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Hypernetted-chain treatment and the extended shadow wave functions
for fractional quantum Hall hierarchical states
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The hypernetted-chain theory is applied to study hierarchical states in the fractional quantum Hall effect. It
is noted that a class of wave functions introduced by Girvin@Phys. Rev. B29, 6012~1984!# and MacDonald,
Aers, and Dharma-wardana@Phys. Rev. B31, 5529~1985!#, based on charge-conjugation procedures, is of the
extended shadow wave-function type. The correlation energy, pair distribution function, and static structure
function have been calculated in the thermodynamic limit at various filling factors. The results obtained agree
with those of previous calculations performed with a finite number of electrons.@S0163-1829~97!08516-0#
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I. INTRODUCTION

The description of strong interparticle correlations in bo
Bose and Fermi systems with continuous degrees of free
is a longstanding problem of current interest. More recen
the shadow wave function~SWF! has been proposed1,2 as a
new variational ansatz to compute the properties of solid
liquid 4He atT50 K.

The SWF in the bosonic case is given by

CSWF
B ~rW1 , . . . ,rWN!5)

i, j

N

f pp~r i j !E )
i51

N

x~ urW i2sW i u!

3)
i, j

N

f ss~si j !dSW . ~1!

The quantitySW denotes the set of coordinates@sW i#, so-called
‘‘shadow’’ variables, associated with the particles. The
spective correlation factors may be written as

f pp~r i j !5e2Upp~r i j !/2 ~2!

and

f ss~si j !5e2Uss~si j !, ~3!

where Upp(r i j ) and Uss(si j ) represent, respectively, th
particle-particle and shadow-shadow~pseudo!potential. The
structure off ss(si j ) is the same as that off pp(r i j ), namely, it
heals out to unity at large intershadow distances, wherea
‘‘correlation’’ x(x) between a particle and its associat
shadow heals out to zero.1 Physically, the shadow variable
550163-1829/97/55~20!/13739~6!/$10.00
m
,

d

-

he

sW i can be thought of as mimicking the quantum correlat
‘‘holes’’ which the particles carry around themselves in t
dense system.

The physical interpretation of a SWF, as well as the
quest of more variational freedom and of full symmetry u
der exchange of any particle with any hole, suggests furt
extended forms for the SWF, so that a type of so-cal
extended shadow wave function~ESWF! was proposed.3

The ESWF is of the form

CES
B ~rW1 , . . . ,rWN!5)

i, j

N

f pp~r i j !E )
i , j

N,M

f ps~ urW i2sW j u!

3)
i, j

M

f ss~si j !duSW , ~4!

whereN andM are, respectively, the number of particles a
the number of shadows. The extension which Eq.~4! repre-
sents over the standard SWF of Eq.~1! concerns two aspects

First, in the ESWF all shadows are correlated with all re
particles rather than being in a one-to-one correspondenc
in Eq. ~1!, allowing the possibility that the number and loc
tion of ‘‘holes’’ becomes different from those of the re
particles. This form also allows for a description of lattic
vacancies. The second aspect, which is related to the firs
that all three ‘‘correlation’’ functionsf pp(x), f ps(x), and
f ss(x) must heal out to unity at large values ofx.
In the case of an ESWF, the cluster diagrams of the p

distribution function are characterized by only three differe
types of points:p,sR, andsL, wherep denotes particle and
sR,L denotes, respectively, right or left shadow coordinat
In fact, the normalization of an ESWF is given by
13 739 © 1997 The American Physical Society



e

e

n
en
in
g

t

er

-
’’
s

al
l
ic
po
ve

s

t

the
he
icle
an-
ave

is

13 740 55O. CIFTJA, S. FANTONI, AND K. A. GERNOTH
^CES
B uCES

B &5E F)
i, j

N

f pp
2 ~r i j !)

i , j

N,M

f ps~ urW i2sW j
Lu!

3)
i, j

M

f ss~si j
L !)

i , j

N,M

f ps~ urW i2sW j
Ru!

3)
i, j

M

f ss~si j
R!GdSW LdSWRdRW , ~5!

and coincides with the partition function of a classical thre
component system (p,sR,sL) interacting via the following
~pseudo!potentials:

Upp52 lnf pp
2 , ~6!

UpsR5UpsL52 lnf ps, ~7!

UsRsR5UsLsL52 lnf ss, ~8!

and

UsRsL50. ~9!

The normalization integral~5! contains as integrand th
squareCES

B (rW1 , . . . ,rWN)3CES
B (rW1 , . . . ,rWN) of the extended

shadow wave functionCES
B as defined in expression~4!. The

real particle coordinatesrW1 , . . . ,rWN must, of course, be take
to be identical in both factors. However, two independ
sets of shadow coordinates, over both of which must be
tegrated in formula~5!, are needed for explicitly representin
the square of wave functionCES

B . In Eq. ~5! these two inde-
pendent sets of shadow particles are distinguished by
superscriptsL andR, referring to ‘‘left’’ and ‘‘right’’ shad-
ows, respectively. Every real particle is correlated with ev
other real particle as well as with every ‘‘left’’ and ‘‘right’’
shadow. Every ‘‘left’’ shadow is correlated in turn with ev
ery other ‘‘left’’ shadow. The same applies to the ‘‘right
shadows. Correlations between ‘‘left’’ and ‘‘right’’ shadow
are absent.

II. METHOD

As a first application of this formalism to the fraction
quantum Hall effects~FQHE!, we find that hierarchica
states4,5 may be described microscopically by electron
wave functions which can be expressed as an ESWF. A
sible way of constructing wave functions for the second le
of the hierarchy is to first particle-hole conjugate6,7 the
Laughlin parent stateCn0

(z1 , . . . ,zN) with filling factor

n051/m, wherem53 and 5:

C121/m~z1 , . . . ,zN!5Ĉ@C1/m~z1 , . . . ,zN!#

5E dSWMC1/m* ~SWM !

3Fn51~z1 , . . . ,zN ;SWM !. ~10!

The short-hand notationSWM represents the coordinate
sW1 , . . . ,sWM of the M holes, whereN and M satisfy7 the
relationN1M5mM. The second hierarchy stateCn is then
obtained by multiplying C121/m(z1 , . . . ,zN) with
) j,k
N (zj2zk)

p, wherep must be an even integer such tha
-

t
-

he

y

s-
l

1

n
5

1

12n0
1p. ~11!

It follows that

Cn5)
j,k

N

~zj2zk!
p11e2( j51

N
~ uzj u

2/4l0
2
!E )

j ,k

N,M

~zj2sk!

3)
j,k

M

~sj*2sk* !m~sj2sk!e
2( j51

M
~ usj u

2/2l0
2
!dSW , ~12!

where l 05A\/eB is the magnetic length, andzk andsk are
given in complex notationxk1 iyk .

For instance, the Laughlin parent staten051/3 with
m53 generates forp52 the daughter staten52/7, whereas
for p50 it produces the staten52/3. Similarly, the Laughlin
state n051/5 generates forp50 the daughter state
n54/5, and so on.

Seen from the perspective of the ESWF approach,
hole variablesW i may be interpreted as a shadow variable. T
analytic form of the shadow-shadow and shadow-part
correlations is, in the present case, fixed by the lowest L
dau level constraint. In this sense, this is a variational w
function with no adjustable parameters.

A comparison betweenCn andCES
B shows thatCn can be

identified ~after removal of the exponential factor which
relevant only in the trivial long-wavelength limit! with a
CES

B , where

f pp~ jk !5~zj2zk!
p11, ~13!

f ps~ jk !5~zj2sk!, ~14!

and

f ss~ jk !5~sj*2sk* !m~sj2sk!. ~15!

Normalization ofCn yields

^CnuCn&5E F)
j,k

N

uzj2zku2~p11!)
j ,k

N,M

~zj*2sk
L* !

3)
j,k

M

~sj
L2sk

L!m~sj
L*2sk

L* !)
j ,k

N,M

~zj2sk
R!

3)
j,k

M

~sj
R*2sk

R* !m~sj
R2sk

R!GdRW dSW LdSWR.

~16!

Writing

uzj2zku2~p11!5e2Upp, ~17!

~zj2sk
R!5e2UpR, ~18!

and

~sj
R*2sk

R* !m~sj
R2sk

R!5e2URR, ~19!

we see that the normalization condition forCn coincides
with the partition function of a three-component system (p,
R, L) interacting via the~pseudo!potentials
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Upp522~p11!lnuzj2zku, ~20!

UpR5UpL52 lnuzj2sk
Ru2 iu jR,kR , ~21!

URR5ULL52~m11!lnusj
R2sk

Ru1 i ~m21!u jR,kR ,
~22!

and

URL50, ~23!

where tan(u jk)5yjk /xjk .
For ourp, R, L system we can apply a three-compone

hypernetted-chain~HNC! treatment. This will improve upon
the one-component HNC calculation of MacDonald, Ae
and Dharma-wardana,6 based on the introduction of anad
hoceffective potential mimicking the effect of the hole var
ables. While this is an approximation6 ~which we will pres-
ently overcome!, it did allow inclusion of elementary dia
grams in a simple way.

In the present work, for the sake of simplicity, we negle
the elementary diagrams, so we use the so-called HN
approximation. There is a major difference from the pre
ously known HNC/0 treatments, since here the correlati
f ps( jk) and f ss( jk), and, consequently, several other HNC
quantities are complex functions and depend on both
xjk andyjk components of the interparticle coordinatezjk .

The long-range partsUps
l ( jk) andUss

l ( jk) bring an angu-
lar dependence into all the HNC quantities. However, it tu
out that the nodal functionsNab( jk) and non-nodal func-
tions Xab( jk)5gab( jk)212Nab( jk) have a long-range
behavior exactly given by2Uab

l ( jk) andUab
l ( jk), so that

all pair distribution functionsgab( jk) are short ranged.3

The multicomponent HNC/0 method is a generalization
the one-component one and an iteration scheme simila
that can be adopted here. In the case of a multicompo
system the corresponding HNC/0 quantities are given by
following equations:

gab~r 12!5e2Uab~r12!1Nab~r12!, ~24!

Nab~r 12!5(
g

rgE Xag~r 13!@Xgb~r 32!1Ngb~r 32!#drW3 ,

~25!

and

Xab~r 12!5gab~r 12!212Nab~r 12!, ~26!

where rg represents the densities of the different types
particles of the multicomponent system.

We recall that the different ‘‘particles’’ identified asp
~particle!, R ~right shadow!, andL ~left shadow! have densi-
ties rp , rR , and rL . SinceCES

B is symmetric under the

exchange of shadow variablessW i , irrespective ofrW i , there
are only four independent HNC/0 quantities, i.e,Npp, NpR 5
NpL , NRR 5 NLL , andNRL .

Among the three componentsp, R, andL, there are only
four independent pairings:~pp!, ~pR!, ~RR!, and~RL!.

Introducing the two-dimensional Fourier transforms
t

,

t
/0
-
s

e

s

f
to
nt
e

f

F̃pp~q!5rpE eiq
W
•rWFpp~r !drW, ~27!

F̃ps~q!5ArprsE eiq
W
•rWFpr~r !drW, ~28!

and

F̃ss~q!5rsE eiq
W
•rWFss~r !drW, ~29!

with rs5rR5rL , the general formula of Eq.~25! becomes

Ñab~q!5(
g

X̃ag~q!@X̃gb~q!1Ñgb~q!#. ~30!

As R and L are Hermitian conjugated, we hav
F̃pp(q)5F̃pp* (q), F̃pR(q)5F̃pL* (q), F̃RR(q)5F̃LL* (q),
F̃RL(q)5F̃LR* (q), whereas F̃pR(q)5F̃Rp(q), F̃pL(q)
5F̃Lp(q).

Keeping this in mind, after some algebra we determine
relations between HNC/0 quantities in the Fourier space
the four possible independent pairings:~pp!, ~pR!, ~RR!, and
~RL!.

X̃pR~q!1ÑpR~q!5
X̃pR~q!@12X̃RR* ~q!#1X̃pR* ~q!X̃RL* ~q!

D~q!
,

~31!

X̃RR~q!1ÑRR~q!

5
@12X̃pp~q!#@12X̃RR* ~q!#2X̃pR* ~q!2

D~q!
21, ~32!

X̃RL* ~q!1ÑRL* ~q!5
X̃RL* ~q!@12X̃pp~q!#1uX̃pR~q!u2

D~q!
,

~33!

and

X̃pp~q!1Ñpp~q!5
u12X̃RR~q!u22uX̃RL~q!u2

D~q!
21, ~34!

where the denominatorD(q) is given by

D~q!5@12X̃pp~q!#@ u12X̃RR~q!u22uX̃RL~q!u2#

2uX̃pR~q!u2@X̃RL~q!1X̃RL* ~q!#

2X̃pR~q!2@12X̃RR* ~q!#

2X̃pR* ~q!2@12X̃RR~q!#. ~35!

As in a standard HNC/0 treatment our~pseudo!potentials of
the formU(z)5aln(z)1u are separated into short-range a
long-range parts:

Us~z!52aK0~Qz! ~36!

and

Ul~z!5a@ ln~z!1K0~z!#1u, ~37!
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whereK0(x) is the modified Bessel function andQ the cut-
off parameter of the order of unity.

As a consequence, all nodal and non-nodal functions
all independent pairings~pp!, ~pR!, ~RR!, and~RL! are split
into their short- and long-range parts.

III. RESULTS

A three-component HNC/0 scheme has been impleme
using ESWF for the hierarchy states corresponding
n52/7, 2/3, and 4/5. For numerical convenience the d
tances were expressed in dimensionless unitsr / l 0.

In Fig. 1 we plot the pair distribution functiong(r ) for
n52/7 as a function ofr / l 0, and compare it with that of Ref
6. It clearly shows characteristics of a liquid state. T
ground-state energy per particle, computed from

u~n!5
r

2E v~r !@g~r !21#d2r , ~38!

FIG. 1. Pair distribution function obtained from the ESW
~solid line!, compared to that of~Ref. 6! ~dashed line!, for the state
n5

2
7.

FIG. 2. Structure factorS(q) for n5
2
7 obtained from the ESWF.
r

ed
o
-

where v(r )5e2/er , is found to be u(2/7)5
20.374(e2/e l 0), which is in close agreement with the valu
20.377(3)(e2/e l 0) of Morf and Halperin.

8 In Fig. 2 we plot
the structure factorS(q) for n52/7 as a function ofql0.

A further test of the ESWF and a useful source of info
mation for future research is the study of small-r behavior of
the pair distribution functions. Diagonalizing numerically th
Hamiltonian for a finite system of 4–6 fermions, Yoshiok9

obtained the coefficients of expansion ofg(r ) for small r
which seem to vary continuously as function ofn. For small
r around the originr50, we can expand ourg(r ) obtained
from the three-component HNC/0 method in the followin
way:

g~r !5(
i50

`

ci S rl 0D
2i

. ~39!

We least square fittedg(r ) in the region 0<r<1.7l 0 to ob-
tain the coefficientsci .

For n52/7 we found c050, c150, c250,
c350.008 185, andc4520.001 455, whereas fori.4 the
coefficientsci are zero within the limit of our numerica
accuracy. The same procedure applied to the staten54/5
gives c050, c150.481 689, c2520.133 997,
c350.024 499, andc4520.002222. For the staten52/3 we
obtained insteadc050, c150.435 377, c2520.117 703,
c350.021 723, andc4520.001 994. These results agre
rather closely with the finite-size calculations by Yoshiok9

The small-r behavior of different FQHE pair distribution
functions as a function ofr / l 0 is plotted in Fig. 3. Indeed,
there are only small differences between statesn54/5 and
2/3, as expected.

In Fig. 4 we plot the resultingg(r ) for the staten52/3,
obtained from the ESWF, and compare it with that of Ref.
The g(r ) for n52/3 is in rather good agreement with th
obtained by Morf and Halperin8 using nonantisymmetrized
wave functions.

For instance, the ground-state energy per particle w
found to beu(2/3)520.510(e2/e l 0), very close to the resul
20.509(5)(e2/e l 0) of Morf and Halperin.

8 The ground-state
energy per particle of the staten54/5 was found to be

FIG. 3. Small-r behavior for several states.
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u(4/5)520.548(e2/e l 0). Accurate energy values for th
statesn52/3 andn54/5 are obtained from those atn51/3
andn51/5.

Using the Monte Carlo simulation data of Levesqu
Weis, and MacDonald,10 via Eq. ~40! for particle-hole sym-
metry, we computeu(2/3) andu(4/5),

nu~n!5~12n!u~12n!1S p

8 D 1/2~122n!
e2

e l 0
, ~40!

yielding u (2/3)5 2 0.518 (e2/e l 0) and u (4/5)5
20.5519(e2/e l 0), in reasonable agreement with our appro
mate values20.510(e2/e l 0) and20.548(e2/e l 0) for func-
tions of the ESWF type.

Finally in Table I we make an overall comparison of t
ground-state energy per particle obtained using the ES
the results of Dharma-wardana11 from a parametrization fit,
and those of Morf and Halperin.8

IV. CONCLUSION

In the present paper we applied the hypernetted-ch
technique to a class of wave functions of the second le
hierarchical states of the FQHE, constructed through cha
conjugation procedures.6,7 These wave functions were foun
to be of the ESWF type. The model system has been map
into a three-component mixture of particles, and a multico
ponent HNC/0 technique has been applied.

Results for the states at filling factorsn52/7, 2/3, and 4/5
have been reported. The quantities obtained with this te

FIG. 4. Pair distribution functiong(r ) obtained from the ESWF
~solid line!, compared to that of Morf and Halperin~Ref. 8! ~dashed
line! for the staten5

2
3.
E

E.
,

-

F,

in
el
e-

ed
-

h-

nique are of very good quality, and are fully consistent w
several other calculations, essentially confirming the val
of this treatment.

The small-r behavior of the pair function reproduces wi
very good accuracy the numerical expansion coefficients
ported by Yoshioka.9 The proposed HNC treatment can b
used to study several properties of the second-level hiera
states in the thermodynamic limit.

The main approximation in this work is to neglect th
elementary functionE(r ). It is known that this mainly af-
fects the magnitude of the peak of the pair distribution fun
tion. It has also been shown that the scaling approxima
applied to the four-point elementary diagrams provides
most exact results12 for the one-component HNC. The exten
sion of the scaling procedure to the three-component cas
not completely straightforward. It is expected that the
ementary diagrams which need to be scaled will be theEpp
ones. The scaling coefficient may be obtained by requir
consistency on the available sum rules like, for instance,
kinetic-energy sum rule.

The extension of ESWF to higher fractions in the hier
chical scheme requires larger multicomponent systems.
study of ground-state wave functions of the composite f
mion type13 asks for the use of Fermi hyppernetted-cha
rather than HNC techniques.14 Work in this direction is in
progress.
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TABLE I. Ground-state energies per particleu(n) in units of
e2/e l 0 for filling factors n5

2
3,

4
5, and

2
7. The first row displays our

ESWF results. The results of Dharma-wardana~Ref. 11! are re-
ported in the second row;u( 23) andu(

4
5) are obtained by applying

particle-hole conjugation to the corresponding estimates of Ref.
The third row represents the results of Morf and Halperin of~Ref.
8!.

n 2
3

4
5

2
7

u(n) ~ESWF! -0.510 -0.548 -0.374
u(n) ~Ref. 11! -0.518 -0.552 -0.379
u(n) ~Ref. 8! -0.509~5! not available -0.377~3!
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