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Since 1999, experiments have shown a plethora of surprising results in the low-
temperature magnetotransport in intermediate regions between quantum Hall (QH)
plateaus: the extreme anisotropies observed for half-filling, or the re-entrant integer
QH effects at quarter filling of high Landau levels (LL); or even an apparent melting
of a Wigner Crystal (WC) at filling factor ν = 1/7 of the lowest LL. A large body of
seemingly distinct experimental evidence has been successfully interpreted in terms of
liquid crystalline phases in the two-dimensional electron system (2DES). In this paper,
we present a review of the physics of liquid crystalline states for strongly correlated
two-dimensional electronic systems in the QH regime. We describe a semi-quantitative
theory for the formation of QH smectics (stripes), their zero-temperature melting onto
nematic phases and ultimate anisotropic-isotropic transition via the Kosterlitz–Thouless
(KT) mechanism. We also describe theories for QH-like states with various liquid crys-
talline orders and their excitation spectrum. We argue that resulting picture of liquid
crystalline states in partially filled LL-s is a valuable starting point to understand the
present experimental findings, and to suggest new experiments that will lead to further
elucidation of this intriguing system.

Keywords: Two-dimensional electronic system; quantum Hall effects; liquid crystals;
topological phase transitions.

1. Introduction

Strongly correlated two-dimensional electron systems (2DES) subject to a high

perpendicular magnetic field have been providing various fascinating phenomena

for more than 25 years. In particular, the observation of the integer quantum Hall

(QH) effect (IQHE)1 and of the fractional QH effect (FQHE)2,3 are some of the most

remarkable phenomena of the 20th century, rivaling that of superfluidity and su-

perconductivity in their macroscopic manifestation of quantum mechanical effects.

This has caused a tremendous impetus on the development of many novel ideas

in many-body physics,4,5 like the existence of fractionally charged quasiparticles,3
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topological quantum numbers,6 chiral Luttinger liquids,7,8 composite particles,a,9

etc. One of the reasons that 2DES keep supplying novel and exciting results is the

improved quality of the samples with mobilities increasing roughly exponentially

with time, thus allowing the emergence of new, subtler effects due to electronic cor-

relations (which are enhanced because of the reduced dimensionality, and because

the strong perpendicular magnetic field quenches the kinetic energy into Landau

levels–LL).

There are notable experimental similarities between the IQHE and FQHE, how-

ever, the physical interpretation is quite different: the former is due essentially to

“one-body” physics (a mere, albeit non-trivial, consequence of LL quantization and

localization by disorder4,5); the latter stands out as pure quantum many-body phe-

nomena which results from the condensation of strongly correlated electrons into

an incompressible isotropic liquid state formed at special electronic densities of the

2DES (Jain’s composite fermion theory — CF9 (see also footnote a), however, gives

a unified understanding of both phenomena).

In the lowest Landau level (LLL) things are relatively well understood even

though the electronic phase diagram for filling factors 0 < ν ≤ 1 where all elec-

trons are fully spin polarized is quite intricate with various competing phases. It

is believed that for filling factors ν smaller than a critical value νc ≈ 6.5 Wigner

crystallization (WC) occurs10–14 (note, however, that for ν = 1/7 < νc, melting

of the WC into a FQHE-like state appears to have been observed,15 this will be

discussed in later sections), while condensation of electrons into an incompress-

ible isotropic FQHE liquid state occurs at filling factors, ν = 1/3, 2/5, 3/7, . . . and

ν = 1/5, 2/9, . . . The principal sequences of the FQHE liquid states who origi-

nate from ν = 1/3 and 1/5, namely filling factors of the form: ν = p/(2mp ± 1),

where p,m are integers, is thoroughly understood in terms of Laughlin’s ingenious

wavefunction3 and the elegant composite fermion (CF) theory9 (see also footnote a).

A special place is reserved for the half filled state, ν = 1/2 which is believed to be

a compressible isotropic Fermi liquid state16–18 different from the other incom-

pressible FQHE liquid states of the originating sequence. The Halperin–Lee–Read

(HLR) theory19 shed light on the Fermi-liquid nature of the LLL ν = 1/2 state

(Landau level index L = 0) which is now believed to be a compressible CF Fermi

liquid state with a well-defined isotropic Fermi surface. Differently from other LLL

odd denominator filled states, the LLL half-filled state does not show the typical

FQHE features and typically behaves as a metallic state. Similar (but more com-

plex) behavior is observed for 1 < ν ≤ 2, i.e. for the upper spin sub-band of the

LLL.

The situation is dramatically different for higher filling factors, 2 < ν ≤ 4 (elec-

trons in the first excited LL with index L = 1) and 4 < ν ≤ 6 (electrons in the

aFor a review, see J. Jain, The composite fermion: a quantum particle and its quantum fluids,
Physics Today, Apr/2000, p. 39; and/or Composite Fermions, ed. O. Heinonen (World Scientific,
New York, 1998).
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second excited LL with index L = 2). For L = 1, the FQHE is almost absent

with the exception of the exotic ν = 5/2 state which shows a quantized (though

weak) Hall conductance observed along with a strong reduction of the longitudinal

conductance20,21 which indicates a possible pairing instability of the CF-s.22–28 A

discussion of the ν = 5/2 state which is the only known even-denominator FQHE

state is a complex topic by itself and, along with the properties of the ν = 3/2 and

7/2 states (half filling of the upper spin sub-band) will not be discussed here. Cur-

rent experimental evidence indicates that for L = 1 electronic states are isotropic,

and thus outside the scope of this paper. Closer to the topic of this paper, however,

is what is seen in higher LL-s (L ≥ 2), where early theoretical approaches had sug-

gested the presence of intriguing charge density waves (CDW).29–31 Remarkably,

these basic approaches were confirmed, in part, by some of the most remarkable

experimental findings of the recent years: the discovery of extreme magnetotrans-

port anisotropy in the longitudinal resistivities around half-filled upper LL-s with

indices L ≥ 2 corresponding to filling factors ν = 9/2, 11/2, etc.32–36 To complete

the picture at high LL-s, additional phases have been observed, such as the re-

entrant IQHE states at close to quarter-filling of high LL-s, and other insulating

phases.37–39

In this paper we will discuss some aspects of the theoretical understanding that

has emerged over the past few years towards understanding these complex and

seemingly diverse phenomena. In Sec. 2 we will expand on the experimental evi-

dence available that support a liquid-crystalline picture. Section 3 describes early

theoretical approaches based on CDW-s, which generally suffered from overestimat-

ing the formation energy of such structures. Section 4 discusses how to reconcile the

early theories with experiments, involving excitations and topological defects of the

C’S-s, and ultimately producing a semi-quantitative agreement with experimental

values of the anisotropic-isotropic transition temperatures. In Sec. 5, broken rota-

tional symmetry (BRS) states are proposed to generate various anisotropic phases

at the quantum level. A description of the collective excitations of the BRS states

is then proposed in Sec. 6, based on the single mode approximation (SMA). Finally,

Sec. 7 presents a summary of this paper, highlighting the accomplishments of the

liquid crystalline perspective, and its current limitations.

2. Experimental Evidence

2.1. Anisotropic phases

Recent transport experiments in very high mobility (µ ∼ 107 m/Vs)

GaAs/AlxGa1−xAs heterostructures32–36 established a qualitative difference be-

tween the half filled states at higher Landau levels with index L = 2, 3, . . . and

those in the LLL (L = 0) and first excited Landau level (L = 1). These exper-

iments revealed the existence of regimes of magnetic fields which correspond to

filling factors around ν = 9/2, 11/2, 13/2, etc. in which the 2DES exhibits charac-

teristics of a compressible liquid with an unexpectedly large temperature-dependent
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anisotropy in its magnetotransport properties. The effect is strongest in the sec-

ond excited LL with index L = 2 around filling factors ν = 9/2 and ν = 11/2

but persist up to about L = 6. The attenuation of the anisotropy with increas-

ing filling factor (as L increases) is generally monotonic, but contains a notice-

able oscillatory dependence upon the spin sub-level. Such highly anisotropic states

with strong anisotropic longitudinal resistance develop at a temperature only be-

low about 150 mK near half-filling of highly excited LL-s. Even though the effect

is more pronounced at half-filling of higher LL-s it remains substantial in a range

of filling factors, ∆ν ≈ 0.2 around this state.

For current flow in one direction, the longitudinal resistance exhibits a strong

maximum while in the transverse direction a minimum occurs. In all high-mobility

GaAs samples the “easy” transport direction is roughly along 〈110〉 and the “hard”

transport direction is along 〈11̄0〉 where 〈110〉 and 〈11̄0〉 are the natural cleavage

directions in GaAs. When the current is flown along the 〈11̄0〉 (hard axis) the

longitudinal resistance in several orders of magnitude larger than the longitudinal

resistance measured for the case of a current flown along 〈11̄0〉 direction (easy

axis).b Equally striking is the fact that no comparable anisotropy is seen for the

L = 1 Landau level (filling factors ν = 5/2 or ν = 7/2) and the L = 0 Landau level.

The main experimental findings are as follows:

(i) The magnetotransport anomalies are observed in clean high mobility 2DES in

GaAs/AlGaAs samples, but no anisotropy has been reported in lower mobility

samples which show instead conventional phase transitions between quantum

Hall states.

(ii) The effects abruptly begin only below about ca. 150 mK, and are strongest

in the second excited Landau level (L = 2), but persist up to LL-s as high as

L = 6.

(iii) No comparable anisotropy is apparent in the LLL (L = 0), nor the the first

excited Landau level (L = 1).

(iv) As the temperature is lowered below ca. 50 mK, the longitudinal resistance

grows very rapidly, while the transverse (Hall) resistance becomes smaller.

The ratio of the two approaches a constant between two and three orders of

magnitude (see also footnote b).

(v) The reported anisotropy is apparently confined to the centers of the LL-s

around the half filled state.

(vi) For no current configuration are any plateaus seen in the Hall resistance at

half filling of the Landau levels with index L = 2, 3, . . .

(vii) The orientation of anisotropy is fixed within the sample (but can be reoriented

by the application of an in-plane magnetic field).

(viii) The onset of anisotropy is keyed to the filling factor and not the magnetic

field itself.

bThe effect is exaggerated by the current distribution geometry; the intrinsic anisotropy is smaller:
ρxx/ρyy ∼ 20. See S. Simon, Phys. Rev. Lett. 83, 4223 (1999).
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(ix) The anisotropy gradually disappears in the semiclassical regime at very low

magnetic fields.

2.2. Other possible liquid crystalline phases

In the realms of FQHE, one of the oldest questions concerns the transition point

between the series of FQHE states and the Wigner crystal (WC).3–5,10–14,40 Ini-

tial estimations by Laughlin predicted the transition at νc ' 1/10,3 with subse-

quent improvements leading to an estimate of νc ' 1/6.510 or even at higher filling

factors.4,5,14 The structure of the WC corresponds to a hexagonal lattice.

Recently, for very high mobility GaAs/AlxGa1−xAs heterostructures, Pan

et al.15 have discovered evidence that for a window of temperatures above a filling-

factor-specific temperature (e.g. ca. 135 mK for ν = 1/7) an apparent fractional

QHE (FQHE) is observed, as evidenced by a dip in the longitudinal resistance for

various very low filling factors such as ν = 2/11, 3/17, 3/19, 2/13, 1/7, 2/15, 2/17

and 1/9, corresponding to the hierarchical sequences of composite fermion (CF)

states that originate from the ν = 1/6 and ν = 1/8 “Fermi seas” (see also foot-

note a) (and which correspond to attaching six and eight vortices to each electron,

respectively). These recent experimental findings of an apparent FQHE state at fi-

nite temperatures corroborate earlier measurements showing a re-entrant behavior

at ν = 1/7 and 2/9,41,42 although these features disappear as T → 0. The general

consensus is that the “true” ground state is, indeed, the WC and that the obser-

vations correspond of melting of such WC toward a correlated liquid state such as

the FQHE’s.

This explanation has shortcomings, however. Since the WC is the lowest energy

state and has a gapless excitation spectrum (for neutral excitations), it is difficult

to see how the free energy A = E − TS for the Laughlin state can be lower at

finite temperatures, especially because the latter is gaped and hence should have

lower entropy S, at least at very low temperatures. More refined arguments, which

consider the entropy of the Laughlin state at temperatures high enough that there

is a significant number of excitations across the gap, have shown that the FQHE

state entropy may raise rapidly,43,44 which could explain the possibility of this WC

to FQHE melting transition. The calculated transition temperature for the ν = 1/7

state should be 400–600 mK,43,44 considerably higher than the experimental result

of ∼135 mK15 (the difference is not necessarily unsatisfactory given the nature of

the approximations needed for the calculation).

3. Early Theoretical Work: Charge Density Waves

Although the fundamental origin of the anisotropy is still unknown, a unidirec-

tional charge density wave (UCDW) is a plausible candidate for the anisotropic

state. Earlier theoretical work29–31 had shown that a 2DES can have a UCDW

ground state in weak magnetic fields (for nearly half-filling of high LL-s, see Fig. 1).

This theoretical work was based on the Hartree–Fock (HF) approximation and
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Fig. 1. Panel A: Basic phase diagram for a partially-filled LL. Note the presence of stripped
and bubble phases. The stripes are assumed to be at the core of the anisotropies observed in
magnetotransport. Panel B: An improvement over the static stripes model: vibrations (phonons)
and topological defects (dislocations, disclinations) reduce the stripe order to that of a ne-

matic, eventually rendering the system isotropic via the Kosterlitz–Thouless disclination unbinding
mechanism.

the main conclusion is that electrons in the partially occupied L-th Landau level

form domains (stripes) with filling factors equal to 1 and 0 that alternate with

a spatial period of the order of the cyclotron radius. A UCDW corresponds to a

state with broken rotational symmetry and density modulation therefore it can

be viewed as a quantum Hall smectic (QHS) state. For instance, at filling fac-

tor ν = 9/2, which corresponds to half filling of the lower spin branch of the

L = 2 Landau level, the UCDW would consist of filled stripes alternated by

empty ones. The HF-based UCDW theory implies that stripes should form at

a temperature in the order of few Kelvins (see Fig. 2).29–31,45–47 Such a high

critical temperature contrasts with the experimental observation that anisotropy

only sets in at much lower temperatures of the order of 100–150 mK.32–36 Even

though factors not included in the HF approximation of the UCDW theory may

account for some of the discrepancies with the experiment, other scenarios are

plausible.

An alternative approach that would be consistent with the observed experi-

mental anisotropy would view the onset of such anisotropy as signature of a phase

transition from an isotropic to an anisotropic phase. Fradkin and Kivelson45,46

suggested that the appearance of the anisotropy reflects the orientational order-

ing of local regions having a pre-existing order, in analogy with what happens

in an isotropic-to-nematic liquid transition. The onset of anisotropy is therefore

viewed as a transition to a quantum Hall nematic (QHN) state, rather than the

first signal of the creation of a UCDW modulation. They further argued that the

inclusion of quantum and thermal fluctuations above the HF UCDW state leads to

a variety of electronic crystalline states including a QHN phase which is stable at

temperatures T > 0. Monte-Carlo (MC) simulation results48 based on a model of

a classical nematic in a symmetry breaking field appear to support the view that
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Fig. 2. Dependence of the average energy per electron state EUCDW for various filling factors
corresponding to anisotropic states. The calculations correspond to an electron density ne =
2.67 × 1011 cm−2, and a 2DES thickness zrms = 58.3 Å.

anisotropic transport occurs when the 2DES is in a QHN phase (at least at finite

temperaturec).

Both smectic and nematic liquid crystalline states are natural candidates to

explain the magnetotransport anisotropy observed in the experiments because

both states break the rotational symmetry. However, as pointed out by Toner and

Nelson,49 the smectic always melts at any nonzero temperature, therefore, at least

at finite temperatures, the nematic phase seems a slightly more plausible choice. On

these grounds, one can interpret the transition to a nematic phase as a Kosterlitz-

Thouless (KT) dislocation unbinding transition.47,50–53 This idea will be covered in

more detail in the next section. Alternatively, it is possible to formulate a “quantum

Hall nematic” theory from scratch, without the need of the intermediate smectic

phase. The latter approach will be further discussed in Sec. 5.

4. Smectics, Nematics and the Kosterlitz–Thouless Transition

4.1. Hartree–Fock approximation for the CDW state

To study the energetics of a CDW in the 2DES we follow the strategy developed

by other authors,54–56 and use the Hartree–Fock (HF) approximation, which cor-

responds to the assumption that the electronic state can be described as a Slater

determinant of single-electron states. In the Landau gauge, A(r) = (0, Bx, 0),

ψγσnx0
(r) =

ζγ(z)eix0y/l2bHn(x−x0

lb
)e−(x−x0)

2/2l2b

π1/4(2nn!Ly)1/2
, (1)

cAt zero temperature, the existence of an ordered smectic phase is still unsettled. See A. H.
MacDonald and M. P. A. Fisher, Phys. Rev. B 61, 5724 (2000); H. Yi, H. A. Fertig and R. Côté,
Phys. Rev. Lett. 85, 4156 (2000).
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where γ, σ, n and x0 indicate the electric sub-band index (due to the confinement

in the z direction), spin index, LL index, and guiding center; lb = (~/eB)1/2 is

the magnetic length, Ly is the length of the system in the y direction, and Hn

are Hermite polynomials. Since the γ-splitting is very large, in what follows we

consider only states with γ = 0: the system is effectively two-dimensional. We

use these eigenstates as the basis for our calculations. In this basis the Coulomb

interaction is modified by the presence of “structure factors” due to the density

distribution:

Mn1,n2

x1,x2
(q) =

∫

d3xeiq·rψ∗
0σn1x1

(r)ψ0σn2x2
(r) . (2)

These structure factors vanish for a discrete set of wavevectors thus eliminating the

Coulomb repulsion for these wavevectors and facilitating the formation of a unidi-

rectional CDW.47 Since the anisotropic states occur for moderately weak magnetic

fields where the level splitting between LL-s can be comparable to the interaction

energies, we need to consider the polarizability of electrons in the lower (completely

filled) LL-s, which can be computed in a straightforward way by means of the ran-

dom phase approximation (RPA).47,54–57 The reduction in the interaction strength

allows for a great simplification: we only need to consider states within the valence

LL, and in the absence of LL mixing, the state of the system is uniquely specified

by the particle density function.54–56,58 It is easy to see then that the energy of

the system is a quadratic form in the density. In reciprocal space the energy per

electron, relative to the uniform density case, can be written as47

E =
1

2ν∗

∑

j

U(Gj)|∆(Gj)|2 , (3)

where ∆(Gj) is the Fourier coefficient of the occupation number at the reciprocal

lattice vector Gj and the Coulomb kernel is U(q) = H(q) − X(q), where H and

X are the usual direct and exchange terms. The direct (repulsive) term dominates

over small wavevectors (large distances) whereas the exchange (generally attractive)

term dominates the large q region.

In the UCDW state, the occupation number of the valence LL alternates between

0 and 1 (see Fig. 3 and note that the actual electron density, ρ, has a considerably

less dramatic oscillation due to the comparable sizes of the width of the wavefunc-

tions and period of the UCDW), thus we have Gj = exG1j with j an integer,

and47

∆(Gj) =
sin(ν∗πj)

πj
, (4)

where G1 = 2π/a, with a the period of the UCDW. Inserting this into Eq. (3)

we find Eucdw(G1), the average energy per electron in the UCDW (see Fig. 2 and

Table 1). The optimal UCDW corresponds to the minimum Eucdw, and is observed

at a ' Rc ' 2.8lb
√

2L+ 1).29–31 In the optimal UCDW each electron gains one to

a few degrees (see Table 1). Since the anisotropic-isotropic transition is observed at
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Fig. 3. Unidirectional CDW-s at the optimal period (which minimizes Eucdw, Fig. 2). Note that
while the occupation number, n, oscillates as a “square wave” between 0 and 1, the actual electron
density, ρ, has only a modest oscillation amplitude (for high L-s) due to the comparable sizes of
the cyclotron radius, Rc, and the period of the UCDW, a.

Table 1. UCDW: Optimal wavevector G1, period a, energy gain per electron Eucdw and elastic
constants B and K. The calculations were performed for the realization of Refs. 32–35.

ν B(T) lb (Å) G1lb a (Å) Eucdw (K) B(µK/Å2) K(mK)

9/2 2.46 164 0.983 1048 −3.603 25.5 189

11/2 2.02 181 0.978 1163 −2.830 15.7 144

13/2 1.70 197 0.842 1470 −2.234 13.0 192

15/2 1.48 211 0.839 1580 −1.864 9.07 158

17/2 1.30 225 0.746 1895 −1.549 7.58 196

19/2 1.16 239 0.744 2018 −1.332 5.66 167

temperatures much smaller than this (ca. 100–150 mK), it should be clear that the

observed transition cannot be related to the formation of the stripes, but rather, as

we shall see, to the unbinding of topological defects in the existing stripes, as early

suggested by Fradkin and Kivelson.45–47

4.2. Low-energy excitations of the UCDW

As we have seen above, the formation of the stripes is energetically favorable due

to the competition between direct and exchange terms. Therefore, it is evident that

the stripes should be formed at temperatures comparable to these energy gains (a

few K). The presence of such stripes would clearly have profound effects on the

magnetotransport and result in large anisotropies. However, these anisotropies are
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Fig. 4. Low energy perturbations of the UCDW. Top: The longitudinal modulation. Bottom:
The transverse modulation. On each panel, the right-hand side shows the Bragg peaks of ∆(G)
in reciprocal space. G1 is the wavevector of the UCDW, and qx, qy are the wavevectors of the
modulation. See Eqs. (6)–(9).

not seen until the temperature is an order of magnitude smaller than the energy

gained in the stripe formation. We are thus compelled to investigate the properties

of such stripes at low temperatures, in the hope that it is not their formation,

but rather the thermodynamics of the different configuration of pre-existent stripes

which is responsible for the observed anisotropic-isotropic transition.

To study this behavior, we consider the low energy states which correspond to

long wavelength fluctuations of the UCDW (care must be taken that the modu-

lations of the stripes do not accumulate charge over large distances, which would

greatly increase the Coulomb energy of the system). Such modulations can be, in

general, described by a distortion of the UCDW stripe edges of the form47

u(x, y) = α cos(qxx) cos(qyy) , (5)

where α, q are the amplitude and wavevector of the modulation. Figure 4 illustrates

longitudinal (qy = 0) and transverse (qx = 0) modulations. These modulations

increase the energy of the system by adding “Bragg peaks” to ∆(G) in regions

other than the minimum of the Coulomb interaction U(G) [See Eq. (4)].

For a perturbation of the form above [Eq. (5)], the energy gain per unit area

can be readily calculated to O[α2]. In the long-wavelength limit, keeping the lowest

order (in q) non-trivial terms we find

∆E =
α2

8
[Bq2x +Kq4y] , (6)
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with the elastic coefficients given by

B =
ν∗

2πl2b

G2
1∂

2Eucdw

∂G2
1

, (7)

and

K =
1

16π3l2b

∞
∑

j=−∞

sin2(πν∗j)

j2

[

U ′′(G1j) −
U ′(G1j)

G1j

]

. (8)

It is easy to see from energetics above [Eq. (6)] that the low-energy perturbations

of a UCDW correspond one-to-one to those of a smectic liquid crystal:49

Esm =
1

2

∫

d2r[B(∂xu)
2 +K(∂2

yu)
2] . (9)

Results for the elastic moduli B and K are presented in Table 1 for parameters

relevant to the sample used in Refs. 32–35. [Possible higher order elastic terms in Eq.

(9) are not expected to be relevant since they only become large for momenta near

the edge of the Brillouin zone, where the validity of the elastic theory is doubtful.47]

The energy functional for a smectic [Eq. (9)] has been extensively studied. We

follow closely the formulation of Toner and Nelson.49 Since the dimensionality of

the system (d = 2) is one below the lower critical dimension for layered materials,

phonon fluctuations readily destroy positional order for T > 0 (the Landau–Peierls

argument), while preserving order in the layer orientation. However, this argument

omits dislocations, which have finite energy; their energy can be estimated as47

ED =
Ba2

4π
[
√

2qcλ+ 1 − 1] , (10)

where λ2 = K/B and qc ∼ π/a is a large momentum cut-off. Therefore, for T > 0

we expect a density of dislocations given by nD ≈ a−2e−ED/kBT . At distances

larger than ξD = n
−1/2
D , and as long as ED 6� kBT , dislocations can be treated in

a Debye–Hückel approximation. Then, to lowest order in q2
x and q2y, the correlation

function for the layer normal angle θ = −∂yu can be written as49

(〈θ̃(q)θ̃(−q)〉 =
kBT

2EDq2x +Kq2y
, (11)

which is the correlation function of a two-dimensional nematic, with a free energy

Fnm =
1

2

∫

d2r[K1(∇ · n)2 +K3[n × (∇× n)]2] , (12)

where n = (cos θ, sin θ) is the director field, and the Frank constants are given

by K1 = K and K3 = 2ED. Orientational correlations in the director n(r) should

decay algebraically at distances much larger than ξD. Table 2 summarizes the values

of K1 and K3. The values of these elastic constants are determined at distances

comparable to ξD (∼10 a at T ∼ 100 mK).

At sufficiently long wavelengths, Nelson and Pelcovits,59 using a momentum-

shell renormalization approach, have shown that deviations from the one-Frank
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Table 2. Frank elastic constants K1 and K3, renormalized elas-

tic constant K and KT disclination unbinding temperature cal-
culated for the experimental realization of Refs. 32–35. Note the
characteristic oscillations with the spin index.

ν σ K1 (mK) K3 (mK) K (mK) TKT (mK)

9/2 ↑ 189 1030 610 206

11/2 ↓ 144 783 463 156

13/2 ↑ 192 1041 616 208

15/2 ↓ 158 848 503 170

17/2 ↑ 196 1034 615 208

19/2 ↓ 167 875 521 176

constant approximations K1 = K3 are irrelevant, and the system is equivalent to a

two-dimensional XY model:

Fxy =
1

2
K(T )

∫

d2r(∇θ)2 , (13)

with K → [K1(ξD) +K3(ξD)]/2 at very large distances. For our values of K1 and

K3, at the characteristic temperatures of the experiments, convergence is achieved

at distances around 20–100 ξD. We then expect unbinding of disclination pairs at

the KT temperature:50–53

kBTKT =
π

8
K(TKT ) , (14)

where the π/8 comes instead of the more common π/2 for vortices since each

disclination winds up the angle by π rather than 2π. In general,K(TKT ) corresponds

to the large-distance elastic constant (reduced by disclination pairs) to the bare

elastic constant at small distances K(0) by means of the KT RG formulas.50–53

In practice, the polarization of the “elastic medium” reduces the magnitude of the

elastic constant so that kBTKT ' 0.86(π/8)K(T = 0).47

Table 2 presents the resulting estimates for the disclination unbinding transition

temperatures for half-filled LL-s. Although these can only be considered estimates

due to the approximations used, they are in qualitative agreement with the temper-

atures at which the anisotropies are seen to vanish.32–35 For comparison, Fradkin

et al.48 find TKT ' 65 mK with significant rounding by 5% intrinsic anisotropy for

ν = 9/2 by fitting the results of a Monte-Carlo simulation of an XY model to the

resistivity data of Ref. 32–35. We also see the characteristic spin oscillation of the

transition parameters.32–35

5. Broken Rotational Symmetry States at the Quantum Level

Although the quantum Hall smectic/nematic theory based on CDW-s and the

Hartree–Fock approximation presented earlier is very appealing, an orientationally

ordered QHN liquid state is sufficient in order to account for the observed trans-

port anisotropies, since a nematic state would break rotational symmetry while
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preserving translational symmetry. There are different ways to build nematic liquid

crystalline states. One may consider first a smectic liquid state where both the ro-

tational and translational symmetries are spontaneously broken and then assume

that through the Landau–Peierls mechanism (or even through dislocation unbind-

ing) the smectic state melts into a nematic liquid crystalline state with broken

rotational symmetry, but otherwise with restored translational invariance. In this

approach the QHN state can be visualized as a melted smectic, namely a smectic

with dislocations. This is, in essence, the path presented in Sec. 4.

An alternative route to build a QHN state from the isotropic and weakly corre-

lated side is to consider the zero-temperature isotropic to nematic transition as a

Fermi surface instability60 where the Fermi surface changes from circular (isotropic)

to elliptical (anisotropic). Experiments studying the longitudinal propagation of

sound would be an accurate probe of this scenario, since the behavior of the sound

waves in the nematic ordered state would be dramatically different from that in the

isotropic Fermi liquid state.61 So far the answer is not conclusive.

Another approach is to start from a nematic liquid state, assuming that the

rotational symmetry is already broken by some, yet unknown, symmetry-breaking

field. A theory of such QHN phase was recently introduced by Radzihovsky and

Dorsey62–64 and is guided by the chiral edge dynamics of the local smectic layers

and describes the local orientational order of the QHN by a unit director field

which is also coupled to a symmetry-breaking field. The result is the prediction of

the existence of a novel director-density mode, with highly anisotropic dispersion,

which remains gapless even in the presence of an ordering field.

The experimental discovery of magnetotransport anisotropy in higher Landau

levels around filling factors ν = 2L + 1/2 poses challenging questions on the true

microscopic nature of such states and their relationship to the parent CF states

originating from ν = 2L + 1/3. Clearly the specific value of L plays a major role

and even determines the onset of anisotropy. The importance of L to anisotropy is

evident if one considers states with filling factor ν = 1/2, 5/2 and 9/2. In such

a case we know that the ν = 1/2 (L = 0) state is an isotropic compressible

Fermi liquid; the ν = 5/2 (L = 1) state is an isotropic incompressible FQHE-

like liquid; and the ν = 9/2 (L = 2) state is an anisotropic compressible liquid

state. The same does not apply to states with filling factors ν = 1/3, 2 + 1/3 and

4 + 1/3, even though the 4 + 1/3 state is close (within the ∆ν = 0.2 range) to

filling factors around ν = 9/2 = 4 + 1/2 where signs of anisotropy can still be

observed.

A fundamental question that arises concerns the microscopic nature and how

to construct an anisotropic state that describes arbitrary states at any given filling

factor including the LLL Laughlin filling factors at ν = 1/3 and ν = 1/5. Such an

anisotropic state may be translationally invariant, but should have broken rotational

symmetry (BRS) in order to have anisotropic properties. The interest of building a

microscopic anisotropic wave function for liquid crystalline electronic phases in the

LLL is not purely academic, but is inspired from the classical 2D melting theory
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of the classical two-dimensional one-component-plasma (2DOCP). The Kosterlitz,

Thouless, Halperin, Nelson and Young (KTHNY) theory50–53,65,66 of the classical

2D melting problem predicts that an intermediate third phase called hexatic, will

exist between the hexagonal solid and the liquid phases in a certain portion of the

phase diagram as temperature decreases. Similarly, an intermediate nematic could

exist between some kind of anisotropic crystal and an isotropic liquid. There is no

long-range translational or rotational order (the system is both translationally and

rotationally invariant) in the liquid phase, while the system has quasi-long-range

translational and true long-range rotational order in the solid phase. The hexatic

phase in the KTHNY theory is thought to have no true long-range translational

order, but does retain quasi-long-range orientational order (the system is transla-

tionally invariant, but not rotationally invariant at least for short distances). The

quantum Hall regime counterpart of the temperature in the classical 2D melting

problem is the electronic filling factor. A transition to a quantum Wigner crys-

tal (WC) state in the LLL is achieved by reducing the filling factor and we know

that the WC states stabilize for νc ≤ 1/6.5. Inspired by the KTHNY theory, it

makes perfectly sense to investigate the possibility of intermediate liquid crystalline

mesophases in the LLL stabilizing during a liquid-to-solid phase transition before

the full onset of Wigner crystallization.

Liquid crystalline phases with no translational order but with quasi-long-range

orientational order may possess different forms of rotational group symmetry. For

simplicity we select a small set of possible rotational symmetry groups: C2, C4,

and C6 which correspond to a nematic, tetratic and hexatic phase, respectively. If

we want to describe BRS liquid crystalline states in the LLL there are some basic

requirements to be followed:

(i) the states must obey Fermi statistics;

(ii) the states must be translationally invariant (at least far away from the bound-

aries for finite systems);

(iii) there must be a BRS belonging to the proper rotational symmetry group; and

(iv) the states must belong to the LLL Hilbert space.

If one is able to build BRS liquid crystalline states in the LLL, extension of such

states at any higher LL with index L ≥ 1 is straightforward and various properties

at any LL can be readily obtained from properties calculated in the LLL.

The so-called BRS wavefunctions are a special class of liquid crystalline wave

functions that satisfy all the above requirements.67–72 They are systematically con-

structed by splitting the zero-s of the isotropic Laughlin liquid state according to

the proper rotational symmetry group in consideration in a way that conserves the

anti-symmetry (Fermi statistics) and translational invariance, but breaks the rota-

tional invariance of the wave function (see Fig. 5). The introduction of a preferred

set of directions into the wave function creates a necessary degree of anisotropy. A

generalized liquid crystalline wave function for LLL filling factors ν = 1/m can be
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ν = 1/7
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y

Fig. 5. Nodal distribution for zij ≡ zi − zj for a quantum Hall nematic at ν = 1/3, tetratic at
ν = 1/5, and hexatic at ν = 1/7.

written as:

Ψ1/m
α =







N
∏

i<j

[

m−1
∏

µ=1

(zi − zj − αµ)

]







×
N
∏

i<j

(zi − zj) exp

(

−
N
∑

k=1

|zk|2
4l20

)

, (15)

where zk = xk + iyk is electron’s position in complex notation, l0 =
√

~/(eB) is

electron’s magnetic length, −e (e > 0) is electron’s charge, B is a perpendicular

magnetic field in the z direction, ~ is the reduced Planck’s constant, N is the total

number of electrons, m = 3, 5, 7 is an odd integer, and αµ is the set complex direc-

tors distributed in pairs of opposite value to satisfy Fermi statistics. For simplicity,

we focus on liquid crystalline BRS states with the highest possible level of discrete

rotational symmetry for each filling factor in which the αµ-s are symmetrically

distributed in a circle around the origin (see Fig. 5):

αµ = αei2π(µ−1)/(m−1) , µ ∈ {1, 2, . . . , (m− 1)} . (16)

Without loss of generality α can be taken to be real. The BRS liquid crystalline

wavefunction in Eq. (15) represents a translationally, but not rotationally invari-

ant liquid crystalline state for filling factors corresponding to ν = 1/m, is anti-

symmetric, lies entirely in the LLL, and reduces to the isotropic Laughlin liquid

state when the anisotropy parameter, α, vanishes.

5.1. Model and investigation of BRS states

We consider a two-dimensional (2D) model of N electrons subjected to a strong

perpendicular magnetic field. The electrons are embedded in a neutralizing back-

ground of positive charge with uniform density ρ0 = ν/(2πl20) spread within a finite

disk with radius RN and area ΩN = πR2
N . The electrons can move freely all over

the 2D space and are not restricted to stay inside the disk. Since the uniform den-

sity of the neutralizing positive charge of the disk is defined as ρ0 = N/ΩN one can

write the radius of the disk in terms of the electronic length as RN = l0
√

2N/ν.

Since the BRS wave functions introduced in Eq. (15) describe a liquid crystalline

state in the LLL, the kinetic energy per electron is a mere constant: 〈K̂〉/N =
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~ωc/2, where ωc is the cyclotron frequency. Thus, the properties of the system are

determined by the potential energy:

V̂ = V̂ee + V̂eb + V̂bb , (17)

where V̂ee, V̂eb and V̂bb are the electron-electron, electron-background and

background-background potential energy operators, respectively.

The interaction potential between a pair of two electrons with 2D coordinates

~ri and ~rj takes the form:

v(rij ) =
e2

ε

1
√

r2ij + λ2
, (18)

where rij = |~ri−~rj | is the distance between the two electrons and λ is a phenomeno-

logical length parameter. This interaction potential is more general than the bare

Coulomb interaction potential and takes into consideration the finite thickness of

the quasi-2D electron system73 through the parameter λ. When λ = 0 the above

phenomenological potential reduces to the bare Coulomb potential.

Since the involved potentials are one- and two-body potentials, the system is

accurately solved if we can determine all one- and two-body distribution func-

tions, i.e. the density ρ(r) ≡ 〈∑N
i=1 δ(ri − r)〉, and the pair correlation function

g(r12) ≡ ρ−2
0 〈∑N

i6=j δ(ri − r1)δ(rj − r2)〉, respectively. The determination of these

distribution functions enables an accurate calculation of all potential energy terms

in the thermodynamic limit. A calculation of the static structure factor,

S(q) − 1 = ρ0

∫

d2r12e
−iq·r12 [g(r12) − 1] (19)

is also useful. Because of the anisotropy of the BRS wave function for α 6= 0, both

the pair correlation function and the static structure factor are explicitly angle-

dependent, namely: g(r12) = g(r12, θ) and S(q) = S(q, θq) for α 6= 0.

An accurate calculation of BRS liquid crystalline state energies in the thermo-

dynamic limit is necessary to judge the zero-temperature stability of the BRS liquid

crystalline states with respect to the isotropic liquid states. In the thermodynamic

limit, the ground state correlation energy per particle can be easily computed from

Eα =
〈V̂ 〉
N

=
ρ0

2

∫

d2r12v(r12)[g(r12) − 1] . (20)

Therefore, a good estimate of the correlation energy in the thermodynamic limit

requires an accurate computation of g(r12), for example, by means of Monte-Carlo

(MC) simulations methods74,75 or other techniques.

The correlation energy may also be computed from the static structure factor:

E(L)
α =

1

2

∫

d2q

(2π)2
ṽ(q)[S(q) − 1] × [LL(q2/2)]2 , (21)

where the multiplication by the Laguerre polynomial allows for the calculation of

the correlation energy in the Lth LL.69–72,75
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5.2. BRS Laughlin states

Monte-Carlo (MC) simulation methods were used to study the possibility of a BRS

liquid crystalline state for the leading Laughlin states at filling factors, ν = 1/3,

1/5 and 1/7. A BRS trial wave function as in Eq. (15) was considered and various

properties were analyzed as function of the anisotropic parameter α.

In order to determine the pair distribution function g(r), we perform standard

MC simulations in disk geometry using the Metropolis algorithm.76 The electronic

configurations are sampled from the probability distribution given by:

P (r1, . . . , rN ) ≡ |Ψ1/m
α (r1, . . . , rN )|2 , (22)

where we omitted irrelevant normalization constants.

For each α under consideration, we start by uniformly distributing N electrons

inside of a disk of radius RN . In each MC step, electrons are randomly moved by

a given amount (chosen in the beginning of the run so that approximately 50%

of the MC attempts are successful). The move is accepted if P new/P old is larger

than a random number between 0 and 1, and otherwise rejected. After an initial

“thermalization” process, the g(r) was computed for up to N = 400 electrons and

the results were extrapolated to the thermodynamic limit. Care is taken so that

only electrons in the “bulk” of this system are counted (by excluding a ring near

the periphery of the disk).75 Direct calculations of the correlation energy in the

LLL for various potentials were also performed to further verify our results.

Extensive MC simulations in disk geometry have allowed us to determine very

accurately the pair distribution function and the static structure factor. In order to

compare the isotropic Laughlin’s liquid state (α = 0) with the BRS liquid crystalline

states (α 6= 0) we studied the properties of the BRS wave functions while varying

the anisotropy parameter, α.

The interaction potential of Eq. (18) was considered. This choice is motivated

by the well-known fact that the finite layer thickness of a real 2D system leads to

a weakening and eventual collapse of the FQHE.77 When λ increases as to become

larger than the magnetic length, the short-range part of the modified Coulomb

interaction softens and as a result there is a possibility that the isotropic FQHE

liquid state may become unstable with respect to another state of different nature

(a Wigner crystal can be an obvious choice, but a possible new candidate can be

the BRS liquid crystalline state considered here).

In order to compare the energy of the isotropic Laughlin liquid state with that

of an anisotropic BRS liquid crystalline state, an accurate computation of the pair

correlation function for different α-s is performed. For small α’s, MC simulations

with N = 196 electrons were sufficient to give a very accurate pair distribution func-

tion. For larger α-s (that induce sizable oscillations in the density), MC simulations

with as many as N = 400 electrons were needed.

Figure 6 shows a typical snapshot of an electronic configuration sampled during

our MC simulations with large α-s. The apparent charge density wave (CDW)-like
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Fig. 6. Typical electron configurations for a nematic (ν = 1/3, α = 7, left panel), tetratic
(ν = 1/5, α = 8, center panel), and hexatic (ν = 1/7, α = 10, right panel).

Fig. 7. Pair correlation function g(r) for ν = 1/3, α = 2 (left panel), ν = 1/5, α = 3 (center
panel), ν = 1/7, α = 3 (right panel). Note the discrete rotational symmetry of each state. Results
are from MC simulations in a disk geometry.

Fig. 8. Static structure factor S(q) for ν = 1/3, α = 2 (left panel), ν = 1/5, α = 3 (center panel),
ν = 1/7, α = 3 (right panel). Note the discrete rotational symmetry of each state.

structures on the BRS liquid crystalline phase are visible only due to the extremely

large α-s used to permit visualization of the anisotropy (see Ref. 72 for more details).

Figure 7 displays the calculated the pair distribution function, g(r), for the

BRS Laughlin states at filling factors: ν = 1/3, α = 2 “nematic”, ν = 1/5, α = 3

“tetratic”, and ν = 1/7, α = 3 “hexatic”. Each MC simulation involves systems

with N = 400 electrons.72
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Fig. 9. Energy difference between anisotropic states and the isotropic state (α = 0) ∆Eα ≡

Eα − E0 for filling factors ν = 1/3, 1/5 and 1/7 in the LLL. These results are plotted as function
of the quasi-2D layer thickness λ. Energies are in units of e2/(εl0).

Figure 8 shows the corresponding static structure factors S(q) for the BRS

liquid crystalline states at filling factors ν = 1/3, 1/5 and 1/7 for selected values

of α.72

The energy differences, ∆Eα = Eα − E0 between the anisotropic BRS liquid

crystalline states (α 6= 0) and the isotropic liquid state (α = 0) for states with LLL

filling factors ν = 1/3, 1/5 and 1/7 are presented in Fig. 9. For small values of

α ∈ (0,≈ 2], the BRS liquid crystalline states have an energy only slightly above

the Laughlin liquid states (α = 0), however for larger α-s this difference increases.

Based on the calculated energies, we conclude that, for the case of the bare

Coulomb interaction potential (λ = 0) and for the case of finite thickness modified

Coulomb potential (λ 6= 0), the uniform isotropic liquid state is energetically more

favorable than the BRS anisotropic liquid crystalline state at all LLL Laughlin

filling factors of the form: ν = 1/3, 1/5 and 1/7. Since it is known that the onset

of Wigner crystallization occurs at filling factors νc ≤ 1/6.5 these results strongly

suggest that a BRS liquid crystalline phase (at least of the form considered in this

work) is not stable as the ground state in the LLL for filling factors 0 < ν ≤ 1.

The situation changes dramatically in higher LL-s. The properties of BRS

Laughlin states in higher Landau levels with filling factor, ν = 2L + 1/m where

L = 0, 1, . . . and m = 3, 5, 7 can be immediately derived from the properties of BRS

Laughlin states in the LLL (L = 0). If transitions to other LL-s are neglected (i.e. a

single-LL approximation), the pair distribution function, g(r) and the static struc-

ture factor, S(q) in higher LL-s (L 6= 0) are related to those at the LLL (L = 0) by

means of a convolution or product respectively. We use this approximation (which,

moreover, quenches the kinetic energy in higher LL-s as well). It is then sufficient

to use distribution functions calculated in the LLL to obtain the correlation energy

per electron in an arbitrary LL with index L 6= 0 [see Eq. (21)].

In particular, we focus our attention on the Laughlin state ν = 2L+ 1/3 which

is the closest Laughlin state to the half filled state ν = 2L+ 1/2. Such state also

happens to be in border of the range of filling factors, ∆ν = 0.2 around 1/2-filled

upper Landau levels where signatures of anisotropy (although very weakened) still

persist. In what follows we use the static structure factor, S(q) previously computed
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Fig. 10. Correlation energy per particle in BRS states with α = 1, 2 and 3 relative to the isotropic
(α = 0) state for t indices of Landau levels L as function of the short-distance cut-off parameter
λ. All energies are in units of e2/(εl0). (a) Lowest LL (L = 0); (b) First excited LL (L = 1);
(c) Second excited LL (L = 2) (d) Detail of (c). Note that there are ranges of λ for which BRS
liquid crystalline states are favorable in the last case (L = 2).

through MC simulations for LLL BRS liquid crystalline wave functions in order to

obtain the correlation energies, E
(L)
α for various high LL-s.

Figure 10 shows the energy difference between BRS states with α = 1, 2 and 3,

and the isotropic state with α = 0. Our findings indicate that in the LLL (L = 0) the

isotropic Laughlin state is stable for all λ we considered, since all α 6= 0 states have

higher energies (top panel). This results are in disagreement to those of Ref. 68

and 69 and coincide quantitatively with our previous hypernetted-chain (HNC)

calculations.69 We also observe stability of the isotropic state in the first excited

LL (L = 1, ν = 2 + 1
3 ). The situation changes considerably in the second excited

LL-s (L = 2, ν = 4 + 1
3 ) where, for a considerable range of the short-distance

cut-off parameter, λ, BRS states are found to have lower energies and the incom-

pressible Laughlin-like state is unstable toward a nematic state (see lower panels of

Fig. 10).

The only significant sources of error in the MC calculations arise from the sta-

tistical errors due to finite sampling and the discrete nature of the grid used in

the determination of the pair distribution function g(r) (these errors are inherent



March 13, 2006 14:24 WSPC/140-IJMPB 03363

Novel Liquid Crystalline Phases in Quantum Hall Systems 767

to all MC methods). The errors propagate to the static structure factor S(q), and

are amplified at large-q by the Laguerre polynomials in Eq. (21). The error bars

in Fig. 10 are estimated by comparing our S(q) to analytical approximations cal-

culated (for the isotropic state) by Girvin MacDonald and Platzman78,79 (for the

isotropic case, α = 0).

The above results suggest that an isotropic liquid state is energetically favorable

in the LLL (L = 0) and the first excited LL (L = 1), but an anisotropic BRS liquid

crystalline state is more stable in the second excited LL (L = 2). This fact is also in

agreement with experimental findings of strong magnetotransport anisotropy only

at Landau levels with index L ≥ 2. A qualitative explanation for this is simple: In

the LLL the electron packets are simple gaussians, and it is clear that the best way

to minimize their Coulomb repulsion is by placing the vortices responsible for the

CF transformation4,5,9 (see also footnote a) precisely at the location of the electron

themselves (α = 0). However, in higher LL-s, the wavepackets take a more “ring-

like” shape, and a finite α permits a more optimal distribution of charge resulting

in a lower energy of the anisotropic ν = 4 + 1/3 state relative to the isotropic

ν = 4 + 1/3 counterpart.

5.3. BRS half-filled state

The HLR theory argues that a 2D strongly correlated electronic system subjected

to a perpendicular magnetic field at which the LLL is half-filled is mathematically

equivalent with system of fermions interacting with a Chern–Simons gauge field

such that the average effective magnetic field acting on the fermions is zero.19 At

precisely ν = 1/2 the fermions do not see a net magnetic field therefore they form

a 2D Fermi sea of uniform density much like the ideal 2D Fermi gas. Therefore

the quantum state at ν = 1/2 should have a nature that resembles a compressible

isotropic Fermi-liquid-like phase.

A microscopic description of the LLL half-filled state has been provided by

Rezayi and Read80 (RR) in terms of a correlated Fermi liquid wave function that is

a product of a Slater determinant of 2D plane waves with a Bose–Laughlin half-filled

wave function:

Ψ(r1, . . . , rN ) = P̂0

N
∏

j<k

(zj − zk)2 exp

(

−
N
∑

k=1

|zk|2
4l20

)

det[ϕk(ri)] , (23)

where the Slater determinant, det[ϕk(ri)] consists of 2D plane waves for spin po-

larized electrons, ϕk(ri) that fill a 2D Fermi disk with Fermi momentum up to kF

and P̂0 is a projection operator onto the LLL (L = 0) that acts upon the whole

wave function.

To obtain a BRS liquid crystalline wave function at filling ν = 1/2 of

the LLL81 we add an anisotropic symmetry breaking parameter α to the RR
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wave function:

Ψα(r1, . . . , rN ) = P̂0

N
∏

j<k

(zj − zk + α)(zj − zk − α) exp

(

−
N
∑

k=1

|zk|2
4l20

)

det[ϕk(ri)] .

(24)

The half-filled BRS liquid crystalline wavefunction describes a translationally

invariant Fermi liquid-like state. For α 6= 0 the rotational symmetry is broken

and the state has nematic order with α interpreted as the nematic director. For

α = 0 we recover the isotropic RR Fermi liquid wavefunction where the rotational

symmetry is restored. If we consider α to be real the system will have a stronger

modulation in the x-direction, and therefore likely have larger conductance in the

perpendicular direction: σyy > σxx. This wavefunction is an obvious starting point

to study the nematic BRS quantum Hall liquid crystalline states at half filling since

it can be further generalized to half filled states in higher Landau levels with filling

factors, ν = 2L+ 1/2, where L = 0, 1, 2, . . . is the Landau level index. In the L 6= 0

case the projector operator P̂L should be used instead of P̂0.

The general BRS half-filled wave function of Eq. (24) is rather complex, nev-

ertheless one notes that if the projection operator, P̂0 is disregarded then its form

becomes a standard Jastrow–Slater form. A method suitable to carry out calcu-

lations for Jastrow–Slater wave functions which gives physical quantities, such as

energy, pair distribution function, static structure factor, etc. exactly in the ther-

modynamic limit is the so-called Fermi hypernetted-chain (FHNC) method.82–90

This method allows us to compute physical quantities in the thermodynamic

limit, without the limitations of using a finite number of particles that hinder other

techniques, where the extrapolation of the results to the thermodynamic limit is not

totally unambiguous. The neglect of certain type of terms, called elementary dia-

grams is a necessary approximation generally incorporated in the otherwise FHNC

method (FHNC/0).81 In our study of the BRS half-filled liquid crystalline wave

function [Eq. (24)] we resort to the approximation of neglecting the LLL projec-

tion operator, P̂0, therefore we use the “unprojected” version of the wave function.

Under these conditions we applied the FHNC/0 method and studied the stability

of the BRS liquid crystalline state at ν = 1/2 with respect to its isotropic liquid

counterpart. The FHNC/0 allowed us to determine quickly and with reasonable

accuracy the pair distribution function and the static structure factor.

In Fig. 11 we plot the pair distribution function g(r) for α = 2 [panels (a) and

(b)], and the angle-averaged pair distribution function gav(r) corresponding to α

= 0, 1, 2, 2.5 and 3 [panels (c) and (d)]. It is interesting to note, for α 6= 0, the

noticeable angle-dependence of g(r), and the splitting of the triple node at the

origin to a simple node at the origin and additional simple nodes at r = α and

angle θ = θα, θα + π (θα = 0 in this case).

In Fig. 12 we plot the static structure factor S(q) for α = 2 (top panel), where

the most important feature is the emergence of peaks in S(q) characteristic of a
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Fig. 11. Pair distribution function for the BRS state at ν = 1/2. (a) α = 2, surface plot of
g(r) (the surface for y < 0 was removed for clarity); (b) α = 2, dotted lines: g(r, θ) for various
θ ∈ [0, 2π], full line: angle averaged gav(r); (c) Angle averaged gav(r) for α = 0, 1, 2, 2.5 and 3;
(d) Small-r behavior of gav(r), lines are fitting curves. Note the discrete nodes of g(r, θ) at r = α,
θ = θα, θα + π (θα = 0 in this case). Calculations were performed in the FHNC/0 approximation.

nematic structure; and the angle-averaged static structure factor Sav(q) correspond-

ing to α = 0, 1, 2, 2.5 and 3 (bottom panel). Note the considerable dependence of

Sav(q) on α: as it increases the peak is broadened and flattened, with no significant

change in the small-q behavior.

In order to compare the α = 0 isotropic Fermi liquid RR state, with the α 6= 0

BRS liquid crystalline (nematic) state we studied the properties of the BRS wave

function for several α-s with magnitudes between 0 and 3. Like before, we studied

the stability of the anisotropic BRS liquid crystalline state versus the isotropic RR

Fermi liquid state by comparing the energy in each of these states and find the

optimum value for the anisotropy-generating parameter α. As before, the energy in

any LL can be calculated using the static structure factor [Eq. (21)].

Figure 13 shows the energy difference between BRS liquid crystalline states with

α = 1, 2, 2.5 and 3, and the isotropic RR state with α = 0 at various LL-s. Our

findings indicate that in the LLL (L = 0) the RR isotropic Fermi liquid state is

stable for any λ, given that all α 6= 0 anisotropic states resulted with higher energies.

The situation changes again in higher LL-s. For L ≥ 2 the BRS Fermi liquid states



March 13, 2006 14:24 WSPC/140-IJMPB 03363

770 C. Wexler & O. Ciftja

-4 -3 -2 -1 0 1 2 3 4
qx -4

-3
-2

-1
0

1
2

3
4

qy

0
0.2
0.4
0.6
0.8

1
1.2
1.4

S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

S

q

alpha = 0.00
1.00
2.00
2.50
3.00

(a)

(b)

Fig. 12. Static structure factor for the BRS liquid crystalline state at ν = 1/2. (a) α = 2, surface
plot of S(q) (the surface for qy < 0 was removed for clarity); (b) Angle averaged Sav(q) for α
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Calculations were performed in the FHNC/0 approximation.

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2

E
al

ph
a-

E
0

lambda

N=0 ; alpha=0
N=0 ; alpha=1
N=0 ; alpha=2
N=0 ; alpha=3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.5 1 1.5 2

E
al

ph
a-

E
0

lambda

N=1 ; alpha=0
N=1 ; alpha=1
N=1 ; alpha=2
N=1 ; alpha=3

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.5 1 1.5 2

E
al

ph
a-

E
0

lambda

N=2 ; alpha=0
N=2 ; alpha=1
N=2 ; alpha=2
N=2 ; alpha=3
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are ranges of λ for which Fermi BRS states are favorable.
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are found to have lower energies and the compressible RR state is unstable towards

a nematic state. The Landau index, L = 2, corresponds to the experimental value

where anisotropy has been observed, therefore, it is likely that the BRS states

proposed here are related to the low-temperature anisotropic conductance found

experimentally.32–35

Even though we used the unprojected version of the BRS Fermi liquid wave

function in place of its projected counterpart, we believe that the main conclusions

that we derived will not change qualitatively when proper projection is performed,

basically, for the following reasons:

(i) the presence of the Jastrow factors, already provides a considerable projection

into the LLL;91 and

(ii) energy differences will likely be accurate because the separate energies are cal-

culated within the same approximation, therefore errors which are systematic

will be of the same magnitude order.

6. Collective Excitations

In this section we consider the spectrum of collective excitations for the family of

liquid crystalline states [Eq. (15)] proposed in Sec. 5. To calculate this excitation

spectrum we use the single mode approximation (SMA),78,79,92–95 which reliably

provides the mean of the energy of the excitations that are coupled to the ground

state by the density operator.78,79,92–96 The SMA was first used in 1953 by Feynman

to obtain a qualitatively correct spectrum of phonons in 4He.92,93 In the SMA, the

variational wavefunction for an excitation corresponding to a density-wave is

φk(r1, . . . , rN ) = N−1/2ρkψ0(r1, . . . , rN ) , (25)

where ρk =
∑N

j=1 e
−ik·rj is the density operator, and ψ0 is the many-body ground

state. The energy of this excited state can be simply evaluated:

∆(k) ≡ 〈φk|H −E0|φk〉
〈φk|φk〉

=
N−1〈ψ0|ρ†k[H, ρk]|ψ0〉
N−1〈ψ0|ρ†kρk|ψ0〉

≡ f(k)

S(k)
, (26)

where f(k) = ~
2k2/2m is the “oscillator strength” and S(k) is the static structure

factor, which is directly measurable by means of neutron scattering. Using the

experimental results for S(k) and nothing else, Feynman found remarkable results,

showing the phonon-like spectrum at small wavevectors, and a roton minimum at

wave-vectors comparable to the inverse interatomic distance.92,93

In the case of fermionic systems, the SMA is also reasonably well established

both for two- and three-dimensional systems in the absence of magnetic fields, yield-

ing a decent approximation for the plasmon frequency as k → 0. The application

of the SMA in 2DES with a magnetic field also gives reasonable results: the mag-

netoplasmon at ωc = eB/me, result guaranteed to be exact by Kohn’s theorem.97

In the QHE, we are mostly interested in intra-LL excitations, and the inter-LL

cyclotron mode is not of interest. In 1985 Girvin, MacDonald and Platzman (GMP)
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proposed an ingenious ansatz for projected excited states:78,79

|ψq〉 = ρ̄q|ψ0〉 , (27)

where ρ̄q is the projected density operator:98

ρ̄q =
∑

m,m′

〈0,m′|e−iq·r|0,m〉a†0,m′a0,m =

N
∑

j=1

e−|q|2/2e−iq∗zj/2e
−iq ∂

∂zj , (28)

where |0,m〉 correspond to single-particle states in the lowest LL and angular mo-

mentum m, a†0,m is the particle creator operator for such state, and we work in

units of the magnetic length. The exclusion of inter-LL excitations eliminates the

cyclotron mode. The excited states have a suggestive form:98

ρ̄qψ(z1, . . . , zN) =

N
∑

j=1

e−|q|2/2e−iq∗zj/2ψ(z1, . . . , zj−1, zj − iq, zj+1, . . . , zN ) ,

(29)

which corresponds to shifting each electron by êz × q and superimposing these N

configurations with an amplitude e−iq∗zj/2. In a form analogous to Eq. (26), the

excitation spectrum is given by

∆̄q =
(2N)−1〈ψ0|[ρ̄†q, [H̄, ρ̄q]]|ψ0〉

N−1〈ψ0|ρ̄†qρ̄q|ψ0〉
≡ f̄(q)

S̄(q)
. (30)

The projected oscillator strength comes from the non-commutation of the projected

density operator with terms in the potential energy part of the Hamiltonian also

projected onto the LLL:

H̄ =
1

2

∑

q

vq(ρ̄†qρ̄q −Ne−q2/2) . (31)

Since [ρ̄k, ρ̄q] = (ek∗q/2 − ekq∗/2)ρ̄k+q, we find78,79

f̄(q) = 2e−|q|2/2
∑

k

sin2

(

q × k

2

)

S̄(k)[vk−qe
k·qe−|q|2/2 − vk] . (32)

For its part, the projected static structure factor S̄(q) can be calculated

from:78,79,98

S̄(q) = S(q) − (1 − e−q2/2) . (33)

For the quantum Hall liquid crystals, BRS states [Eq. (15)] corresponding to

a ν = 1/3 nematic, a ν = 1/5 tetratic, and a ν = 1/7 hexatic were considered.

Figure 7 shows the pair correlation function for various states. In all cases, correla-

tion functions and SMA excitation spectra were computed for numerous α-s. The

angle dependence significantly increases the burden in the MC simulations since

a high-quality, full angle-dependent g(r) is needed, rather than the considerably

simpler angle-averaged g(r) for isotropic systems. The accurate calculation of f̄(q),
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Fig. 14. Projected static structure factors S̄(q) for a ν = 1/3 nematic, a ν = 1/5 tetratic, and a
ν = 1/7 hexatic. In all cases, S̄(q) = O[q4] for small q, and S̄(∞) → 0.

Fig. 15. Single mode approximation spectra for a ν = 1/3 nematic, a ν = 1/5 tetratic, and a
ν = 1/7 hexatic. Note the dramatic angular dependence of the spectra, and the appearance of a
singular gap as q → 0 for the nematic and tetratic. The rightmost panel shows also the spectrum
for the ν = 1/3 nematic in the first excited LL (L = 1).

with its angular-dependent exponentially large factors required high quality S̄(q)

and hence g(r). In our MC simulations for g(r), we accumulated of the order of

10,000 counts in “boxes” of 0.01 × 0.01 (in units of l0). Furthermore, a relatively

large Ne is required so that the simulations are able to reproduce a system in the

thermodynamic limit. The simulations, for each α and ν required ca. cpu×days of

computation on a cluster of 2 GHz AthlonTM processors.94,95

Figure 14 shows the projected static structure factors S̄(q) for a ν = 1/3 nematic,

a ν = 1/5 tetratic and a ν = 1/7 hexatic. From S̄(q), the oscillator strength f̄(q) is

computed using Eq. (32). Analysis of S̄(q) and f̄(q) shows that both are O[q4] for

small q.78,79

Figure 15 presents the results for the excitation spectra in the lowest LL.94,95

These are consistent with those obtained by GMP for the isotropic ν = 1/3 and 1/5

FQHE cases78,79 which were qualitatively confirmed experimentally.99,100 The SMA

spectrum remains gaped, with a deep magnetoroton. BRS states have significant

anisotropy in their spectra, and most noteworthy is the fact that for the nematic and

tetratic cases the spectrum is singular, with an angle dependence on the excitation

energy ∆(q) as q → 0 (the hexatic has a regular spectrum). The apparent disparity
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have, of course, to do with the different rotational symmetries of the different states:

as ∆̄ = f̄/S̄, and both numerator and denominator are O[q4] for small q, there is

no possibility of generating a C6 symmetric form with terms that can only depend

on q4x, q4y, and q2xq
2
y . This can also be understood from the point of view of an

effective elasticity theory for 2DES (valid in the long wavelength limit, q → 0):101

the elasticity tensor being of the fourth rank is not compatible with a six-fold

rotational symmetry.102

The presence of this singular spectrum suggests that microwave conduc-

tivity experiments99,100,103 may be able to discern such structures as a sig-

nature of, e.g. the quantum Hall nematic suggested by magnetotransport

experiments.32–35,36,104

Theoretical predictions of which type of order is lowest in free energy (required to

decide which state is favorable at finite temperatures, as shown in Refs. 15 and 104)

are still incomplete, however, as the entropy is likely to be dominated by gapless

modes originating, e.g. from the Goldstone modes associated with the spontaneous

breaking of the continuous rotational symmetry of the isotropic states. General-

ization of the SMA to gapless rotational modes (see e.g. Ref. 62–64) will require,

however, three-body operators which demanding considerably higher computing

capabilities.105

7. Conclusions

In the earlier part of this paper we showed that “melted” CDW-s (i.e. the nematics

derived from the smectic via the Landau–Peierls argument) are obvious candidates

to explain the onset of anisotropy on clean 2DES when electrons occupy the excited

Landau levels. These ideas successfully produced anisotropic-isotropic transition

temperatures in semi-quantitative agreement with experiments (Sec. 4). In essence,

the onset of anisotropy does not signal the emergence of charge-density modulation,

but reflects the orientational ordering of electronic domains with some pre-existing

small-scale charge-density modulation.

Since the underlying smectic is known to be melted at any finite temperature, it

is natural to question whether it is necessary at all, i.e. whether it is possible to es-

tablish states with appropriate broken rotational symmetries at the quantum level.

In other words, whether there is a reasonable microscopic theory for (anisotropic)

quantum Hall liquid crystalline states with no positional or translational order. In

Sec. 5 we showed precisely that it is possible to construct such states, which need

to satisfy the following conditions:

(i) the states must obey Fermi statistics;

(ii) the states must be translationally invariant (at least far away from the bound-

aries when small finite systems are considered);

(iii) there must be a broken rotational symmetry belonging to the proper symmetry

group; and

(iv) the states must belong to a single LL.
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The states proposed for (i) Laughlin-like states, ν = 2L+ 1/m where L = 0, 1, . . .

and m = 3, 5, 7; and (ii) half-filled RR-like states, ν = 2L+1/2 where L = 0, 1, . . . ;

were build from the standard isotropic states by by systematically splitting the

degenerate zeros of the wavefunctions (or alternatively, by moving the vortices of

the composite fermions away from the electrons themselves).

In such a way, anisotropy is inherently built into the wave function. The

anisotropy parameters, αµ, introduce a preferred set of directions into the wave

function thus creating a degree of anisotropy. They are distributed in pairs of op-

posite value in the complex plane (to satisfy Fermi statistics). For simplicity we

consider states with the highest level of discrete symmetry possible at each filling

factor, set by distributing the αµ symmetrically in a circle around the origin. For

the LLL (L = 0) and first excited LL (L = 1) the splitting of the zeros is energet-

ically favorable, but in the next LL (L = 2) the splitting reduces the correlation

energy, making the BRS liquid crystalline states favorable. These results indicate

that there is a concrete possibility and promise that a BRS liquid crystalline phase

could explain the large magnetotransport anisotropy observed at high Landau levels

with index L ≥ 2.

In the latter part of this paper, we showed how the spectrum of excitations of

these liquid crystalline states may be computed in the single mode approximation,

a reliable method that yields the first moment (average) of all excitation energies of

modes that have a non-zero overlap of the density operator with the ground state,

thus making these types of modes easier to experimentally probe electromagneti-

cally. Characterization of the BRS states using microwave conductance experiments

is suggested.
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