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Hypernetted-chain treatment and the extended shadow wave functions
for fractional quantum Hall hierarchical states
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The hypernetted-chain theory is applied to study hierarchical states in the fractional quantum Hall effect. It
is noted that a class of wave functions introduced by GiffAhys. Rev. B29, 6012(1984] and MacDonald,
Aers, and Dharma-wardafRhys. Rev. B31, 5529(1985], based on charge-conjugation procedures, is of the
extended shadow wave-function type. The correlation energy, pair distribution function, and static structure
function have been calculated in the thermodynamic limit at various filling factors. The results obtained agree
with those of previous calculations performed with a finite number of electf@@4.63-182607)08516-(

. INTRODUCTION s; can be thought of as mimicking the quantum correlation
“holes” which the particles carry around themselves in the
The description of strong interparticle correlations in bothdense system.
Bose and Fermi systems with continuous degrees of freedom The physical interpretation of a SWF, as well as the re-
is a longstanding problem of current interest. More recentlyquest of more variational freedom and of full symmetry un-
the shadow wave functiofSWP has been proposéfias a  der exchange of any particle with any hole, suggests further
new variational ansatz to compute the properties of solid andxtended forms for the SWF, so that a type of so-called

liquid “He atT=0 K. extended shadow wave functiéBSWP was proposed.
The SWF in the bosonic case is given by The ESWEF is of the form
N N N N,M
w8, (fy, . io=T1 1 r..f S . Mo
SWF( 1 N) Il;[] pp( |]) II:[].X(| i ||) WES(rl""’rN):ilzlj fpp(rij)f ll_][ fp§|ri_sj|)
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The quantityS denotes the set of coordinates], so-called . ,
“shadow” variables, associated with the particles. The re-WhereN andM are, respectively, the number of particles and

spective correlation factors may be written as the number of shadows. The extension which &g.repre-
sents over the standard SWF of Ef). concerns two aspects.

First, in the ESWF all shadows are correlated with all real

fpp(rij)=efupp(’ii)/2 (2) : : ; tA.
particles rather than being in a one-to-one correspondence as
in Eq. (1), allowing the possibility that the number and loca-
and tion of “holes” becomes different from those of the real
particles. This form also allows for a description of lattice
fsdsij) =€ Ysdsii), (3)  vacancies. The second aspect, which is related to the first, is

that all three “correlation” functionsf(x), f,{x), and
where Up(rj;) and Ug{s;;) represent, respectively, the fs{x) must heal out to unity at large valuesxf
particle-particle and shadow-shaddpseudgpotential. The In the case of an ESWF, the cluster diagrams of the pair
structure off .{s;;) is the same as that &f,(r;;), namely, it  distribution function are characterized by only three different
heals out to unity at large intershadow distances, whereas thgpes of pointsp,s®, ands', wherep denotes particle and
“correlation” x(x) between a particle and its associateds®' denotes, respectively, right or left shadow coordinates.
shadow heals out to zefoPhysically, the shadow variables In fact, the normalization of an ESWF is given by
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N N,M
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M N,M

><HJ fss(s%j)ir][ fod[Fi—ST))

(vedves- |

M
x]1 fss(sff)}déLdéRdli, (5)
<]

and coincides with the partition function of a classical three-

component systemp(sR®,st) interacting via the following
(pseudgpotentials:

Upp=—Inf2, (6)
Upr=Upg =—Inf, (7)
Ugrer=Uggt = —Infg, (8)
and
UL =0. (9)

The normalization integral5) contains as integrand the
squareWE(ry, ... ry)XWE(ry, ... ry) of the extended
shadow wave functio . as defined in expressidd). The
real particle coordinates, . .. r must, of course, be taken
to be identical in both factors. However, two independe
sets of shadow coordinates, over both of which must be
tegrated in formuld5), are needed for explicitly representing
the square of wave functiol . In Eq. (5) these two inde-
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It follows that
N N,M
_H p+1a-3N . (|z;]2/412)
\I’V—_ (Zj_zk) e “j=119 0 | (Zj_sk)
1<k j.k

M
xIT (57 —sp)M(s—sge Simla720d8,  (12)
i<k

wherel,=\%/eB is the magnetic length, arg} ands, are
given in complex notatiomx,+iyy.

For instance, the Laughlin parent statg=1/3 with
m=23 generates fop=2 the daughter state=2/7, whereas
for p=0 it produces the state=2/3. Similarly, the Laughlin
state vo=1/5 generates forp=0 the daughter state
v=4/5, and so on.

Seen from the perspective of the ESWF approach, the

hole variabléi may be interpreted as a shadow variable. The
analytic form of the shadow-shadow and shadow-particle
correlations is, in the present case, fixed by the lowest Lan-
dau level constraint. In this sense, this is a variational wave
function with no adjustable parameters.

A comparison betweew , and\PESshows thatV , can be
identified (after removal of the exponential factor which is

ir;]trelevant only in the trivial long-wavelength limitwith a

pendent sets of shadow particles are distinguished by the

superscriptd. andR, referring to “left” and “right” shad-

ows, respectively. Every real particle is correlated with every

other real particle as well as with every “left” and “right”
shadow. Every “left” shadow is correlated in turn with ev-
ery other “left” shadow. The same applies to the “right”
shadows. Correlations between “left” and “right” shadows
are absent.

IIl. METHOD

As a first application of this formalism to the fractional
guantum Hall effects(FQHE), we find that hierarchical

state$§® may be described microscopically by electronic
wave functions which can be expressed as an ESWF. A pos-
sible way of constructing wave functions for the second level

of the hierarchy is to first particle-hole conjudafethe
Laughlin parent statelfyo(zl, .. .,Zy) With filling factor

vo=1/m, wherem=3 and 5:

Vi am(Zy, - vZN):é[\I’llm(Zli coZn) ]

- [ a8,wins0

XD, (24, ...Zy;Sw). (10

The short-hand notatioréM represents the coordinates

§1, e ,§M of the M holes, whereN and M satisfy the
relationN+ M =mM. The second hierarchy stale, is then
obtained by multiplying ¥, 4m(2Z1, -...2y)  With
H1-N<k(zj—zk)p, wherep must be an even integer such that

WE., where
fop(iK)=(z—2P*", (13
fos(1K)=(z=sW), (14
and
fsdik) = (] = si)™(s;—S¢)- (15)

Normalization ofW, yields

N N,M
)= |11 2o I o -
M N,M
xj]:[k (s}—sk)m(s}*—sk*)g (z—sP)
M
XJT (sf* —sf*)™(sF—sf) [dR dS-dS™.
j<k
(16)
Writing
|zj—z|*P* P =e" Y, 17
(zj—sp)=e " Uer, (18)
and
(sP* — s )m(sR— Ry =eUrr, (19)
j k j k

we see that the normalization condition fd#, coincides
with the partition function of a three-component systgm (
R, L) interacting via thgpseudgpotentials
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Ugp=—2(p+1)In|z,— 7, (20) = >
PP i %k Fpp(Q):pr e 9 Fo(r)dr, (27)
UpR:UpL:_In|Zj_SE|_i0]R,kR! (21)
F = fei‘i'FF r)dr, 28
URR:ULL:_(m+1)|n|S]R_SI§|+i(m_1)‘9jR,kRv pe = VPos w1 2
(22 and
and .
Fsﬁq):PsJ' eiq'rFss(r)dFy (29
Ugr =0, (23

ith ps=pr=p, , the general formula of Ed25) becomes
where tan@jx) =Yk /X - WIth ps= pr=pL g u q25)

For ourp, R, L system we can apply a three-component - - — _
hypernetted-chaifHNC) treatment. _This will improve upon Naﬁ(q)=2 Xay([X,5(d)+N,(0)]. (30
the one-component HNC calculation of MacDonald, Aers, Y
?”d I?fhatr.ma—w?rd?rﬁabe_lsgdkpn me ir#ro?u?ttiﬁn r?flamj ~As R and L are Hermitian conjugated, we have

oc effective potential mimicking the effect of the hole vari- = _Tx* = _Tx = _ T
ables. While E?his is an approxir?]atf%n/vhich we will pres- Eppla)=F ,f’(q)’ For(@)=Fp (@), Fra(@)=F((a),
ently overcomg it did allow inclusion of elementary dia- Fri(a)=F{r(a), whereas Fpr(q)=Fgrp(d), Fp(q)
grams in a simple way. =Fp(@. _

In the present work, for the sake of simplicity, we neglect Keeping this in mind, after some algebra we determine all
the elementary diagrams, so we use the so-called HNC/tflations betvyeen_ HNC/0 quant|t!e_s in the Fourier space for
approximation. There is a major difference from the previ-the four possible independent pairingsp), (pR), (RR), and
ously known HNC/O treatments, since here the correlation§RL)-
fojk) andfg{jk), and, consequently, several other HNC/O ~ = = =
quantities are complex functions and depend on both theg (@)+ N () = Xpr(@)[1—XRe(A) ]+ Xpr(A) Xri(A)
Xjx andyj, components of the interparticle coordinaig. PR PR D(q) '

The long-range partsl'ps(jk) andUL{jk) bring an angu- (31
lar dependence into all the HNC quantities. However, it turns_ ~
out that the nodal functiondl,z(jk) and non-nodal func- Xrr(Q) + Ngr(Q)
tions X,5(jK)=0,5(Jk) —1—N,z(jk) have a long-range

behavior exactly given by-U!, 4(jk) and U, 4(jk), so that _ [1—Xpp(@) ][ 1~ Xge(@)] - XFr(@)? 1 (32
all pair distribution functiong,,4(jk) are short ranged. D(q) ’
The multicomponent HNC/0 method is a generalization of _ _ _
the one-component one and an iteration scheme similar to  _ - XEL(q)[l—pr(q)]JrIX,JR(q)IZ
that can be adopted here. In the case of a multicomponent Xz, (a)+Ng ()= D(q) :
system the corresponding HNC/O quantities are given by the 33)
following equations:
and
Uap(r 1) =€ Yap(112 *Napr2), (29 ~ ~
= ~ | 1= Xpr(@)]*— [Xpu(9)]?
Xoe @)+ Npgl o) = =g 1, (39
Na/a(r12)=2 ny Xay(I13)[Xyp(r32) +Nop(rsp)]drs,
Y 25 where the denominatdd(q) is given by
and D) =[ 1= Xpp( @) L1 1= Xrr( )2~ [ Xre(@)[]
~[Xor(0) [P XpL(0) + X (@)]
Xep(112= Gup(T12) = 1= Nog(r12), (26) e
—Xpr(@)[1— XzR(Q)
where p,, represents the densities of the different types of ~pR Dl ~RR ]
particles of the multicomponent system. —X;R(q)z[l—XRR(q)]. (35

We recall that the different “particles” identified gs _ )
ties pp, pr, andp . Since\I'ES is symmetric under the the formU(z) =aln(2)+ 0 are separated into short-range and

exchange of shadow variablés, irrespective ofﬂ, there long-range parts:

are only four independent HNC/0 quantities, Ng,,, Nyg = US(2)=—aKy(Q2) (36)
NpLs Nrr = Nii, andNg, .

Among the three componengs R, andL, there are only and
four independent pairingspp), (pR), (RR), and(RL).

Introducing the two-dimensional Fourier transforms U'(z) =a[ln(z) +Ky(2)]+ 0, (37)
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FIG. 1. Pair distribution function obtained from the ESWF FIG. 3. Smallr behavior for several states.
(solid line), compared to that ofRef. 6 (dashed ling for the state
v=2 where v(r)=e’ler, is found to be u(2/7)=

—0.374€%/ €l 5), which is in close agreement with the value
2 . .
whereK o(x) is the modified Bessel function ai@ the cut-  — 0-3743)(e”/ ¢lo) of Morf and Halperirt’ In Fig. 2 we plot
off parameter of the order of unity. the structure facto8(q) for »=2/7 as a function ofll,.
As a consequence, all nodal and non-nodal functions for A further test of the ESWF and a useful source of infor-

all independent pairing&p), (pR), (RR), and(RL) are split mation for future research is the study of smraliehavior of
into their short- and long-range parts. the pair distribution functions. Diagonalizing numerically the

Hamiltonian for a finite system of 4—6 fermions, Yoshidka
obtained the coefficients of expansion @fr) for smallr
which seem to vary continuously as functionofFor small

around the origir =0, we can expand owg(r) obtained

: r
A three-component HN.C/O scheme has been lmplementegom the three-component HNC/O method in the following
using ESWF for the hierarchy states corresponding tQNay'

v=2[7, 2/3, and 4/5. For numerical convenience the dis-
tances were expressed in dimensionless utlts

In Fig. 1 we plot the pair distribution functiog(r) for
v=2/7 as a function of/l 5, and compare it with that of Ref.
6. It clearly shows characteristics of a liquid state. The

ground-state energy per particle, computed from We least square fitteg(r) in the region Gsr<1.7, to ob-
tain the coefficients; .

For v»=2/7 we found c¢cy=0, c¢;=0, c,=0,
c3=0.008 185, andc,= —0.001 455, whereas fdar>4 the
coefficientsc; are zero within the limit of our numerical
accuracy. The same procedure applied to the statd/5
gives co=0, c,=0.481 689, c,=—0.133 997,
c3=0.024 499, and,= —0.002222. For the state=2/3 we
obtained insteadc,=0, ¢;=0.435 377,c,=—0.117 703,
c3=0.021 723, andc,=—0.001 994. These results agree
rather closely with the finite-size calculations by Yoshidka.

The smallr behavior of different FQHE pair distribution
functions as a function of/l, is plotted in Fig. 3. Indeed,
there are only small differences between states4/5 and
2/3, as expected.

1 In Fig. 4 we plot the resulting(r) for the statev=2/3,
obtained from the ESWF, and compare it with that of Ref. 8.
_ The g(r) for v=2/3 is in rather good agreement with that
obtained by Morf and Halperthusing nonantisymmetrized
wave functions.
0.0 2.0 4.0 6.0 For instance, the ground-state energy per particle was
alo found to beu(2/3)= —0.510@?/ el ), very close to the result
—0.5095)(e?/ el o) of Morf and Halperirf The ground-state
energy per particle of the state=4/5 was found to be

lll. RESULTS

r\2i
—) . (39
lo

9(n=2> ¢
=0

um=5 [ vinrgm -1, (39

FIG. 2. Structure factoB(q) for v:% obtained from the ESWF.
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12 . ‘ . . TABLE I. Ground-state energies per partialév) in units of
e?/ el for filling factors v= 2, 2, and 2. The first row displays our
ESWF results. The results of Dharma-warddRef. 11 are re-
1.0 r AT ported in the second rowy(%) andu(%) are obtained by applying
/ particle-hole conjugation to the corresponding estimates of Ref. 11.
08 / . The third row represents the results of Morf and Halperir{Réf.
] 8).
506/ ‘ v : :
04 | / _ u(v) (ESWH -0.510 -0.548 -0.374
| u(v) (Ref. 11 -0.518 -0.552 -0.379
02 | 4 | u(v) (Ref. 8 -0.5095) not available -0.37(®)
000 50 40 8.0 8.0 nique are of very good quality, and are fully consistent with
tl, several other calculations, essentially confirming the validy
of this treatment.
FIG. 4. Pair distribution functiog(r) obtained from the ESWF The smallr behavior of the pair function reproduces with
(solid line), compared to that of Morf and HalperiRef. 8 (dashed very good accuracy the numerical expansion coefficients re-
line) for the statev= 3. ported by Yoshiokd. The proposed HNC treatment can be

used to study several properties of the second-level hierarchy
u(4/5)=—0.548@€?% €l,). Accurate energy values for the states in the thermodynamic limit.
statesy=2/3 andv=4/5 are obtained from those at=1/3 The main approximation in this work is to neglect the
andv=1/5. elementary functiorE(r). It is known that this mainly af-
Using the Monte Carlo simulation data of Levesque,fects the magnitude of the peak of the pair distribution func-
Weis, and MacDonal’ via Eq. (40) for particle-hole sym- tion. It has also been shown that the scaling approximation
metry, we computei(2/3) andu(4/5), applied to the four-point elementary diagrams provides al-
2 ) most exact resultd for the one-component HNC. The exten-
_ e sion of the scaling procedure to the three-component case is
(1-2v)—, (40 . .
elg not completely straightforward. It is expected that the el-
ementary diagrams which need to be scaled will beERge
ones. The scaling coefficient may be obtained by requiring
consistency on the available sum rules like, for instance, the

8

yielding u(2/3)=—0.518 @%€l,) and u(4/5)=
—0.5519¢?/ €l ), in reasonable agreement with our approxi-
mate values—0.510@?/ el ) and —0.548@?/€l,) for func-

. kinetic-energy sum rule.
tions of th_e ESWF type. . The extension of ESWF to higher fractions in the hierar-
Finally in Table | we make an overall comparison of the

ground-state energy per particle obtained using the ESWIé:hlcal scheme requires larger multicomponent systems. The

2. ~ " study of ground-state wave functions of the composite fer-
the results of Dharma-wardararom a parametrization fit, ; 3 ; —chai
and those of Morf and Halperfh. mion type?® asks for the use of Fermi hyppernetted-chain

rather than HNC techniqué$.Work in this direction is in
progress.

vu(v)=(1—v)u(l—»)+

IV. CONCLUSION

In the present paper we applied the hypernetted-chain
technigue to a class of wave functions of the second level
hierarchical states of the FQHE, constructed through charge- The authors have greatly benefited from enlightening dis-
conjugation procedurés. These wave functions were found cussions with E. Tosatti. One of the auth¢@. C) would
to be of the ESWF type. The model system has been mappditte to thank the International Centre for Theoretical Physics
into a three-component mixture of particles, and a multicom{ICTP) for the hospitality during the early stages of this
ponent HNC/O technique has been applied. work. This work was supported by the European Community

Results for the states at filling factors=2/7, 2/3, and 4/5 Contract Nos. HCMCHRXCT94-0456, ERBCHRXCT-
have been reported. The quantities obtained with this tect840438, and ERBCHRXCT-920062.
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