ex% 2|§) [ ngo L”( 2'(2)) / p] ) Ige(pazllzZ): I_) I‘IZO mE=0 Qon,m(zl)gon,m(ZZ)
(25 N1
With these expressions as input, E2@) provides an explicit +— * (7 7
expression for the potential(r) and, consequently, due to m2 #pn(21)@pm(22)
Egs.(21) and(22), we obtain Neo1
1 S
N _ __2 @;—1,m(21)¢p—1,m(22) .
[wP=]1 exdu(n], (26) Nsm=0
i<j

(32
whereu(r) =2qgeIn(r)+w(r). We may now employ the fa-
miliar boson HNC formalism.

Decomposing the functiow(r) into a short- and a long- N
range portion WP p) = 1 (W VIWpn)

"N
W(rlZ):Ws(r12)+W|(r12), (27) <th|q,ph>

In calculating the energy per particle

corresponding tol\I’ph> the quasiparticle-quasihole ex-

we may write bh
change termlg (p Z,,Z,) must occur only once in any

We(T 12) = IN[Qexack I 12) ] (28  FHNC cluster diagram, so that the excitation energy
and Aqe( p)= ug:(p) - uqe( p) is of the order of g, as it should
be.
1{ [ Seract k) — 112 The calculation oque(p) can be done by introducing a
wi(rip)=— ; W (29) “mixed” statistical exchange correlation
exac

This decomposition achievei an analogous convenient sepa-lqe(x,p,rlz)=Iqe(p,r12)+x[lqe(p+ 1r 12)—Iqe(p,r12)],
ration for the pseudopotential(r), (33

(M 10) = — 206K o( QT 10) + We(F 1) (30)  Where the fractionx of CF's removed from thepth LL and

placed to the next highemp@ 1)th level is considered as a
~ _ smallness parameter. The derivative with respeoct td the
Ui(12)=20eKo(Qr1d) +2Gen(ri) +wilrsg). - 31 ivion energy\b'(x,p) gives the quasiparticle-quasihole
Finally, thek-space representation of the long-range part ofyay, for a general CF state= p/(gop+1), namely,
the pseudopotential,(k) may be analytically obtained and
the standard HNC theory can be employed.

Aq(P)= {wm%upmfun upTlq (p.1),F(N)]}-
IV. THE QUASIPARTICLE-QUASIHOLE EXCITATION (34
SPECTRUM OF THE CF STATE

The calculation oiJ”h 4 (X,p,r),f(r)] is done in the same
In this section we report a method used to compute the [ e( p.r), ()]

h
quasiparticle-quasihole excitations for the unprojected CRVay as the calculat|on foug [1q(p.r).f(r)], namely, em-
wave function within the FHNC theory. The low-energy neu- ploying the same FHNC code.
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TABLE I. Interaction energies per particlg(v) expressed in 1.2
units e?/ely, computed using unprojected CF wave functions, for
fillings v=p/(2p+1). The values in the second and third columns 1.0 -
refer to the FHNC/0 and EFHNC/O approximations, in the fourth
column we report the estimates of Jain and KamiRef. 20 ob- 08 L i |
tained using projected CF wave functions in the spherical geometry, /jw’
while in the fifth column we show the results of Ref. 21 using = | //,‘” |
unprojected CF wave functions. % 06 / - 13
/// ............ 2/5
v FHNC/O  EFHNC/O Ref. 20 Ref. 21 04 /?' o ]
1/3  —0.40257 —0.4056 —0.40982827) —0.40927) 02t oo
2/5 —0.43054 —0.4309 —0.43280462) —0.44891)
3/7 —0.44510 —-0.4452 —0.44228162) —0.46442) 0.000 = 2‘0 4‘0 50
4/9  —0.45300 —0.4531 —0.447442115 —0.473415) ' : iy : '
5/11 —-0.45796 —0.4580 —0.450797175
6/13 —0.46137 -0.4614 FIG. 1. Radial distribution functiom(r) computed using the
7/15 —0.46386 —0.46389 FHNC/0 theory for the series of FQHE states
8/17 —0.46576 —0.46578 v=1/3,2/5,3/7,4/9,5/11, for the unprojected CF wave functions

concerned, our results show that its absence has little influ-
ence on the ground-state properties of the system and slightly
In this section we report the results obtained for theincreases withy approaching 1/2. The radial distribution
ground-state interaction energy per particle, radial distribufunction g(r) for all fractional Hall states
tion function, and quasiparticle-quasihole excitation specy=1/3,2/5,3/7... andv=1/5,2/9,3/13, obtained using un-
trum for several unprojected CF wave functions. Theprojected CF wave functions, is plotted in Figs. 1 and 2,
ground-state interaction energy per particle is computed frongespectively.
. The excitation gaps for Laughlin states obtained using the
Ug ()= i (VeplVIVcr) _ gf o ()[g(r) - 1]d2r FHNC theory, for the unprojected CF wave functions, are
e N (W Wep) 2 ' given in Table Ill. They are compared with the correspond-
(35  ing results of Boneste®l from a variational Monte Carlo
) S ] simulation for 42 electrons for the unprojected and projected
wherev (r) =e“/er. The radial distribution functiog(r) has  cases and the extrapolated exact diagonalization results of
been calculated by using the FHNC/0 and EFHNC/O apganget al?3 As expected, the lack of projection of the CF
proximations as described in the previous sections. Tablesd,ited state onto the LLL leads to an underestimation of the
and Il present the ground-state energies per particle of thgycitation gap by a factor of about 2.

two series of FQHE statesy=1/3,2/53/7... and  \jthin the EFHNC method, one can calculate analytically
v=1/5,2/9,3/13. One can see that the results obtained Withhe smalle behavior for different filling factors. As an ex-
the two schemes are almost identical. At=1/2 both pjicit example we took the case of=1/3 andy= 2/5, which
FHNC/0 and EFHNC/O give an interaction energy per paryaye the same Jastrow factor but different Slater determinant

ticle of —0.47%%/el. . o~
Our results are in good agreement with the most recenftuncnons' One has thay(r —0)~exf uy(r—0)].

estimates by Jain and Kamiffaobtained with projected CF

V. RESULTS AND CONCLUSIONS

wave functions for rather large systems in the standard 12

spherical geometry and agree within a few percent with the

unprojected estimates of Kamilla and J&in. 1.0 - R
There are two approximations in our calculations. One '

concerns the neglect of elementary diagrams, the other is the 038 -

missing LLL projection of the CF wave function. The inclu-
sion of elementary diagrams can be easily performed within £ 0.6 |
the EFHNC scheme. We have done that by using the scaling
approximatiorf? finding that the ground-state interaction en- 04|
ergy is lowered by~1%. As far as the LLL projection is

— 15
2/9
---- 313

0.2
TABLE Il. Same as in Table | for filings=p/(4p+1).

0.0 / | | | | |

v FHNC/0 EFHNC/0 Ref. 20 00 20 40 60 80 100 120 140
r/l

1/5 —0.32281 —0.3243 —0.32749%95) 0
2/9 —0.33743 —0.33748 —0.34278235) FIG. 2. Radial distribution functiong(r) for the states
3/13 —0.34380 —0.34384 —0.34834919) v=1/5,2/9,3/13, computed from the FHNC/O theory for the un-

projected CF wave functions.
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TABLE Ill. Energy gaps forv=1/3,1/5, computed using the
FHNC theory for the unprojected CF wave function, are given in
the second column. They are compared with the results of Bones
eel (Ref. 195 and Fancet al. (Ref. 23. The excitation gap energies
are all expressed in units ef/el,.

14

Aun(FHNC) Ay, (Ref. 15 Ay, (Ref. 15 A (Ref. 23

1/3 0.04 0.048) 0.1063) 0.10362)
1/5 0.01 0.01®) 0.0253) 0.02443)
Using Eqg. (300 and the formula lim, Kq(Qr)

=—In(Qr/2)— vy, wherey=0.572 . ..
ler constant, we get

is theso-called Eu-

r
g(r—>0)~exp{2qeln<% +2qe7+ws(r_>o)} (36)
For filling v=1/3, wg(r —0)=2In(r/l5)—In(2), implying

r

)

0

InN[g(r—0)]~(29+2)In (37)

Therefore, the leading term in the smalbehavior ofg(r) is
(r/14)® for v=1/3.

The same calculation for filing v=2/5 gives
wg(r—0)=~2In(r/lp). It turns out that also the state=2/5
has the same small-behavior ing(r) as the caser=1/3.
One can prove thatr(lo)® is the leading term ofy(r) at
smallr also for the successive fillings=3/7, . . ..

The log-log plot of the smali-behavior ofg(r) obtained
numerically from our EFHNC/O calculations for the cases
v=1/3 andv=2/5 is shown in Fig. 3. The explanation of the
anomaly lies in the missing projection onto the LLL. The
absence of such a projection mainly affects the sméle-
havior of the radial distribution function.

Such a leading term is the one fixed by the Laughlin part

of the wave function and is not modified by the inclusion of

higher Landau levels through the Slater determinant parfported by
Therefore, we expect that the main effect of projection ontdHCMCHRXCT-940456,

the LLL is the correction of such a tendency.
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-6.0

t-

Infg(n]

2.0
In[r/1 4]

-2.5 -1.5 -1.0

FIG. 3. Smallr behavior for fillingsy=1/3 (circled) andv=2/5
(squaredl In[g(r)] versus Ifir/ly] is plotted. One observes the same
small+ behaviorg(r)~(r/l,)® for both cases.

In this paper we applied the FHNC/0 and EFHNC/0 ap-
proaches to study, in the thermodynamic limit, the un-
projected CF states of the fractional quantum Hall effect.
Such a treatment for ground-state properties seems to give
consistent results compared with Monte Carlo simulations
and small-number diagonalizations. We find that the effect of
spuriousness from higher Landau levels is small in the cal-
culation of ground-state properties, whereas it is not at all
negligible for excited-state properties, such as quasiparticle-
quasihole energy gaps. Within the EFHNC/0 method we
proved that the radial distribution function for the un-
projected CF's at fillings witlp> 1 does not have the correct
small+ behavior.
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