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Abstract
An anyon wavefunction (characterized by the statistical factor n) projected onto
the lowest Landau level is derived for the fractional quantum Hall effect states
at filling factor ν = n/(2 pn +1) (p and n are integers). We study the properties
of the anyon wavefunction by using detailed Monte Carlo simulations in disc
geometry and show that the anyon ground-state energy is a lower bound to the
composite fermion one. Our results suggest that the composite fermions can
be viewed as a combination of anyons and a fluid of charge–neutral dipoles.

The fractional quantized Hall effect (FQHE) is one of the most fascinating phenomena in
condensed-matter physics [1]. The pioneering work by Laughlin [2] based on the famous trial
wavefunction at the filling of ν = 1/(2 p +1) revealed that the FQHE arises from the formation
of an incompressible quantum fluid that supports quasiparticles and quasiholes carrying
fractional charge and statistics. Jain’s composite fermion (CF) approach [3] successfully
clarified fundamental aspects of the FQHE, which evolved into the description of the FQHE
in terms of electron–vortex composites. A CF is the bound state of an electron and an even
number of vortices formed in a two-dimensional (2D) system of electrons subject to a strong
perpendicular magnetic field. On the basis of the CF theory, the interacting electrons at the
Landau level (LL) filling factor ν = n/(2 pn+1), n and p being integers, transform into weakly
interacting CFs with an effective filling factor ν� = n, corresponding to n-filled CF LLs.

The connection between the FQHE and the integer quantum Hall effect (IQHE) has
motivated the Chern–Simons (CS) field theoretical approach [4, 5] for the FQHE. Within
this field theoretical approach, an even number of magnetic flux quanta (φ0 = hc/e stands
for one flux quantum) are attached to the 2D electrons through the introduction of a CS gauge
field. In a mean-field approximation where the statistical gauge fluxes are delocalized from
the electrons and uniformly spread out in the 2D plane, the average CS gauge field partially
cancels the external magnetic field. So far, the fermion CS approach has been very successful
for describing the nature of the quantum Hall state at ν = 1/2 where the CS-flux-generated
fictitious magnetic field exactly cancels the external magnetic field at the mean-field level.
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An important aspect for developing theories of FQHE is that the Hilbert space is composed
solely of states in the lowest Landau level (LLL). This constraint is important conceptually, as it
implies the quenching of the kinetic energy and the non-perturbative nature of electron–electron
interactions. Because of the drastic reduction of the size of the Hilbert space, numerical studies
have been indispensable to the development of our understanding of the FQHE. Although the
FQHE can be considered as an IQHE of CFs, it is worth noting that an explicit LLL projection
of the latter states is necessary in the construction of Jain’s wavefunction in order to obtain the
correct low energy physics [3].

The Chern–Simons field theory is intimately connected to the statistics transmutation of
anyons. Halperin [6] demonstrated that an anyon picture inherently leads to an explanation of
the quantum Hall hierarchy. Similarly, Ma and Zhang [7] considered ideal anyons subject to a
magnetic field. The ideal anyons with statistics 1/n in a strong magnetic field have a ground
state that exhibits an IQHE at filling factor n with quasiparticle excitations of charge ne. The
electron FQHE states are realized with asymmetry in quasiparticle states (ν = n/(2 pn + 1))
and quasihole states (ν = n/(2 pn − 1)) in the fractional quantum Hall hierarchy. Despite the
consensus that anyons play an important role in understanding the FQHE, there remains no
explicit, quantitative study of the corresponding ground-state properties.

In this paper we derive an anyon wavefunction for filling factors n/(2 pn + 1), with p and
n being integers, that is fully projected onto the LLL. We then study the properties of the anyon
wavefunction at these filling factors by carrying out detailed Monte Carlo (MC) simulations.
Our calculation provides important information on the connection between anyons and CFs.

1. The Chern–Simons transformation

The Hamiltonian for 2D electrons subject to the perpendicular magnetic field B = −B ẑ is
given by

Ĥ = Ĥ0(B) + V̂ = 1

2m

N∑

j=1

(p j + eA j)
2 + V̂ , (1)

where m and −e are the electron’s mass and charge, N is the total number of electrons
and V̂ is the Coulomb interaction energy. We adopt the symmetric gauge in which the
vector potential is given by A j = (B/2)(y j ,−x j , 0). With the use of complex coordinates
z j = x j + iy j , and the notation χ = ∏N

i< j (zi − z j ), the CS transformation amounts to
multiplying the many-body wavefunction of the CS transformed Hamiltonian by (χ/|χ |)α and
eA j → eA j + αA j ≡ eA j + α

∑N
k �= j (−(y j − yk), x j − xk, 0)/|r j − rk |2.

After the CS transformation, the kinetic energy operator Ĥ0(α) can be expressed in terms
of destruction and creation operators, a(α) and a†(α), as (all lengths are measured in units of
magnetic length l ≡ √

h̄/e|B|)

Ĥ0(α) = h̄ωc

N∑

j=1

a†
j (α) a j (α) + 1

2 Nh̄ωc, (2)

where ωc = e|B|/m is the cyclotron frequency and

a j(α) = 1√
2

(
2

∂

∂z�
j

+
z j

2
+ α

∂ ln χ�

∂z�
j

)
, (3)

a†
j (α) = 1√

2

(
−2

∂

∂z j
+

z�
j

2
+ α

∂ ln χ

∂z j

)
. (4)

The operators a†
j (α) and a j(α) satisfy Bose commutation relations, [a j(α), a†

k (α)] = δ jk.
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The angular momentum operator L̂(α) after the transformation reads

L̂ → L̂(α) =
N∑

j=1

(b†
j(α)b j (α) − a†

j (α) a j(α)), (5)

where the operators b(α) and b†(α) describe the LLL degeneracy,

b j(α) = 1√
2

(
2

∂

∂z j
+

z�
j

2
− α

∂ ln χ

∂z j

)
, (6)

b†
j(α) = 1√

2

(
−2

∂

∂z�
j

+
z j

2
− α

∂ ln χ�

∂z�
j

)
, (7)

satisfying [b j(α), b†
k(α)] = δ jk .

So far, two types of CS transformation have been discussed in the literature. One considers
α to be an integer (α = 2 p has been used in the fermion CS theory to describe the reduction
of the effective magnetic field felt by the CFs [4, 8, 9]; and α, an odd integer, has been used to
describe the formation of the Bose condensate in the FQHE [10]). The other choice concerns
α = 1/n and has been used for the study of anyon superconductivity in the absence of a
magnetic field [11].

We recall that for Ĥ0(B), the LLL wavefunction has the form 	LLL(B) =
W (N) f ({z j}, {∂/∂z j }), where W (N) = exp(−∑N

i=1 |zi |2/4l2) [3]. Due to the symmetry
properties of parity (P) and time reversal (T ) of the Hamiltonian (under PT : z ↔ −z�,
B ↔ −B , α ↔ −α), the corresponding wavefunction for Ĥ0(−B) is 	LLL(−B) =
W (N) f ({z�

j}, {∂/∂z�
j }). 	LLL(B) and 	LLL(−B) are the eigenfunctions for L̂(α = 0) as well,

with the eigenvalues N(N − 1)/2ν and −N(N − 1)/2ν (ν is the filling factor), respectively.
Furthermore, f should be an antisymmetric function for electrons.

One can get useful information on the explicit form of f by employing the CS
transformation and the PT symmetry property of the LLL wavefunctions. For our purpose,
we are interested in deriving a general equation for the LLL projection by requiring

a j(α)	LLL = 0. (8)

From equations (3) and (8), we have

2
∂ ln f

∂z�
j

+ α
∂ ln χ�

∂z�
j

= 0. (9)

Note that for f ({z j}, {∂/∂z j }), equation (9) yields a trivial solution α = 0. For
f ({z�

j}, {∂/∂z�
j }), equation (9) is an operator equation and the solution is a functional of χ�. If

we approximate f ({z�
i }, {∂/∂z�

i }) by a function form f ({z�
i }), there exists a simple solution:

f ({z�
j}) = (χ∗)−α/2. (10)

Furthermore, using the constraint that 	LLL(−B) is the eigenfunction of L̂(α) with the
eigenvalue N(N − 1)/2ν, one determines α in terms of the filling factor α = −2/ν.

By putting everything together, we arrive at the LLL wavefunction for fillings of
ν = n/(2 pn + 1):

	LLL(B) =
N∏

i< j

(zi − z j )
2p+ 1

n exp

(
−

N∑

i=1

|zi |2/4l2

)
. (11)

A few remarks are immediately in order. (i) For n = 1, equation (11) coincides with
Laughlin’s wavefunction for ν = 1/(2 p + 1). For n > 1, the wavefunction describes an
incompressible quantum liquid state with filling factor ν = n/(2 pn + 1) (p and n are integers)
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and is not antisymmetric (as required for a fermion state). It has anyon symmetry (characterized
by the statistical parameter n). The LLL anyon wavefunction is expected to serve as a lower
bound for the energy of the electronic system. Equation (11) describes composite anyons in
that the anyons are attached by 2 p vortices. (ii) The transformation employed is a unitary
one, in contrast to that used by Ma and Zhang [7]. As a result, our approach conserves the
density of the system upon transformation. Nevertheless it should be noted that the resulting
wavefunctions are of the same form. The quasiparticle and quasiholes obey fractional statistics
and have fractional charge [7]. Therefore, there exists an asymmetry for the quasiparticle and
quasihole states. The quasiparticle states (ν = n/(2 pn + 1)) correspond to anyon screening
(i.e., the anyon-flux-generated fictitious magnetic field cancels the residual external fields),
while the quasihole states (ν = n/(2 pn − 1)) correspond to anyon anti-screening. (iii) The
average CS-generated magnetic field reverses the external magnetic field. This can be seen to
be in agreement with the CS transformations for CFs (α = 2 p) for the reduction of the effective
magnetic fields for the CFs. For the part associated with the anyons, the coefficient 2/n in the
CS transform can be understood as follows: the 1/n-CS field generates a fictitious magnetic
field that cancels the external magnetic field, while the additional 1/n-CS field reverses the
direction of the external magnetic field with the same magnitude which corresponds to n-
filled Landau bands. It becomes clear that after expansion of the anyon’s wavefunction in
the fermion representation where the average field corresponds to n-filled Landau bands, the
resulting wavefunction after the LLL projection becomes Jain’s CF wavefunction. It is worth
pointing out that the cancellation or the effective reduction of the magnetic field is a dynamical
feature associated with the CS gauge field. (iv) According to the corresponding state theory of
the global phase diagram [12], the incompressible quantum fluid states described by the anyon
wavefunctions correspond to superfluid states. For the FQHE, the transition between different
integer quantum Hall states is predicted to follow a floating-up picture, i.e., only transitions
between adjacent n are allowed. For the floating-up scenario, one of us [13] argued that the
integer quantum Hall transitions correspond to the transition from a superfluid state for anyons
characterized by n (n-anyons) to insulating states of (n ±1)-anyons. This is in agreement with
the hierarchy picture for equation (11).

2. Monte Carlo calculations

It is readily observable that the systems described by the anyon wavefunction can be mapped
to a one-component plasma with inverse temperature (4 p + 2/n) [2]. The system under
consideration consists of N particles moving in a 2D space subject to a strong perpendicular
magnetic field and embedded in a uniform neutralizing background of positive charge. Our goal
is to calculate the thermodynamic limit of the expectation value of the potential energy operator
and other quantities. To do so we perform detailed MC simulations in disc geometry [14] and
extract the thermodynamic estimate of various quantities by extrapolating the finite N results.

In our simulations we adopt the well-known Metropolis algorithm [15]. The expectation
value of any operator is then estimated by averaging its value over numerous configurations.
For each N we routinely perform MC simulations employing several million configurations.
All the results that we report here were obtained after discarding 100 000 ‘equilibration’ MC
steps and using 2 × 106 MC steps for averaging purposes. The thermodynamic estimate of
the correlation energy per particle is obtained by fitting E = 〈V̂ 〉/N with a second-order
polynomial in 1/

√
N by using systems with N = 4, 16, 36, 64, 100, 144 and 196 particles.

In table 1 we show the thermodynamic estimates of the correlation energy per particle
for a number of FQHE states described by the anyon wavefunction. The results are rounded
in the last digit. We compare the energies obtained from the anyon wavefunction with the
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Table 1. Thermodynamic estimates for the correlation energy per particle of various FQHE states
described by the anyon and Jain CF wavefunctions [3]. Energies are in units of e2/ l.

p n ν E ECF

1 1 1/3 −0.4095 −0.4098
2 2/5 −0.4422 −0.4328
3 3/7 −0.4550 −0.4423
4 4/9 −0.4618 −0.4474
5 5/11 −0.4661 −0.4508
∞ 1/2 −0.4844 −0.4653

2 1 1/5 −0.3274 −0.3275
2 2/9 −0.3432 −0.3428
3 3/13 −0.3490 −0.3483
4 4/17 −0.3520 −0.3512
5 5/21 −0.3538 —
∞ 1/4 −0.3615 —

corresponding results of the LLL projected Jain’s CF wavefunction as obtained after MC
simulations in spherical geometry [16].

The energy difference between Jain’s CF and anyon states can be interpreted as an exchange
correction in that the anyon wavefunction does not satisfy the Pauli principle required for
fermions (except for n = 1). As can be seen from table 1, the energy of the anyon state, E ,
serves as a lower bound for the CF’s energy ECF. It is interesting to note that such an exchange
correction, EX, satisfies the relation

EX = ECF − E = (1 − 1/n)
p, (12)

where 
p can be readily extracted from table 1. Our calculations show that 
1 = 0.019e2/ l
and 
2 
 0.001e2/ l.

The dependence on n of the exchange correction is of the same form, |1−1/n|, as Ma and
Zhang used in the perturbative analysis of ideal anyons in a magnetic field [7]. The size of the
exchange correction indicates that the anyon wavefunction captures the essential physics of
the FQHE. The largest correction refers to the case of ν = 1/2, where E is merely 4% lower
than ECF. The effect of exchange correction on the energy is greatly reduced with increase of
p. In fact, for p > 1, the contribution of the exchange correction becomes negligible.

Following the same procedure as described in [14],we have calculated the pair distribution,
g(r). As seen from figure 1, the calculated g(r) shows p (=1, 2) ‘bumps’ for filling factors
of n/(2 pn + 1). This is to be compared with the results for CFs, where more ‘bumps’ (or
‘wiggles’) are observable due to the inherent fermion symmetry of Jain’s CF wavefunction
and the associated Friedel-like oscillations. Moreover, there exist notable differences in the
short distance behaviours of g(r). The short range behaviour of the pair distribution function
obtained from the anyon wavefunction is consistent with g(r) ∝ r 4p+2/n . At ν = 1/2, the
dependence on r4 is to be compared with the g(r) ∝ r2 dependence obtained from the Rezayi–
Read Fermi wavefunction [17].

3. Discussion

We are now in the position to discuss the exchange corrections. To this end, it is instructive
to focus on the limiting case of ν = 1/2. According to the neutral fermion theory [18], at
filling of ν = 1/2, a liquid of ±1/2 charged anyons (neutral fermions) floats on top of a Bose
quantum Hall liquid. Since the Bose quantum Hall liquid is described by equation (11) with
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Figure 1. Pair distribution function for the anyon wavefunction at filling factors ν = 1/3, 2/5, 1/2
and 1/5, 2/9, 1/4 obtained after a MC simulation in disc geometry for N = 196 particles.

n = ∞, the energy for the dipoles (neutral fermions) is nothing but 
1. The neutral fermions
and the Bose quantum Hall fluid are decoupled in that the neutral fermions experience no
magnetic field and their contribution to σxy is 0. The decoupling of the neutral fermions and
the Bose quantum fluid has important consequences for the low energy physics. In general,
the wavefunctions factorize into products and the corresponding anyon excitations and neutral
fermion excitations have different behaviours.

It is tempting to develop a perturbation for the exchange corrections. However, the
‘expansion parameter’, |1 − 1/n|, is not small. Analogously to the case of ν = 1/2, it is
reasonable to view CFs as a combination of anyons and dipole interactions. The CFs and anyons
experience an effective magnetic field corresponding to n-filled Landau bands. The ‘gradient
correction’ to the anyon wavefunction can be identified as a dipole field that experiences no
residual magnetic field. A fluid of dipoles is expected to be compressible [18], and to decouple
from the incompressible quantum fluid described by anyons due to the different symmetry
properties under T . In fact, our results from equation (12) suggest an effect of vortex–charge
separation for the CFs. Naturally, the effect of the dipole field is expected to be proportional
to (1 − 1/n). Further quantitative studies are clearly desirable.

In summary, we introduced and studied the properties of a specific microscopic anyon
wavefunction for the FQHE. Our MC results based on this anyon wavefunction provide
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a quantitative measure of the contributions from the anyon picture of the FQHE, which
was discussed qualitatively by Ma and Zhang [7]. The comparison with Jain’s CF results
reveals interesting exchange effects arising from the approximations involved in the anyon
wavefunction.
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