

Background

factors v = 1/m.

Liquid Crystalline States for Two-dimensional Electrons in Strong Magnetic Fields

University of Missouri-Columbia

Orion Ciftja**

Prairie View A&N University, Texas

Monte Carlo Studies for filling factors 1/3, 1/5 and 1/7

Interaction Potentials and

Monte Carlo Simulations

In order to investigate the possibility of a liquid crystal state in the lowest Landau level (LLL), we consider electrons interacting through the potentials,

$$V_{1}(\mathbf{r}) = e^{2} / \left[\varepsilon \sqrt{r^{2} + \lambda^{2}} \right]$$

$$V_{2}(\mathbf{r}) = e^{2} / \varepsilon \frac{1 - e^{-\frac{r}{\lambda}}}{r}$$

 $(\lambda \sim \text{thickness of 2DES}).$

Since the potentials involved only depend on two-body interactions, we need to determine (by means of

Monte Carlo simulations)

the pair correlation function

$$g(\mathbf{r}'-\mathbf{r}'') = \frac{1}{\rho_0^2} \left\langle \sum_{i \neq j}^N \delta(\mathbf{r}_i - \mathbf{r}') \delta(\mathbf{r}_j - \mathbf{r}'') \right\rangle$$

and the density

$$\rho\left(\mathbf{r}\right) = \left\langle \sum_{i=1}^{N} \delta\left(\mathbf{r}_{i} - \mathbf{r}\right) \right\rangle$$

The correlation energy in higher LL's can be obtained as

$$E_{\alpha}^{L} = \frac{1}{2} \int_{0}^{\infty} \frac{dq}{2\pi} q \ v(q) \left[L_{L} \left(\frac{q^{2}}{2} \right) \right]^{2} \left[S(q) - 1 \right]$$

where

$$S(q) = \int_{0}^{2\pi} \frac{d\theta_{q}}{2\pi} S(q)$$

is the angle averaged structure factor and $L_L(x)$ are the Laguerre polynomials corresponding to the Landau Level index L.

Monte Carlo Runs.

Results were obtained with

- ⇒ 2x10⁶-4x10⁷ Monte Carlo Steps (MCS) for averaging
- ⇒ systems of 200-400 electrons

In 1983 Laughlin introduced his famous trial wave function

 $\Psi_{1/m} = \prod_{i \ge i}^{N} (z_i - z_j) \prod_{i = 1}^{m-1} (z_i - z_j - \alpha_{\mu}) e^{-\frac{1}{4l_0^2} \sum_{k=1}^{N} z_k^2}$

to describe the fractional quantum Hall effect (FQHE) for odd-denominator filling

- > Theoretical understanding is that WC states are favorable at zero temperature than v_c ; 1/6.5. For larger factors the electrons are believed to form a quantum liquid state with Laughlin's wave function being an excellent choice.
- > In transitional regions between QH plateaus for high LL's either a smectic or a nematic phase exists.

Liquid Crystal States

consider translationally invariant and quasi-long-range orientational order with rotational symmetry groups C2, C4, and C6. Basic requirements on how to construct Broken Rotational Symmetry (BRS) states:

- must obey Fermi statistics;
- must be translationally invariant;
- there must have a broken rotational symmetry;
- must belong to a single LL.

Construction of BRS states.

BRS wave functions can be systematically constructed by properly splitting the zeroes of he Laughlin's liquid state,

$$\Psi_{1/m} = \prod_{i < j}^{N} \left(z_i - z_j \right) \prod_{\mu = 1}^{m-1} \left(z_i - z_j - \alpha_{\mu} \right) \exp \left(-\frac{1}{4l_0^2} \sum_{k=1}^{N} |z_k|^2 \right)$$

$$\alpha_{\mu} = \alpha e^{i2\pi(\mu-1)/(m-1)}$$
; α real

Soft Charge Density Waves

We consider the classical distribution function

$$\psi_{1/m}^{2} \propto e^{-\beta V}$$

where

$$-\beta V = 2 \sum_{i < j}^{N} \left[\ln z_i - z_j + \sum_{\mu = 1}^{m-1} \ln z_i - z_j - \alpha_{\mu} \right] - \frac{1}{2} \sum_{i = 1}^{N} z_i^{2}$$

The potential generated by the addition of some charge $\delta \rho(\mathbf{r})$ will cause a redistribution of the particles inducing a density change

$$\rho_{total}(\mathbf{r}) = \int d^2r' \rho_0 \left[g(\mathbf{r} - \mathbf{r}') - 1 \right] \delta \rho(\mathbf{r}')$$

generating a total potential

$$\beta \phi(\mathbf{k}) = \frac{4\pi S(\mathbf{k})}{k^2} \left[1 + \sum_{\mu=1}^{m-1} e^{i\alpha_{\mu} \mathbf{k}} \right] \delta \rho(\mathbf{k})$$

assuming a small fluctuation from the uniform state

$$\rho(\mathbf{r}) = \rho_0 + \rho_1 \cos(\mathbf{q} \cdot \mathbf{r}) ; \rho_1 \ll \rho_0$$

we obtain an "excess energy" per unit area

$$\frac{\beta u^{ex}}{\rho_1} = \frac{1}{2} \frac{2\pi S(\mathbf{q})}{q^2} \left[1 + \sum_{\mu=1}^{m-1} e^{i\alpha_{\mu} \cdot \mathbf{q}} \right]$$

Results

which becomes negative for a variety of wave vectors.

Electron configurations for a nematic (v=1/3, $\alpha=7$, left panel), tetratic (v=1/5, $\alpha=8$, center panel) and hexatic (v=1/7, $\alpha=10$, right panel).

The CDW's have 1, 2 and 3 different directors for BRS states of the groups C₂, C₄, and C₆ respectively. The "excess energy" becomes negative for wave vectors in these directions for each filling factor.

Results

Correlation Energy in the LLL

Correlation Energy in the second excited LL for filling factor v=1/3

References:

Liquid crystalline states for two-dimensional electrons in strong magnetic fields O. Ciftja, C. M. Lapilli, C. Wexler Phys. Rev. B 69, 125320 (2004)

Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, USA **orion_ciftja@pramu.edu
Department of Physics, Prairie View A&M University,
Prairie View, Texas 77446, USA