Pre-Lab #2: Vectors on a Force Table

Name:	Course:
	Date:
Answer the following questions.	
1. Scalars are physical quantities tha	t can be completely specified by their
2. A vector quantity is one that has b	ooth and
3. Classify each of the following phy	vsical quantities as vectors or scalars:
(a) Volume	- ·
(b) Velocity	-
(c) Force	-
(d) Density	
(e) Speed	
(f) Acceleration	
magnitude 40.0 N each acting in	or of magnitude 30.0 N and $\mathbf{F_2}$ stands for a force vector of the directions shown in the Figure below, what are the ant vector obtained by the addition of these two vectors?
Magnitude = <u>N</u>	Direction (relative to x axis) = $\underline{\text{degrees}}$
F ₂	

Pre-Lab #3: Free-Fall and Projectile Motion

Name:				C	course:			
				Ι)ate: _			
The carts pictured 1.00 s apart. Circle	below are all	l moving in a	a straight i	line to the I) to the qu	right. lestions	The p	oicture v.	s were take
	(a) 🕞 🕞	d 6d 6	- d 6	-				
	(b) 🕣	6-d 6-d	6-0	9-0	5-0			
	(c) 🚭	6-0	6 d 1	-	6 d			
	(d) 🕞 🖯	9 6 6 6 6	<u>ag</u> <u>b</u> a	5 d	6 d			
1. These pictures sl	now a cart th	at is moving	at constan	t velocity.	(a)	(b)	(c)	(d)
2. These pictures sl	now a cart th	at has positiv	e accelera	tion.	(a)	(b)	(c)	(d)
3. These pictures acceleration.	show a car	t that travel	s at a co	onstant vel	ocity a	nd th	nen ha	is a positive (d)
4. These pictures sl	now a cart th	at has negativ	ve accelera	ation.	(a)	(b)	(c)	(d)
5. A projectile is fin (a) How far does	it go in the h	orizontal dire	ection in 0).550 s?		ocity (of v =	9.00 m/s.
(b) How far does	the projection	e ian in the v	eriicai dire	ection in U	.330 S?	-		Was a sum.
6. A projectile is land falls 0.450 m vertical				. It travel	s 2.050	m ho	orizont	tally while i
(a) How long is the	ne projectile	in the air?				_		
(b) What was the	original velo	ncity of the m	rojectile?					

Pre-Lab #4: Static and Kinetic Friction

Name:	Course:
	Date:
Answer the following questions. (Assume	$e g = 9.80 \text{ m/s}^2.$
	sts on a horizontal plane, and the coefficient of static hat is the maximum possible static frictional force that
2. What is the actual static frictional for acts horizontally on the block?	ce that acts on the block if an external force of 25.0 N
	plane. A force of 10.0 N applied horizontally causes the velocity. What is the coefficient of kinetic friction
	on, what is generally assumed about the dependence of contact between the two surfaces?
angle at which the mass can remain stational stations at the state of	plane inclined at an angle θ . Let θ_s be the maximum c on the plane. Let θ_k be the angle at which the block eed. Show that the coefficient of static friction is etic friction is $\mu_k = \tan \theta_k$. (Provide a force diagram.)

Pre-Lab #5: Centripetal Force

Name:	Course:
	Date:
Answer the following questions.	
1. If a particle moves in a circle of radius R at constant speed	d ν, its acceleration is
(a) directed toward the center of the circle	
(b) equal in magnitude to v^2/R	
(c) because the direction of the velocity vector changes co.	ntinuously
(d) all of the above are true.	
2. A particle of mass 0.350 kg moves in a circle of radius & 6.70 m/s. What is the magnitude and direction of the centrip	
Answer:	
3. A 0.500-kg particle moves in a circle of radius $R = 0.15$ 20 complete revolutions is 31.7 s.	0 m at constant speed. The time for
(a) What is the period T of the motion?	Answer:
(b) What is the frequency f of the circular motion?	Answer:
(c) What is the speed v of the particle?	Answer:
(d) What is the magnitude of the centripetal acceleration?	Answer:

Pre-Lab #6: Hooke's Law for a Spring

Name:	Course:
	Date:
Answer the following questions. (Assume $g = \frac{1}{2}$	= 9.80 m/s ² .)
	ant $k = 8.75$ N/m is hung vertically. If the spring is existion, what is the force that the spring exerts?
2. A 400-g mass is suspended from this sp spring due to the weight of the mass?	oring. What is the displacement of the end of the
3. Suppose this mass is allowed to oscillate o	on the spring. What is the period of the oscillation?
4. What is the frequency of the oscillation?	
5. A 0.100-kg mass suspended vertically on What is the spring constant of the spring?	a spring takes 10.94 s to undergo 20 oscillations.

Pre-Lab #7: Simple Harmonic Motion – The Simple Pendulum

Name:	Course:
	Date:
(Use $g = 9.80 \text{ m/s}^2$.)	
1. What is the requirement for a force to produce s	simple harmonic motion?
Answer:	
2. A simple pendulum of length $L = 0.800$ m has its motion? Answer:	a mass $M = 0.250$ kg. What is the period T of
3. The motion of a simple pendulum is described l	by the equation
$\theta = 20 \mathrm{co}$	s(10t)
where θ is in degrees and t is in seconds.	**
(a) What is the amplitude of the motion?	
Answer:	
(b) What is the period of the motion?	
Answer:	

Pre-Lab #8: Conservation of Momentum

Name:	
	Date:
m_1 m_2	+y 0 0 0 0 0 0 0 0 0 0
Before	After
Referring to the figure above, answer the follow	owing questions:
1. A particle of mass $m_1 = 1.000$ kg moves at at rest.	speed $v_1 = 0.500$ m/s. It collides with a particle of mass $m_2 = 2.000$ kg
(a) What is the total momentum of the syst	em in the x direction before the collision?
Answer:	
(b) What is the total momentum of the syst	tem in the y direction before the collision?
Answer:	
$\alpha = 30.0^{\circ}$ with respect to	v_3 at an angle $\theta_3 = 315.0^\circ$ with respect to the x axis, and m_2 moves with o the x axis. Write an expression for the total momentum of the system the total momentum in the y direction after the collision in terms of the
x momentum:	_
y momentum:	
the expression for the v component in Questi	nt in Question 2 to the value of the x component in Question 1. Equate on 2 to the value of the y component in Question 1. In the resulting two ns. Solve the two equations for v_3 and v_4 . Show work below.
$v_3 = $ $v_4 = $	

Pre-Lab#9: Torque, Equilibrium, and Center of Gravity

Name: _____ Course: ____

Date:

1. For the meter stick shown above, the force $F_1 = 10.0$ N acts at 10.0 cm. What is the magnitude of the torque due to F1 about an axis through point A perpendicular to the page? Is the torque clockwise, or is it counterclockwise?

2. In the figure the force $F_2 = 15.0$ N acts at the point 70.0 cm. What is the magnitude of the torque due to F_2 about an axis through point B and perpendicular to the page? Is the torque clockwise, or is it counterclockwise?

3. In the figure above, if the mass $m_1 = 0.100$ kg acts at 20.0 cm, what is the value of mass m_2 that must be placed at the position 70.0 cm shown to put the system in equilibrium? Assume the meter stick is uniform and symmetric. Show your work.

Pre-Lab #10: Rotational Inertia

Name:	Course:
	Date:
(Show your work in the space provided. earlier part, if your approach is correct, then	Even if you substitute an incorrect answer from an credit will be given.)
string of 6.00 N. The axle has a radius of 0.	around an axle on a wheel produces a tension in the .050 m. The wheel has a mass of 4.00 kg, a radius of is the torque produced by the tension on the axle?
Answer:	
2. Regarding the shape of the wheel as that inertia of the wheel? Answer:	t of a uniform, solid cylinder, what is the moment of
3. What is the angular acceleration α of the Answer:	system?
4. With what linear acceleration a does the	mass on the end of the string fall?
Answer:	

Pre-Lab #11: Standing Waves on a String

Name:	Course:
	Date:
(Use $g = 9.80 \text{ m/s}^2$.)	
A 2.0-m length of string with a mass density of at 120 Hz. The tension is varied to obtain star	of 2.95×10^{-4} kg/m is fixed at both ends and driven adding waves (resonances) on the string.
1. What is the longest wavelength λ for a stan	ding wave possible on the string?
Answer:	- .
	a otha
2. The tension on the string is varies to obtain	the 4" harmonic.
(a) What is the wavelength of this standing w	ave?
Answer:	
(b) What is the wave speed?	
Answer:	
3. What should the tension be to obtain the 3 rd	^d harmonic?
Answer:	