Pre-Lab #2: Speed of Sound in Air | Name: | Course: | |---|---| | | Date: | | | | | | | | An organ pipe is 2.0-m long. Assume the p Show your calculations to obtain the answer | ipe is cylindrical with one closed and one open end. rs below.) | | . What is the longest wavelength λ for a sta | anding sound wave possible in the pipe? | | Answer: | | | | | | | | | | | | 2. (a) What is the wavelength of the 1 st harr | monic? Answer: | | (b) What is the wavelength of the 2 nd har | monic? Answer: | | | | | | | | | | | 3. If the frequency of the 3 rd harmonic is 290 | 0 Hz, then what is the speed of sound in the pipe? | | Answer: | | ### Pre-Lab #3: Electric Field Mapping | Name: | Course: _ | | |-------|-----------|--| | | | | | | Date: | | 1. The sketch shows cross sections of equipotential surfaces between two charged conductors that are shown in solid black. - (a) What is the potential difference between points B and E? - (b) At which of the labeled points will the electric field have the greatest magnitude? - (c) What is the electric field at point A (magnitude and direction)? - 2. The sketch on the back of this page shows cross sections of two conducting spherical shells. (a = 5.0 cm, b = 0.50 m, and V = 100 V.) - (a) Using dashed curves draw representative equipotentials around and between the spheres. - (b) Using solid curves and arrows draw the electric field lines. - (c) What is the charge on the left sphere? - (d) What is the potential at point P midway between the two spheres? - (e) What is the magnitude and direction of the electric field at point P midway between the two spheres? ## Pre-Lab #4: Ohm's law and Resistivity | Name: | | | Course: | | | |---------------------|----------------------|---|--------------------------------|-------------------------------|--------------------------| | | | | D | Pate: | | | | | | | | | | | | | | | | | The ch | aracteristics of t | ñve wires are given in | n the table. | | | | | Wire | Material | Length | Gauge | | | | A | iron | 2.0 m | #22 | 7 | | į | В | copper | 2.0 m | #22 | | | | C | copper | 2.0 m | #18 | 1 | | •. | D | copper | 1.0 m | #18 | 1 | | | E | iron | 2.0 m | #18 | 7 | | 1.2×1 | 10^{-3} m; and #22 | e of the diameter of the corresponds to a did the value for coppe | ameter of 6.4×10^{-4} | ⁴ m. The resistivi | eter of
ty of iron is | | 1. Of the | five wires, whi | ch one has the smalle | est resistance? | | | | 2. Whice batteries? | | rires carries the sma | llest current when t | hey are connected | d to identical | | 3. What | is the resistance | of wire B ? (Show v | vork.) | | | | 4. Wire | B is connected | l to the terminals of | f a 1.5-V battery. | What magnitude | current flows | through the wire? #### Pre-Lab #5: Resistors in Series and Parallel | Name: | Course: | |-------|---------| | | Date: | Three resistors are placed in a circuit as shown. The potential difference between points **A** and **B** is 30 V. $$\begin{array}{c|c} 60 \Omega \\ \hline & 30 \Omega \end{array}$$ - 1. What is the equivalent resistance between points A and B? - 2. Complete the following table for the potential difference and current across each of the resistors | R (Ω) | ΔV (V) | I (A) | |-------|--------|-------| | 10 | | | | 30 | | | | 60 | | | ### Pre-Lab #6: RC Circuit | Name: | Course: | |--|---| | | Date: | | 1. In a circuit such as the one in Figure 1 (on switch S is thrown to position A at $t = 0$. The characteristic S is thrown to position S at is thrown to position S at S is thrown to position throw thrown thrown | back) with the capacitor initially uncharged, the arge on the capacitor is | | (a) initially zero and finally Cε. (b) constant at a value of Cε. (c) initially Cε and finally zero. (d) always less than Cε. | | | 2. In a circuit such as the one in Figure 1 with thrown to position A at $t = 0$. The current in the | the capacitor initially uncharged, the switch S is circuit is | | (a) initially zero and finally ε/R. (b) constant at a value of ε/R. (c) equal to ε/R. (d) initially ε/R and finally zero. | | | 3. In a circuit such as the one in Figure 2 the sw
then it is opened at $t = 0$. The expression $V = \varepsilon e$ | witch S is first closed to charge the capacitor, and $e^{-t/RC}$ gives the value of | | (a) the voltage on the capacitor but not the voltage(b) the voltage on the voltmeter but not the capa(c) both the voltage on the capacitor and the voltage(d) the charge on the capacitor. | citor. | | 4. If a 5.00 μF capacitor and a 3.50 M Ω resiste constant? (Show work.) | or form a series RC circuit, what is the RC time | | impedence are used in a circuit such as that in Fi | of emf ε = 12.0 V, and a voltmeter of 10.0 M Ω gure 2. The switch S is first closed, and then the timeter 35.0 s after the switch is opened? (Show | Figure 1 Figure 2 #### Pre-Lab #7: Magnetic Fields | Name: | Course: | |---|---| | | Date: | | | | | 1. Draw a good representation of the magne the back of this page. | etic field lines produced by the bar magnet shown or | | 2. Draw a good representation of the magnet back of this page. | tic field lines produced by the solenoid shown on the | | The magnitude of the magnetic field along th | ne axis of an N-turn coil (Helmholtz coil) is | | $B = -\frac{1}{2}$ | $\frac{\mu_o NIR^2}{2(x^2+R^2)^{3/2}}$ | 3. What is the magnitude of the magnetic field at the center of a 100-turn Helmholtz coil of 4. What is the magnitude of the magnetic field produced by that Helmholtz coil at a point on the radius 5.0 cm carrying an 0.5-A current? solenoid's axis 3.0 m from its center? S Ν