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Application of Fermi-hypernetted-chain theory to composite-fermion quantum Hall states
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The Fermi-hypernetted-chain~FHNC! theory and the effective hypernetted-chain method are applied to
study the composite-fermion~CF! states of the fractional quantum Hall effect. Using this theory we compute,
in the thermodynamic limit, the correlation energy, radial distribution function, and static structure factor for
all unprojected CF wave functions. The unprojected excitation gaps forn51/3,1/5 were obtained by adopting
in the FHNC a scheme previously used to compute nuclear matter excitation spectra. The results obtained so
far are consistent with Monte Carlo simulations and small-number exact diagonalizations.
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I. INTRODUCTION

The fractional quantum Hall effect1 ~FQHE! results from
a strongly correlated incompressible fluid state2,3 formed at
special densitiesr of a two-dimensional electronic system
the extreme quantum limit of a strong perpendicular m
netic field (B.5 T!, low temperature (T,2 K!, and high
mobility of electrons (m.105 cm2/V s). For fully spin-
polarized~spinless! electrons, the most pronounced states
cur when filling of the lowest Landau level~LLL ! is n51/m,
wherem51,3,5, . . . is an oddinteger.4 The many-electron
system is described by the HamiltonianĤ5K̂1V̂, whereK̂
is the kinetic energy operator

K̂5
1

2me
(
j 51

N

@2 i\¹W j1eAW ~r j !#
2 ~1!

and

V̂5V̂ee1V̂eb1V̂bb5(
j ,k

N
e2

euzj2zku
1(

j 51

N

V~zj !1V̂bb

~2!

is the total electron-electron, electron-neutralizing ba
ground, and background-background interaction energ
wheree.0 is the charge magnitude of the electron,e is the
dielectric constant of background, andme is the electron
mass.

The origin of electronic states at so-called higher-or
FQHE states atn5p/q has been less clear. Jain5,6 has pro-
posed a remarkably simple picture to explain the origin
the FQHE by introducing the idea of a particle called a co
posite fermion~CF!, which is an electron carrying an eve
number of vortices of the wave function. The fundamen
property of the CF’s is that they experience an effective fi
B* 5B2qef0r, wheref05h/e is the quantum of the mag
netic flux andqe is an even integer. Thus the liquid o
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strongly correlated electrons atB is equivalent to a liquid of
weakly interacting CF’s atB* ; the FQHE is regarded as th
integer quantum Hall effect of composite fermions. T
stable fractional filling factors obtained in this way a
n5p/(qep61), whereqe50,2,4, . . . is theeven number of
vortices attached to each electron andp51,2,3, . . . is the
corresponding number of CF Landau levels. For sake of s
plicity we confine the discussion below to the special fillin
factorsn5p/(qep11), where the corresponding CF fillin
factor isn* 5p.

Let us denote the ground state of noninteracting electr
at n* 5p by uFp&. The corresponding wave function for th
CF’s is obtained by attachingqe vortices to each electron in
the stateuFp&, which amounts to correlatinguFp& by multi-
plication with a Jastrow factor) j ,k(zj2zk)

qe. Thus the
electronic ground state atn5p/(qep11) is described by the
trial CF wave function

uCCF&5 P̂LLL)
j ,k

N

~zj2zk!
qeuFp&, ~3!

introduced by Jain,5 where P̂LLL is the lowest-Landau-leve
projection operator. For the special case of the ground s
at n51/(qe11), namely, forp51, the CF wave function is
identical to the Laughlin wave function,4 which is already
known to be a very accurate representation of the ex
ground state atn51,1/3,1/5. There is also strong eviden
for the validity of the CF theory from several numerical stu
ies performed mainly on few-electron systems.7,8

Exact calculations in particular are limited to system
with few electrons and extrapolation to the thermodynam
limit is not totally unambiguous. The difficulty become
more severe asn→1/2. The Fermi-hypernetted-chai
~FHNC! technique seems very attractive in this respect, a
treats the many-particle fermionic system exactly in the th
modynamic limit.
13 290 © 1997 The American Physical Society
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56 13 291APPLICATION OF FERMI-HYPERNETTED-CHAIN . . .
In this paper we apply the FHNC theory and the effectiv
hypernetted-chain~EFHNC! method to the unprojected C
wave functions of the FQHE corresponding to filling facto
n5p/(qep11), where qe50,2,4 andp51,2,3,. . . . This
represents a step towards a more systematic study in w
the projection onto the LLL will be taken into account. W
find that FHNC theory provides a simple and powerful to
to deal with unprojected CF wave functions for both groun
state and excited-state properties. The results obtained s
are consistent with previous calculations performed on s
tems with a finite number of electrons.

The scheme of the paper is as follows. In Sec. II
discuss how to apply FHNC theory to the unprojected
wave functions. In Sec. III we develop a simpler scheme t
approximates the FHNC equations to compute the radial
tribution function. The calculation of the quasiparticl
quasihole excitation spectrum for a specific case is prese
in Sec. IV. Section V is devoted to the results and conc
sions.

II. APPLICATION OF FERMI-HYPERNETTED-CHAIN
THEORY FOR THE COMPOSITE-FERMION STATES

Integral equation techniques such as hypernetted-c
~HNC! theory for bosons9,10 or Fermi-hypernetted-chain
theory for fermions11,12allow for a realistic evaluation of the
radial distribution function and related quantities for Jastr
and Jastrow-Slater wave functions. In particular, they are
tremely useful when calculations must be performed stric
in the thermodynamic limit.

Generally speaking, FHNC theory is applied on Fer
systems described by a many-body wave function of
form

uC&5)
i , j

N

f ~r i j !uF&. ~4!

The ketuF& is a Slater determinant of single-particle sta
wa(rW) for fermions andf (r i j )5 f (urW i2rW j u) is the so-called
dynamical correlation factor. More elaborate trial wave fun
tions, containing, for instance, triplet and/or backflow cor
lations, can also be handled with the FHNC theory.

The radial distribution functiong(r 12) is expressed as
sum of irreducible cluster diagrams constructed with~i! the
‘‘bosonic’’ bond h(r i j )5 f (r i j )

221 and~ii ! the ‘‘statistical
exchange’’ bondl (rW i ,rW j )5 r̂(rW i ,rW j )/r, wherer is the par-
ticle density,r̂(rW i ,rW j ) is the uncorrelated one-body densi
matrix

r̂~rW i ,rW j !5gs(
a

wa* ~rW i !wa~rW j !, ~5!

andgs51 is the spin degeneracy for the case of interest
Eq. ~5!, the sum overa is extended over all occupied single
particle stateswa(rW).

For a magnetic fieldBW in the z direction, with a symmet-

ric gauge vector potentialAW 5 1
2 BW 3rW, the eigenstates of th

ideal Hamiltonian
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Ĥ05
1

2me

~2 i\¹W 1eAW !2 ~6!

for the various Landau levelsn50,1,2, . . . aregiven by

un,m&5wn,m~z!5
1

A2nn!
expS zz*

4l 0
2 D S 2l 0

]

]zD
n

3Fw0,m~z!expS 2
zz*

4l 0
2 D G , ~7!

where

w0,m~z!5
1

A2mm!
S z

l 0
D m

w0,0~z!, ~8!

w0,0~z!5
1

A2p l 0
2

expS 2
zz*

4l 0
2 D , ~9!

where w0 is the magnetic length andm50,1,2, . . . is the
angular momentum quantum number. The manifold of sta
with energy\vc(n11/2) constitutes thenth Landau level.

The first step in the application of FHNC theory is th
knowledge of an orthonormal set of single-particle wa
functions that fully describe the unperturbed Fermi syste
To illustrate this idea, let us first consider the simple ca
n51, obtained forp51 andqe50. The CF wave function
uCCF

n51& is in this case the Vandermonde determinant
single-particle statesw0,m(z) of Eq. ~8!. The density matrix
for the casen51 is

r̂n51~z1 ,z2!5 (
m50

Ns21

w0,m* ~z1!w0,m~z2!

5
1

2p l 0
2

expS 2
1

4

uz12z2u2

l 0
2 D

3expF2
1

4l 0
2 ~z1* z22z1z2* !G , ~10!

whereNs is the degeneracy of each Landau level. We o
serve thatr̂n51(z,z)5r1, wherer151/2p l 0

2 is the density
that corresponds ton51. For the casen51, qe in Eq. ~3! is
equal to zero and the uncorrelated radial distribution funct
is simply

gn51~z1 ,z2!512e2pr1uz12z2u2. ~11!

For CF states, at fillingn51/(qe11) ~the Laughlin states!
one needs the full machinery of FHNC theory. In this ca
only the LLL orbitals are occupied; therefore the statistic
exchange term is

l n~z1 ,z2!5expS 2
1

4

uz12z2u2

l 0
2 D exp@ if~z1 ,z2!#, ~12!

with the phase factorf(z1 ,z2) given by
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f~z1 ,z2!5
1

2l 0
2

r 1r 2sin~u22u1!5
1

2l 0
2 ~rW23rW1!z . ~13!

It is known that the FHNC technique is intrinsically a
proximate because there is a set of cluster diagrams~corre-
sponding to the so-calledelementarydiagrams! that cannot
be fully included in any closed form. Several schemes h
been devised to include such cluster diagrams at various
els of approximation. The simplest approximation of tota
neglecting these terms@the FHNC technique at zeroth orde
~FHNC/0!# leads to reliable results and we have adopted i
this paper.

The full formalism of FHNC/0 theory for the Laughlin
states has been reported elsewhere.13 Here we limit ourselves
to the generalization of such a scheme to the unprojected
states.

As in a standard computation, we separate the CF pse
potentialU(r 12)52qeln(uz12z2u) into short- and long-range
parts

Us~r 12!522qeK0~Qr12!, ~14!

Ul~r 12!52qeK0~Qr12!12qeln~r 12!. ~15!

K0(x) is the modified Bessel function andQ is a cutoff
parameter of order 1/l 0. Furthermore, all nodal and non
nodal functions are split into their short- and long-range pa
so that the FHNC/0 scheme can be applied directly.

Knowing that the general CF state of the for
n5p/(qep11) is described by the trial CF wave function
Eq. ~3!, the one-body density matrix is written as

r̂n~z1 ,z2!5 (
n50

p21

(
m50

Ns21

wn,m* ~z1!wn,m~z2!. ~16!

One can easily prove that the contribution tor̂n(z1 ,z2) com-
ing from thenth Landau level is

(
m50

Ns21

wn,m* ~z1!wn,m~z2!5LnS uz12z2u2

2l 0
2 D

3 (
m50

Ns21

w0,m* ~z1!w0,m~z2!,

~17!

whereLn(x) are the Laguerre polynomials of ordern. After
some algebra, the statistical exchange term turns out to

l n~z1 ,z2!5H (
n50

p21

LnS uz12z2u2

2l 0
2 D Y pJ

3expS 2
uz12z2u2

4l 0
2 D expF i

2l 0
2 ~rW23rW1!zG .

~18!

The systematic knowledge of the statistical exchange t
l n(z1 ,z2) for all the fractional statesn5p/(qep11) enables
us to readily apply the FHNC theory to all the unproject
CF states.
e
v-

n

F

o-

ts

m

The intrinsic Landau level~LL ! mixing of the CF wave
functions implies a projection onto the LLL. The Jastro
factor provides a good projection,14 which is particularly ef-
fective as far as ground-state properties are concerned. H
ever, to study other quantities, such as the excitation sp
trum, the full LLL projection seems to be needed.

Unfortunately, such a projection leads to a wave funct
that cannot be treated directly within the FHNC formalis
because the structure of a determinant of single-particle
bitals is lost. One can adopt the projection technique used
Bonesteel15 to calculate the excitation gaps o
n51/3,1/5,1/7, which, however, is limited to Slater determ
nants spanning two Landau levels only. The extension
such a technique to more LL’s appears to be numeric
inaccessible.

A more general projection scheme, applied to fe
electron systems in a spherical geometry,8 seems to be more
promising. Such a scheme introduces a many-body dep
dence on all single-particle orbitals, which, however, can
handled by introducing state-dependent correlations in
wave function, in close analogy to ‘‘backflow’
correlations16 of liquid 3He.

III. EFFECTIVE HYPERNETTED-CHAIN METHOD

In this section, we summarize the effective hypernett
chain ~EFHNC! method,13 also known as the Lado
approximation.17 The square modulus of the Slater determ
nant uFu2, a positive-value function, can be written in th
form

uFu25expF(
i , j

N

w2~r i j !1 (
i , j ,k

N

w3~rW i ,rW j ,rWk!1•••G ,

~19!

which emphasizes the fact that the Pauli principle introdu
many-body correlations between particles in analogy to
pseudopotential describing the dynamic correlations. Wit
the EFHNC approximation only two-body correlations17 are
retained in Eq.~19!, namely,

uFu2'expF(
i , j

N

w~r i j !G . ~20!

In the next step of the systematic approximation scheme,
may include triple correlation factors, etc., until the requir
accuracy is achieved.

The EFHNC approximation greatly simplifies the calcu
tion of the radial distribution function,18 which is the only
quantity needed to compute the interaction energy per
ticle. Within this approximation one has

uCu25)
i , j

N

f ~r i j !
2)

i , j

N

exp@w~r i j !#5)
i , j

N

f̃ ~r i j !
2, ~21!

with the effective correlation factor

f̃ ~r i j !5 f ~r i j !exp@ 1
2 w~r i j !#. ~22!

To construct the pseudopotentialw(r ) for a given Slater
determinant we require that the HNC evaluation of the rad
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distribution functiongHNC(r ) for uFu2 reproduces theexact
radial distribution function of the noninteracting syste
namely,

gHNC~r i j !5gexact~r i j !512
1

gs

u l exact~r i j !u2. ~23!

This prescription leads us to the pseudopotential

w~r !5 ln@gexact~r !#2
1

rF @Sexact~k!21#2

Sexact~k!
GF21

, ~24!

where Sexact(k)511r@gexact(r )21#F, @ f (r )#F denotes the
two-dimensional Fourier transform of a functionf (r ), and

@ f (k)#F21
is the two-dimensional inverse Fourier transfor

of f (k). For a Slater determinant withp-filled Landau levels
we get

gexact~r !512expS 2
r 2

2l 0
2D H (

n50

p21

LnS r 2

2l 0
2D Y pJ 2

.

~25!

With these expressions as input, Eq.~24! provides an explicit
expression for the potentialw(r ) and, consequently, due t
Eqs.~21! and ~22!, we obtain

uCu25)
i , j

N

exp@ ũ~r !#, ~26!

where ũ(r )52qeln(r)1w(r). We may now employ the fa
miliar boson HNC formalism.

Decomposing the functionw(r ) into a short- and a long
range portion

w~r 12!5ws~r 12!1wl~r 12!, ~27!

we may write

ws~r 12!5 ln@gexact~r 12!# ~28!

and

wl~r 12!52
1

rH @Sexact~k!21#2

Sexact~k!
J F21

. ~29!

This decomposition achieves an analogous convenient s
ration for the pseudopotentialũ(r ),

ũs~r 12!522qeK0~Qr12!1ws~r 12!, ~30!

ũ l~r 12!52qeK0~Qr12!12qeln~r 12!1wl~r 12!. ~31!

Finally, thek-space representation of the long-range par
the pseudopotentialũ l(k) may be analytically obtained an
the standard HNC theory can be employed.

IV. THE QUASIPARTICLE-QUASIHOLE EXCITATION
SPECTRUM OF THE CF STATE

In this section we report a method used to compute
quasiparticle-quasihole excitations for the unprojected
wave function within the FHNC theory. The low-energy ne
,

a-

f

e
F
-

tral excitations are obtained by promoting a single CF to
next higher CF Landau level. For instance, a low-ene
band of excited states above then51/(qe11) ground state
is constructed by promoting a CF from the lowest pseu
Landau level to the first excited pseudo-Landau level.

The excitation gaps can be calculated by adopting a te
nique introduced by Friedman and Pandharipande19 in the
context of nuclear matter. Suppose we havep Landau levels
filled. The statistical exchange correlation associated w
uFp& is l qe

(p,r 12) and the interaction energy per partic

uqe
(p) is a functional off (r ) and l qe

(p,r ). Promoting a CF

from the pth LL to the (p11)th one will produce a corre
lated wave functionuCph& that is orthogonal touCCF& be-
cause of angular momentum conservation. The quasipart
quasihole excitation introduces a new statistical excha
term in the cluster diagrams of the radial distribution fun
tion, given by

l qe

ph~p,z1 ,z2!5
1

r H (
n50

p21

(
m50

Ns21

wn,m* ~z1!wn,m~z2!

1
1

Ns
(

m50

Ns21

wp,m* ~z1!wp,m~z2!

2
1

Ns
(

m50

Ns21

wp21,m* ~z1!wp21,m~z2!J .

~32!

In calculating the energy per particle

uqe

ph~p!5
1

N

^CphuV̂uCph&

^CphuCph&

corresponding touCph&, the quasiparticle-quasihole ex
change terml qe

ph(p,z1 ,z2) must occur only once in any

FHNC cluster diagram, so that the excitation ener
Dqe

(p)5uqe

ph(p)2uqe
(p) is of the order of 1/Ns , as it should

be.
The calculation ofDqe

(p) can be done by introducing
‘‘mixed’’ statistical exchange correlation

l qe
~x,p,r 12!5 l qe

~p,r 12!1x@ l qe
~p11,r 12!2 l qe

~p,r 12!#,
~33!

where the fractionx of CF’s removed from thepth LL and
placed to the next higher (p11)th level is considered as
smallness parameter. The derivative with respect tox of the
excitation energyDqe

ph(x,p) gives the quasiparticle-quasiho

gap for a general CF staten5p/(qep11), namely,

Dqe
~p!5

]

]x
$uqe

ph@ l qe
~x,p,r !, f ~r !#2uqe

ph@ l qe
~p,r !, f ~r !#%.

~34!

The calculation ofuqe

ph@ l qe
(x,p,r ), f (r )# is done in the same

way as the calculation foruqe

ph@ l qe
(p,r ), f (r )#, namely, em-

ploying the same FHNC code.
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V. RESULTS AND CONCLUSIONS

In this section we report the results obtained for t
ground-state interaction energy per particle, radial distri
tion function, and quasiparticle-quasihole excitation sp
trum for several unprojected CF wave functions. T
ground-state interaction energy per particle is computed f

uqe
~p!5

1

N

^CCFuV̂uCCF&

^CCFuCCF&
5

r

2E v~r !@g~r !21#d2r ,

~35!

wherev(r )5e2/er . The radial distribution functiong(r ) has
been calculated by using the FHNC/0 and EFHNC/0
proximations as described in the previous sections. Tabl
and II present the ground-state energies per particle of
two series of FQHE statesn51/3,2/5,3/7, . . . and
n51/5,2/9,3/13. One can see that the results obtained
the two schemes are almost identical. Atn51/2 both
FHNC/0 and EFHNC/0 give an interaction energy per p
ticle of 20.479e2/e l 0.

Our results are in good agreement with the most rec
estimates by Jain and Kamilla20 obtained with projected CF
wave functions for rather large systems in the stand
spherical geometry and agree within a few percent with
unprojected estimates of Kamilla and Jain.21

There are two approximations in our calculations. O
concerns the neglect of elementary diagrams, the other is
missing LLL projection of the CF wave function. The inclu
sion of elementary diagrams can be easily performed wi
the EFHNC scheme. We have done that by using the sca
approximation,22 finding that the ground-state interaction e
ergy is lowered by;1%. As far as the LLL projection is

TABLE I. Interaction energies per particleu(n) expressed in
units e2/e l 0, computed using unprojected CF wave functions,
fillings n5p/(2p11). The values in the second and third colum
refer to the FHNC/0 and EFHNC/0 approximations, in the fou
column we report the estimates of Jain and Kamilla~Ref. 20! ob-
tained using projected CF wave functions in the spherical geome
while in the fifth column we show the results of Ref. 21 usi
unprojected CF wave functions.

n FHNC/0 EFHNC/0 Ref. 20 Ref. 21

1/3 20.40257 20.4056 20.409828~27! 20.4092~7!

2/5 20.43054 20.4309 20.432804~62! 20.4489~1!

3/7 20.44510 20.4452 20.442281~62! 20.4644~2!

4/9 20.45300 20.4531 20.447442~115! 20.4734~15!

5/11 20.45796 20.4580 20.450797~175!
6/13 20.46137 20.4614
7/15 20.46386 20.46389
8/17 20.46576 20.46578

TABLE II. Same as in Table I for fillingsn5p/(4p11).

n FHNC/0 EFHNC/0 Ref. 20

1/5 20.32281 20.3243 20.327499~5!

2/9 20.33743 20.33748 20.342782~35!

3/13 20.34380 20.34384 20.348349~19!
-
-
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-
I
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-
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e
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concerned, our results show that its absence has little in
ence on the ground-state properties of the system and slig
increases withn approaching 1/2. The radial distributio
function g(r ) for all fractional Hall states
n51/3,2/5,3/7, . . . andn51/5,2/9,3/13, obtained using un
projected CF wave functions, is plotted in Figs. 1 and
respectively.

The excitation gaps for Laughlin states obtained using
FHNC theory, for the unprojected CF wave functions, a
given in Table III. They are compared with the correspon
ing results of Bonesteel15 from a variational Monte Carlo
simulation for 42 electrons for the unprojected and projec
cases and the extrapolated exact diagonalization result
Fanoet al.23 As expected, the lack of projection of the C
excited state onto the LLL leads to an underestimation of
excitation gap by a factor of about 2.

Within the EFHNC method, one can calculate analytica
the small-r behavior for different filling factors. As an ex
plicit example we took the case ofn51/3 andn52/5, which
have the same Jastrow factor but different Slater determin
functions. One has thatg(r→0)'exp@ũs(r→0)#.

r

y,

FIG. 1. Radial distribution functiong(r ) computed using the
FHNC/0 theory for the series of FQHE state
n51/3,2/5,3/7,4/9,5/11, for the unprojected CF wave functions

FIG. 2. Radial distribution functiong(r ) for the states
n51/5,2/9,3/13, computed from the FHNC/0 theory for the u
projected CF wave functions.
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Using Eq. ~30! and the formula limr→0K0(Qr)
52 ln(Qr/2)2g, whereg50.5772 . . . is theso-called Eu-
ler constant, we get

g~r→0!'expF2qelnS Qr

2 D12qeg1ws~r→0!G . ~36!

For filling n51/3, ws(r→0)'2ln(r/l0)2ln(2), implying

ln@g~r→0!#;~2qe12!lnS r

l 0
D . ~37!

Therefore, the leading term in the small-r behavior ofg(r ) is
(r / l 0)6 for n51/3.

The same calculation for filling n52/5 gives
ws(r→0)'2ln(r/l0). It turns out that also the staten52/5
has the same small-r behavior ing(r ) as the casen51/3.
One can prove that (r / l 0)6 is the leading term ofg(r ) at
small r also for the successive fillingsn53/7, . . . .

The log-log plot of the small-r behavior ofg(r ) obtained
numerically from our EFHNC/0 calculations for the cas
n51/3 andn52/5 is shown in Fig. 3. The explanation of th
anomaly lies in the missing projection onto the LLL. Th
absence of such a projection mainly affects the small-r be-
havior of the radial distribution function.

Such a leading term is the one fixed by the Laughlin p
of the wave function and is not modified by the inclusion
higher Landau levels through the Slater determinant p
Therefore, we expect that the main effect of projection o
the LLL is the correction of such a tendency.

TABLE III. Energy gaps forn51/3,1/5, computed using th
FHNC theory for the unprojected CF wave function, are given
the second column. They are compared with the results of Bon
eel ~Ref. 15! and Fanoet al. ~Ref. 23!. The excitation gap energie
are all expressed in units ofe2/e l 0.

n Dunp~FHNC! Dunp ~Ref. 15! Dpro j ~Ref. 15! D ~Ref. 23!

1/3 0.04 0.048~2! 0.106~3! 0.1036~2!

1/5 0.01 0.014~2! 0.025~3! 0.0244~3!
ta
rt
f
rt.
o

In this paper we applied the FHNC/0 and EFHNC/0 a
proaches to study, in the thermodynamic limit, the u
projected CF states of the fractional quantum Hall effe
Such a treatment for ground-state properties seems to
consistent results compared with Monte Carlo simulatio
and small-number diagonalizations. We find that the effec
spuriousness from higher Landau levels is small in the c
culation of ground-state properties, whereas it is not at
negligible for excited-state properties, such as quasiparti
quasihole energy gaps. Within the EFHNC/0 method
proved that the radial distribution function for the u
projected CF’s at fillings withp.1 does not have the correc
small-r behavior.
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FIG. 3. Small-r behavior for fillingsn51/3 ~circled! andn52/5
~squared!. ln@g(r)# versus ln@r/l0# is plotted. One observes the sam
small-r behaviorg(r );(r / l 0)6 for both cases.
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