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Abstract
We introduce a generalized ground state variational wavefunction for
parabolically confined two-dimensional quantum dots that equally applies to
both cases of weak (or zero) and strong magnetic field. The wavefunction
has a Laughlin-like form in the limit of infinite magnetic field, but transforms
into a Jastrow–Slater wavefunction at zero magnetic field. At intermediate
magnetic fields (where a fraction of electrons is spin-reversed) it resembles
Halperin’s spin-reversed wavefunction for the fractional quantum Hall effect.
The properties of this variational wavefunction are illustrated for the case of
two-dimensional quantum dot helium (a system of two interacting electrons
in a parabolic confinement potential) where we find the description to be an
excellent representation of the true ground state for the whole range of magnetic
fields.

Quantum dots are fabricated semiconductor nanostructures in which charge carriers, such as
electrons, are confined in a small region of space [1–8], usually in two dimensions (2D). In
particular, the case of few-electron quantum dots subject to a perpendicular magnetic field is of
great interest, because, under all experimental conditions, single-electron confinement energy,
cyclotron energy and the strength of electronic correlations are of the same order of magnitude,
producing very rich physics. The application of a perpendicular magnetic field to a quantum
dot plays a fundamental role in changing the nature of single-electron levels from those for the
2D harmonic oscillator to Landau levels in which electronic correlations are strongly enhanced,
resulting in behaviour as seen in the fractional quantum Hall effect (FQHE) regime [9–12].

The Hamiltonian for a 2D quantum dot system consisting of N electrons confined by a
parabolic potential and subject to a magnetic field, Bz , perpendicular to the dot plane is written
as:

Ĥ =
N∑

i=1

{
1

2m
[ �̂pi + e �A( �ρi )]2 + m

2
ω2

0 ρ2
i

}
+ 1

4πε0εr

N∑

i> j

e2

| �ρi − �ρ j | + g μB Bz Sz, (1)

where the first term is a one-electron term, the second is the Coulomb potential energy and
the last term is the Zeeman energy. In a symmetric gauge, �A( �ρ) = Bz/2(−y, x, 0) is the
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vector potential, �ρ = (x, y) is the 2D position vector, −e(e > 0) is electron’s charge, m is
the electron’s mass, g is the electron’s g-factor, μB is the Bohr magneton, εr is the dielectric
constant, h̄ω0 is the parabolic confinement energy and Sz is the z-component of the total spin.

Depending on the strength of the magnetic field, we can identify two main regimes of
distinct behaviour for a 2D quantum dot. The regime of strong magnetic field, where all
electrons are fully spin polarized, corresponds to the crossover regime between microscopic
quantum dots and macroscopic 2D electronic systems of FQHE liquid type (at relatively
high density) and Wigner solid type (at low density). The regime of weak or zero magnetic
field [13–17] is also very interesting. In the low-density (strong interaction) limit, classical
arguments suggest the stabilization of a Wigner solid. In the high-density limit, a Fermi liquid
description is expected to be more apropriate. The cross-over regime between the two limits is
closely related to the metal–insulator transition problem in 2D [18].

Despite many studies [19–36], a common description of quantum dots for the whole range
of magnetic fields is still far from being complete. Proposed models treat the weak (or zero)
magnetic field regime [37, 38] separately from the strong magnetic field regime [29] and
generally have a limited domain of applicability. Routinely, a wavefunction that describes
the strong magnetic field regime well [29] does not apply to the weak (or zero) magnetic field
limit, and vice versa [31].

The purpose of this work is to present a unifying framework for the study of 2D quantum
dots at any magnetic field by introducing a general ground state wavefunction that applies to
both regimes of weak (or zero) and strong magnetic fields. We place only two constraints on
the form of the wavefunction: (i) that it is Laughlin-like in the strong magnetic field limit;
(ii) that it is of Jastrow–Slater form in the zero magnetic field limit (where, depending on
localization/correlation strengths, Fermi liquid or Wigner solid states may emerge).

To illustrate the main properties of this wavefunction, we first concentrate our study on a
simple two-electron (N = 2) quantum dot system, known as the 2D quantum dot helium. Even
for this case, a unique field-dependent ground state wavefunction for arbitrary magnetic fields
ranging from zero to infinity is not yet available. Despite its simplicity, this system shows many
characteristic features which persist to larger systems [24, 26, 39–42], therefore it provides a
challenging test to gauge the accuracy of any treatment. In the next phase we focus our attention
on 2D quantum dots with any number of electrons. We introduce a very general variational
wavefunction that applies to both cases of strong and weak (or zero) magnetic field, and clarify
how the properties of the generalized approach are reflected in the succesful treatment of 2D
quantum dot helium.

We start the study of 2D quantum dot helium in a perpendicular magnetic field by
considering the following trial wavefunction:

� = J (ρ12) × (z1 − z2)
|mz | exp

(
−ρ2

1 + ρ2
2

4 l2
�

)
χ(s1, s2), (2)

where χ(s1, s2) is the spin function and the Jastrow factor, J (ρ12), is given by:

J (ρ12) = exp

(
−b2

2
ρ2

12 + c b ρ12

)
, (3)

where z j = x j−iy j ( j = 1, 2) is the electron’s 2D position in complex notation, ρ12 = | �ρ1− �ρ2|
is the inter-electron distance, b and c are non-negative variational parameters to be optimized
and mz = |mz| = 0, 1, . . . is the angular momentum quantum number. For a perpendicular
magnetic field in the z-direction, we have l� = √

h̄/(2m�) and �2 = ω2
0 +(ωc/2)2. The parity

of the space wavefunction depends on the value of |mz|. For even values, |mz| = 0, 2, 4, . . .,
the space wavefunction is symmetric, so the spin function, χ(s1, s2), corresponds to a spin-
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singlet state (S = 0), while for odd values, |mz| = 1, 3, 5, . . ., the space wavefunction is
antisymmetric, therefore χ(s1, s2) corresponds to a spin-triplet (S = 1).

The correlation factor, J (ρ12), is a displaced Gaussian (that is centred at nonzero ρ12

values) and constitutes a novel choice of electronic correlations in a quantum dot. As we will
shortly see, it does an outstanding job in optimizing the separation between a pair of electrons,
both at zero and nonzero magnetic field. It also differs from earlier choices in the literature, such
as: J (ρ12) ∝ exp

( aρ12

1+bρ12

)
, where a and b are two variational parameters [39]; a generalized

version of the above form [37, 38]; or a simpler version J (ρ12) = 1 used by Bolton [29].
We have previously shown [43] that, at zero magnetic field, the wavefunction equation (2)

(for |mz | = 0) is of exceptional quality. Now we study its properties for a nonzero arbitrary
perpendicular magnetic field, noting that the Zeeman energy is not included in our calculations
(it can always be included afterwards, if a need arises, since the Hamiltonian is spin-free
without the Zeeman term).

To simplify calculations, the energy is measured in units of the oscillator energy, h̄ω0, and
two dimensionless parameters are introduced, λ = (1/4πε0εr )(e2α/h̄ω0) and γ = ωc/ω0. The
first parameter, λ, measures the strength of the Coulomb interaction (repulsion) with respect to
the confinement energy, where α = √

mω0/h̄ is the inverse oscillator length. The second
parameter, γ , gauges the strength of the magnetic field relative to the confinement energy
and is proportional to the magnetic field, with ωc = eBz/m being the cyclotron frequency.
Note that λ = l/aB, where l = 1/α is the oscillator’s length and aB = (4πε0εr h̄2)/(me2) is
interpreted as an effective Bohr radius of the quantum dot. At zero magnetic field, the ground
state always has angular momentum |mz| = 0, a result that suggests that only J (ρ12) has
any effect on optimizing electronic correlations. A nonzero magnetic field changes the whole
scenario by bringing the electrons closer to each other. In response to that, at particular values
of the magnetic field, the electrons find it energetically more favourable to jump to higher
angular momentum (|mz | �= 0) orbits. When this occurs, the Laughlin factor, (z1 − z2)

|mz |,
which contributes only for |mz| �= 0 values, adds up to the effect of J (ρ12) on optimizing the
separation between electrons.

A calculation of the trial energy E = 〈�|Ĥ |�〉/〈�|�〉 is straightforward and standard
optimization procedures are implemented. A plot of the variational energy, ε = E/(h̄ω0), as
a function of γ = ωc/ω0 for values of λ = 0, 1, 2, . . . 10 is given in figure 1. In figure 2
we show the excellent agreement between variational and numerical diagonalization energies,
which holds for the whole range of λ-s and γ -s considered in this work. The exact numerical
diagonalization method gives the exact eigenvalues and eigenstates (in the numerical sense)
of Schrödinger’s equation for the Hamiltonian under consideration (which can be simplified by
separating centre-of-mass motion from relative motion). One starts the procedure by expanding
the (unknown) wavefunction in a given basis set consisting of a finite number of states. The
minimization of the energy functional, 〈Ĥ 〉, with respect to the expansion coefficients, reduces
to a Hamiltonian matrix eigenvalue–eigenvector problem. The matrix to be diagonalized has
Nmax × Nmax elements, where Nmax is the dimensionality of the truncated (finite) basis set.
Diagonalization of the Hamiltonian matrix produces a set of energy eigenvalues and expansion
coefficients (from where the eigenfunctions can be obtained). The energy eigenvalues obtained
for a series of finite values of Nmax are extrapolated to the Nmax → ∞ limit (when large basis
sets are considered, a linear fit (in 1/Nmax) function best fits the data). The values extrapolated
in the Nmax → ∞ limit represent the exact numerical solution of the energy eigenvalue problem
(ground and excited state energies).

In the strong magnetic field regime, variational energies are practically identical to exact
numerical diagonalization results (within the range of a very small statistical error, associated
with the use of a finite matrix in the diagonalization scheme). The relative deviation of the
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Figure 1. Plot of variational energy, ε = E/(h̄ω0), for 2D quantum dot helium as a function of
γ = ωc/ω0 for values of λ = 0, 1, 2, . . . 10. The lowest curve corresponds to λ = 0 and, in
increasing order, the top curve corresponds to λ = 10.
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Figure 2. Plot of the relative deviation of the variational ground state energy from the exact
numerical diagonalization value, |ε(Var) − ε(Exact Diag)|/ε(Exact Diag), for 2D quantum dot
helium as a function of γ = ωc/ω0 for values of λ = 0, 1, 2, 3, 4. The exact numerical
diagonalization energy eigenvalues are obtained by expanding the (unknown) wavefunction in a
finite basis set of Nmax functions and then calculating the eigenvalues and eigenstates of the resulting
Hamiltonian matrix. The reported results are obtained by extrapolating the energy eigenvalues as a
function of 1/Nmax in the Nmax → ∞ limit (see text for more details).

variational ground state energy from the exact numerical diagonalization value, |ε(Var) −
ε(Exact Diag)|/ε(Exact Diag), is always smaller than 0.002 for all values, 0 � λ � 10,
considered in this work. Only for λ = 4 and at zero magnetic field (γ = 0), the relative
deviation approaches 0.002, while for all other λ s (5, . . . , 10) we checked that such a deviation
is always smaller than that of λ = 4 in zero magnetic field. The very good agreement between
variational and exact numerical diagonalization energies only improves as the magnetic field
increases. It is clear that the Jastrow factor, J (ρ12), plays a major contribution in improving the
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Figure 3. Plot of α2 〈| �ρ1 − �ρ2|2〉 for 2D quantum dot helium calculated from the optimal variational
wavefunction as a function of γ = ωc/ω0 for values of λ = 0, 2, 4, 6, 8 and 10. The parameter
α = √

mω0/h̄ has the dimensionality of an inverse length (top). Plot of ground state angular
momentum, 〈Lz〉 (in units of h̄), as a function of γ = ωc/ω0 = 0, 1, 2, 3, 4, 5 and 6 for values of
λ = 0, 2, 4, 6, 8 and 10 (bottom). In both cases, the solid lines joining the data points serve as a
guide to the eye.

wavefunction at weak (or zero) magnetic fields, although we noted that, for large magnetic
fields, the variational parameter, b, tends to decrease, suggesting that J (ρ12) 
 1 in the
Bz → ∞ limit. In figure 3 we plot the mean square distance between two electrons,
α2 〈| �ρ1 − �ρ2|2〉 as a function of ωc/ω0 for values of λ = 0, 2, 4, 6, 8 and 10 (top) and the
corresponding values of the angular momentum quantum number (bottom).

The following variational ground state wavefunction serves as a generalization of the
approach and is proposed to describe 2D quantum dots with any number of electrons, both
at zero and nonzero magnetic fields:

�γ =
N∏

i< j

J (ρi j)

N∏

i< j

(zi − z j )
n D↑(ϕFD)D↓(ϕFD) χ(S), (4)

where, in a short-hand notation, S = {s1, s2, . . . , sN } represents all spin coordinates and the
space wavefunction corresponds to a spin function, χ(S) = χ(s1, s2, . . . sN ), in which the first
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N↑ electrons are spin-up and the remaining electrons, N↓ = N − N↑, are spin-down. The Slater
determinants for spin-up, D↑(ϕFD), and spin-down, D↓(ϕFD), electrons are built out of Fock–
Darwin (FD) states [44, 45] of the form: ϕFD ∝ (z/ l�)|mz | exp(−|z|2/(4l2

�)) L |mz |
nρ

(|z|2/(2l2
�)),

where the L |mz |
nρ

s are associated Laguerre polynomials, nρ = 0, 1, . . ., and mz = 0,±1, . . ..
The parity of the space wavefunction crucially depends on the value of the integer number,

n = 0, 1, 2, . . ., which is even/odd for respectively antisymmetric/symmetric spin functions,
χ(S), in agreement with Pauli’s principle.

In the strong magnetic field limit (Bz → ∞), which corresponds to γ → ∞, the
wavefunction, �γ reduces to a Laughlin-like wavefunction:

�γ=∞ =
N∏

i< j

J (ρi j)

N∏

i< j

(zi − z j)
n+1 exp

(
−

N∑

i=1

|zi |2
4l2

�

)
χ(S), (5)

where the spin function, χ(S), corresponds to a fully spin-polarized state. The overall
antisymmetry of the wavefunction requires n to be even, with J (ρi j) 
 1 eventually becoming
a minor correction in this limit. This result is explained by noting that, for a fully spin-
polarized system (N↑ = N), only D↑(ϕFD) exists (the other Slater determinant, D↓(ϕFD),
can be formally set to 1) and in this limit FD states transform into Landau states where

D↑(ϕFD) = ∏N
i< j (zi − z j ) exp

(
− ∑N

i=1
|zi |2
4l2

�

)
.

In the weak (or zero) magnetic field limit (Bz → 0), which corresponds to γ → 0, the
variational wavefunction reduces to a standard Jastrow–Slater wavefunction of the form:

�γ=0 =
N∏

i< j

J (ρi j) D↑(ϕHO) D↓(ϕHO) χ(S), (6)

where the spin function, χ(S), is expected to be antisymmetric (like a spin-unpolarized state)
and the FD states have become 2D harmonic oscillator (HO) states of the form:

ϕHO ∝ (αρ)|mz | exp(−α2ρ2/2) L |mz |
nρ

(α2ρ2) exp(imzϕ).

Pauli’s principle imposes the choice n = 0 for the polynomial
∏N

i< j (zi − z j)
n , although in a

more general setting one can consider any even value, n = 2, 4, . . ., and treat n as a variational
parameter.

The general wavefunction in equation (4) should apply to any quantum dot with N
electrons in zero or nonzero magnetic fields, and clearly we can see that, for N = 2, it reduces
to the wavefunction in equation (2), where n = |mz|.

For weak (or zero) confinement and for intermediate values of the magnetic field (when a
fraction of electrons is spin-reversed) the wavefunction becomes:

�γ ≈
N∏

i< j

J (ρi j)

N↑∏

i< j

(zi − z j )
n+1

N↓∏

i< j

(zi − z j)
n+1

N↑∏

i=1

N↓∏

j=1

(zi − z j )
n

× exp

(
−

N↑∑

i=1

ρ2
i

4 l2
�

)
exp

(
−

N↓∑

i=1

ρ2
i

4 l2
�

)
χ(S),

which is a form reminiscent of Halperin’s spin-reversed wavefunction [46] for FQHE, with the
J (ρi j) s acting as additional correction factors.

To conclude, we propose a unifying framework to describe 2D quantum dots at zero and
nonzero perpendicular magnetic fields, by introducing a general ground state wavefunction
that applies to both regimes of weak (or zero) and strong magnetic field. We demonstrate the
quality of this wavefunction for the special case of 2D quantum dot helium and discuss general
outcomes for zero, intermediate and strong magnetic fields. Efforts are underway to extend this
treatment to larger 2D quantum dots.
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