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Abstract 
 
It has been known for some 2000 years how to generate Pythagorean Triples. While the classical 
formulas generate all of the primitive triples, they do not generate all of the triples. For example, 
the triple  15129 ,,  can’t be generated from the formulas, but it can be produced by introducing 
a multiplier to the primitive triple (3, 4, 5). And while the classical formulas produce the triple 
(3, 4, 5), they don’t produce the triple (4, 3, 5); a transposition is needed. This paper explores a 
new set of formulas that, in fact, do produce all of the triples i.e. every triple can be produced 
with a unique set of integer generators; there is no need for multipliers or transpositions. An 
unexpected result is an application to cryptology.  
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1. Introduction 
 
The classical Pythagorean Triples have the form  2222 sr2rs,,sr  . Yet neither the triple 

 15,12,9  nor the triple  5,3,4  conform to that pattern. Why? This paper revisits the classically 
developed concept of Pythagorean Triples, comparing and contrasting the classical method of 
generating them with a newly developed approach that produces both  15,12,9  and  5,3,4  
directly. Before looking at the new formulas, let’s recall some of the basic properties of classical 
Pythagorean Triples; most texts on Number Theory will serve as a reference. Named after the 
Greek mathematician Pythagoras, these triples are defined as 
 



AAM: Intern, J., Vol. 3, Issue 1 (June 2008) [Previously, Vol. 3, No. 1] 101 

 
 

Definition:  Three positive integers  cb,a,  are called a Pythagorean Triple whenever 
222 cba  .  A triple is said to primitive if   .1,,gcd cba  

 
The Classical Greek formula:  2222 ,2, srrssr   is a Pythagorean Triple whenever 

 Zsrrs ,;0 . The generating pair of integers in this case is denoted by  sr,  so that 

  ),2,(, 2222 srrssrsr  . The triple is primitive iff   1, sr  are relatively prime  and 

 sr   is odd. While   1, sr  is a necessary condition for producing primitives, we must also 
require that )( sr   be odd. A case in point: if 7r  and 3s , then 1)3,7(   but the pair 

 3,7  produces the non-primitive triple  58,42,40 . We shall refer to the collection of triples 

generated by  sr,  above as the classical triples or classically generated triples. 
 
 
2. A Variant of the Classical Formula 
 
Proposition 1: The classical Pythagorean Triples can be generated by the relationships 
 

   
 2 2 2 2

2 2 2 2

[ , ] ( ) , 2 ( ), ( )

( 2 , 2 2 , 2 2 ),

p q q p q q q p q p q q

p pq q pq p q pq

      

    
   (1) 

 
where Zqp . . 

 
The two systems of generating triples are completely equivalent in the sense that they produce 
exactly the same triples. Any triple that can be produced by one system can be produced by the 
other.  Let’s compare the two: 
 

The  sr,   System     The  qqp ,  System 

 rsZsr   0;,      ;, Zqp  no other restrictions 
 (forcing 2r ) 
 
For primitives 
 1),( sr  (relatively prime)    1),( qp  
 sr   is odd      p  is odd 
 

Can only generate finite    Can generate infinite subsets 
subsets of triples for fixed    of triples for each value of p  
value of  r  

 
• As one might guess, there are some distinct advantages to using the variant  qqp , . 
 
• This system helps to organize the triples into countable families or cosets indexed by the 

value of p: 



102                    William J. Spezeski 
   

 

      , , , , .p p pA q B q C q p q Z   

 
• When p = 1, we obtain the following sets of triples: 
 

 2 1, 2 ( 1), 2 ( 1) 1 , .q q q q q q Z       

 
Every triple that is generated here is primitive. This subset is not exhaustive, but it demonstrates 
easily and clearly that the set of primitive triples is infinite.  Since p must be odd in order to 
produce a primitive triple, the time searching for triples is halved because there is no need to 
consider the even values of p.  
 
 
3. Families of Triples 
 
For each Zp , we can define three continuous functions in the variable t as follows: 
 

      )2(22,22,2 2222 pptttCptttBppttA ppp   

 
These three functions are a variant of the three functions in )1(  replacing q  with the more 
commonly used parameter t . 
 
For fixed values of p ,  tAp  is a linear function in  while both  tBp  and  tC p  are quadratic 

functions in t . When graphed on the same axis for a fixed p  value, we wind up with a display 
like the one in Figure 1. The following shows the relationship between the functions when 

3p : The 3p -Family       tCtBtA 333 ,, . 

 
For each integer value of t  there coincides three integer values, one point from each curve, that 
yields a Pythagorean Triple. The graph also gives us a visual insight into why the first member of 
a triple is sometimes larger than its second member. For the initial values of t ,     ;33 tBtA   at 

some point, however,     tBtA 33  ,  for all subsequent values of  t . 

 
Despite its advantages, this variant system still has some of the limitations that the Classical 
Greek system has, and in particular, can not produce the triples  15,12,9  or  5,3,4  directly 
from its formulas. Tong )2003(  has explored other aspects of this system. 
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Figure 1. 

 
 
4. Some Observations of the Classical System and its Variant 
 
The formulas as stated above generate all of the primitive triples as well as many non-primitive 
ones. However, they do not generate all of the possible triples! This can be seen in the classical 
Greek system by considering the difference 2)( srbc  ; it must be a perfect square. 

Consequently, there are no integer values of r  and s  that will produce  15,12,9 ; the difference 
31215    is not a perfect square.  To get around this in the classical literature, an integer 

multiplier 0d  is introduced so that 
 

2 2 2 2( ) , 2 , ( )a r s d b rsd c r s d     . 
 
The same phenomenon exists in the variant  qqp ,  system. The formulas will generate 

families of triples for each positive integer p , but in this case, 2pbc   so that the actual 

values of bc   are ,3,2,1 222  etc. Looking at the families of triples that are generated from the 
point of view of the hypotenuse-side difference bc  ,  
 

2{1, 4, 9,16,25, 36, 49, 64, 81,100, ... , , ...}c b p  . 
 
There are no ‘difference’ families of triples for the integers ...,12,11,10,8,7,6,5,3,2 . For 

example, there is no ‘ 3bc ’ family, and in particular, the triple  15,12,9  cannot be 
generated by the variant system unless we resort to multipliers. 
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So, now an interesting question arises: is it possible to find formulas that will generate all of the 
families of triples without resorting to multipliers? The answer is – yes! 

 
 

5. A New Approach to Generating Pythagorean Triples 
 
The new approach to generating the triples ),,( cba  primarily concerns itself with the 
difference )( bc  . To this end, and making reference to a right triangle, let’s make a formal 
 
Definition: If ),,( cba  is a Pythagorean Triple, then bc   is called its hypotenuse-leg 

difference and is denoted by K . Clearly ac   is also a hypotenuse-leg difference 

which we will denote by K
~

. 
 
Proposition 2:  If ),,( cba  is a Pythagorean Triple with hypotenuse-leg difference K, then the 

triple can be expressed as 
2 2 2 2

, ,
2 2

a K a K
a K

K K

  
 

 
.      (3) 

Proof: 
2 2 2

2

2 2

( )

2 ,

a b c

b K

b bK K

 

 

  

 

 

so that 22 2 KbKa  .  Thus, we have 
K

Ka
b

2

22 
  and Kbc  . 

 
Conversely, given an expression )3(  with integers aK 0 , if K2  divides )( 22 Ka  , then 
each term is an integer and )3(  is a Pythagorean Triple. So, we will need to know precisely when 
this integer divisibility exists. To help us, we make the following 
 
Definition: Let LEDK  2 , where 

{D product of the distinct odd factors of K} ; each odd factor occurs exactly once, 

{2 E product of even powers of the remaining factors including 2}  expressed as 

  2 ;  each factor has power N2  ( N  an integer, 0N ), and                                      
{L product of the factors still left}  ; each factor occurs at most once. 

 
Using this factorization of K , we define a new integer value EDM  2 ; M  is 
called the co-value of K . 

 
To illustrate the construction of M , consider the following: 
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2 2

648 2 2 2 3 3 3 3

3 (2 3) 2 3 ,

K

D E L

       

       
 

 
where 22 )32(,3  ED  and 32 L . Then,   .3632322  EDM  
 
Note that several values of K  can have the same value of M .  For example, the hypotenuse-leg 
differences  3624, 12, and 72  each have a co-value of 12 . Also note that M  is always an even 

integer. We can deduce that KMK 22  . 

 
Proposition 3: Let K  and M  be defined as above; then K2  divides 2M . 
 
Proof:  
Using the definition of M , we have 
 

2 2 2

2

4 2

2 2

M D E D

K D E L L
  . 

 
The term D  contains all of the distinct odd factors of K while L  contains at most all of the 
distinct odd factors of K  and possibly the factor 2. Thus L  divides D2  and K2  divides 2M .    
 

For example, if ,648K then 36M  and 1
6482

3636

2

2






K

M
; 

           if ,3K  then 6M  and 6
32

66

2

2






K

M
. 

 
Even though the above result seems rather bland, it is actually quite important. In fact, all of the 
hard work is done. Now we can combine the ideas of Proposition 2, the definition of M  and 
Proposition 3 to establish a new set of formulas for generating triples. 
 
The question we have been trying to answer is: When does K2  divide )( 22 Ka  ?  The answer 
is: when KtMa  . If we make the substitution KtMa   in )3( , where t  is a positive 
integer-valued parameter, we obtain 
 

2 2 2 22 2
, , , 1 , 2 , 3 , ....

2 2

M t K M t M t K M t
M t K K t

K K

  
   

 
  (4) 

 
Proposition 3 guarantees that K2  divides 2M , so each term is an integer and thus )4(  is a 
Pythagorean Triple. Are the new generating formulas a little messy? Yes, but there are several 
ways to simplify. The expression )4(  can be equivalently written as 
  



106                    William J. Spezeski 
   

( ) ( )
, , , 1 , 2 , 3 , ....

2

a K a K
M t K b K t

K

  
   

 
 

 
The latter formula requires that the calculation be done algorithmically, calculating the first term, 
then the second, and finally the third. On the other hand, the ease of generating the triple is 
greatly improved. 
 
So now we have a new way to generate a triple. Conversely, given any triple, its generators can 
be recovered easily by 

2( ) , 2 , .
a K

K c b D E L M D E t
M


            (5) 

 
Each triple (independent of what system was used to produce it) has a unique generative set of 
integers  tMK ,, . 
 
One advantage of this new approach is that there is no need for multipliers, greatest common 
divisors, or the repositioning terms to generate all of the triples. Each triple is uniquely 
generated. Notice the triple  15,12,9  when classically generated is  5,4,33  In the ],,[ tMK  

system it is generated by }1,6,3{ ; there is no need for a multiplier. Moreover,   15,9,12  is 
generated by }1,6,6{ ; there is no need for artificial transposition of the 9 and 12.   
 
In order to discuss pairs of triples such as  5,4,3  and  5,3,4 , we make the following 
 
Definition: If ),,( cba  is a Pythagorean Triple, then ),,( cab  is called its co-triple. In this case,  

),,( cba  and ),,( cab  are said to be co-triples of each other. Furthermore, if 

 tMK ,,  denotes the set of integers that generates the triple ),,( cba , then the 

notation  tMK ~,
~

,
~

 will denote the generative set for the co-triple ),,( cab . 
 

Some of the basic relationships that exist among ),,( cab ,  tMK ,,  and  tMK ~,
~

,
~

 are shown 
below. They are either direct results of definitions or can be derived in a straight-forward manner 
using )4( . 

2 2 2

2

M t a
K c b

K c b
   



 
 ,        (6) 

2 2 2

2

M t b
K c a

K c a
   


 , 

a b c a K b K M t M t          , 
2 2 2 2 22( )( ) ( ) 2c b c a a b c M t M t K K         , 

( , , ) ( , , )a b c M t K M t K M t K K       , 

( , , ) ( 2 , 2 , 2 )a b c K K K K K K K K K K         . 
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The last relationship of (6) is probably the most noteworthy. It demonstrates that each term of a 
Pythagorean Triple can be expressed as a function of only the related hypotenuse-leg differences 

bcK   and acK ~
.  The geometric relationships corresponding to the formulas above are 

shown in Figure 2. 

 
Figure 2. 

 
 
6. Comparing the Classical System  sr  with the  tMK  System 
 
Using the  tMK  system, the triple )5,4,3(  is generated by }1,2,1{  while its co-triple )5,3,4(  is 

generated by }1,2,2{ . By contrast, a co-triple of a classical triple  2222 ,2, srrssr   can not be 
produced by the generating formulas. One must physically interchange the first and second 
terms. The  tMK  system eliminates the need for this slight of hand. Below are some examples 

of the relationships in the  tMK  system shown in )6(  along with a comparison to the classical 

 dsr  (multiplier) system. 

Triple K M t Co-triples K
~

 M
~

 t~ KK
~

2  Mt tM~~
 r s d

(21, 20, 29) 9 6 2 (20, 21, 29) 8 4 3 144 12 12 5 2 1

(77, 36, 85) 49 14 2 (36, 77, 85) 8 4 7 784 28 28 9 2 1

(9, 12, 15) 3 6 1 (12, 9, 15) 6 6 1 36 6 6 2 1 3

(15, 8, 17) 9 6 1 (8, 15, 17) 2 2 3 36 6 6 4 1 1

(27, 36, 45) 9 6 3 (36, 27, 45) 18 6 3 324 18 18 6 3 1

(40, 42, 58) 16 8 3 (42, 40, 58) 18 6 4 576 24 24 7 3 1

(63, 60, 87) 27 18 2 (60, 63, 87) 24 12 3 1296 36 36 5 2 3
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7. Comparing the Variant System  qqp ,  with the  tMK  System 
 
Like the formulas )2(  for the Variant system, the formulas )4(  for the  tMK  system can be 
parameterized so that they produce families of triples for each positive integer K: 
 

     
2 2 2 22 2

, , .
2 2K K K

M t KMt M t KMt
A t Mt K B t C t K

K K

 
      (7) 

 
There might be a need to clear up what might lead to a little confusion – while both generative 
systems produce families of triples that are indexed by integers, a closer look shows that each 
family of  qqp ,  corresponds to the integer index K where 2pK  . That makes sense 
because the variant system can only generate triples whose hypotenuse-leg difference is a perfect 
square. A case in point is the earlier-appearing graph of the 3p -family       tCtBtA 333 ,, ; this 

is also the graph of the 9K -family       tCtBtA 999 ,, . Thus the variant  qqp ,  system only 

organizes the triples that it generates into cosets; that is not the same as all of the triples as 
produced by the  tMK  system. 
 
Whenever K is a perfect square, then 24 MK   and the formulas  4  of the  tMK  system 

reduce to those of the Variant system  2  where 2pK   and pM 2 . One might say that the 

 tMK  system ‘extends’ the  qqp ,  system, generalizing its formulas, and allowing for 
families of triples indexed by all positive integers K, rather than just the integers that are perfect 
squares )( 2pK  . 
 
Now remember that the neither the Classical  sr,  system nor its variant  qqp ,  system 
produce co-triples – if one generates a triple ),,( cba , then it does not generate ),,( cab . In this 
sense, these systems produce only half of all of the triples. Considering this in more detail, if 
 

 2 2 2 2( , , ) , 2 , ,a b c r s rs r s    then 2)( srbcK   

 
indicating that K is a perfect square. For its co-triple ),,( cab  we have 
 

 ,,,2),,( 2222 srsrrscab   then 22sacK   
 
indicating that the hypotenuse-leg difference K is an even integer that is twice a perfect 
square p : 
 

2{2,8,18,32,50,72,98,..., 2 ,...}K p . 
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All of the triples (including all co-triples) generated by  tMK ,,  come from exactly one set of 
formulas. Thus, we have two conditions under which a primitive triple will occur: 

 
A triple generated by  tMK ,,  is primitive whenever 
 (i)  K is an odd perfect square ...}),81,49,25,9,1{( K  and 1),( tK , and 
(ii)  K is twice a perfect square ...}),50,32,18,8,2{( K  and 1),( tK . 

 
 
8. Some Observations and Applications 
 
The preceding mathematical gymnastics are straightforward and comprise the ‘heavy lifting’. 
The behind-the-scenes effort that took some doing was coming up with a way to describe K’s co-
value M. What follows are some interesting, easily proved observations. Consequently, in the 
interest of brevity, they are stated without proofs. 
 
Observation 1: 
  
Let ),,( cba  be a Pythagorean Triple generated by the integer pair  sr,  using the classical 

Greek formula as well as by  tMK ,,  using  4 . If 24 MK  , then we have the cross-over 
relationships 
 

2( )
2

M
K r s r t     

2( )M r s s t    
t s  

 
For a given value of K, it is useful to know when    tAtB KK  . Then we can predict when the 

triple ),,( cba  generated by  tMK ,,  will be ordered, ie. cba  . 
 
 
Observation 2: 
  
Let ),,( cba  be a triple generated by three positive integers  tMK ,, ; then ba   when 

M

K
t

2
 and ba   when 

M

K
t

2
 . 

A straightforward calculation shows that    tBtA KK   when 
M

K
t

2
 , and the result follows 

easily. This result is particularly convincing when viewing a graph where the functions 
     tCtBtA KKK ,,  (for a specific K) are simultaneously displayed as shown earlier. 
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Observation 3: Hypotenuse-leg Twins 
  
A triple of the form )1,,( bba  is called a hypotenuse-leg twin – i.e., )13,12,5( . The family 

      tCtBtA 111 ,,  produces all the hypotenuse-leg twin triples. We have  

       )122,22,12(,, 22
111  ttttttCtBtA  for integer values of 0t .  The first 15 

)151,2,1(  tMK  are shown below: 
 

(3, 4, 5) (5, 12,13) (7, 24, 25) (9, 40, 41) (11, 60, 61) 

(13, 84, 85) (15, 112, 113) (17, 144, 145) (19, 180, 181) (21, 220, 221) 

(23, 264, 265) (25, 312, 313) (27, 364, 365) (29, 420, 421) (31, 480, 481) 

 
Note that every triple in this family is primitive, making this family unique in this respect. For 
each odd integer 3 , there exists one hypotenuse-leg twin triple with that integer as its first 
term. Each such triple is ordered )( ba  , making this family unique in that respect as well.  
 
Observation 4:  Recursive Relationships 
  
As we have seen in )4( , for each positive value of K, these formulas generate all of the triples in 
that particular family or ‘coset’. The differences between the related terms of successive triples 
are given by (for 2t ) 
 

( ) ( 1)K KA t A t M    

  2

( ) ( 1) ( ) ( 1)

(2 1) (2 ( 1) ).
2 2

K K K K

K

B t B t C t C t

M M
t M A t M

K K

    

     
 

 
These relationships let us generate a family of triples recursively. For example, if 8K , then 

4M  and for 2t : 
 

8 8

8 8

8 8

( ) ( 1) 4,

( ) ( 1) 2 3,

( ) ( 1) 2 3,

A t A t

B t B t t

C t C t t

  
   
   

 

 
where        )13,5,12(1,1,1 888 CBA  is the starting triple. 

 
By comparison, the original generating formulas )4(  for the family of triples with 8K  would 
yield (for 1t ) 
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8

2 2
2

8

2 2 2
2

8

( ) 4 8

2
( ) 4

2

2 2
( ) 4 8

2

A t Mt K t

M t K M t
B t t t

K

M t K M t K
C t t t

K

   


  

 
   

 

 
 
Observation 5: Applications to Cryptology 
   
The generation of Pythagorean Triples using )4(  can lend itself to the area of cryptology very 
nicely because two distinct related generating sets, such as }1,2,1{  and }1,2,2{ , will yield the 
‘same’ triple (allowing transposition), in this case )5,4,3( . The various families of )7(  (indexed 
by K) can be thought of as an infinite number of code wheels with each wheel (family) having 
infinite ways to code each letter of the alphabet – ‘e’ could be coded with some value 

26mod5t  for instance. Together, a value chosen for K (wheel) plus the value selected for t 
will produce a triple ),,( cba ; remember that K will determine its necessary co-value M. If ‘e’ is 
the plaintext message, the representative cipher sent will be the first two terms of the triple, 
namely ),( ee ba . The third value of the triple can easily be calculated from the other two terms 

and then eK  and et  can be calculated to decode the cipher. But along with eK  and et , there is 

another pair eK
~

 and et
~  that produce the ‘same’ triple. Which ‘wheel’ did the ‘t’ come from? 

Which ‘t’ is the correct one? Even working with the correct ‘t’, the ‘t’ still needs to be 
deciphered. 
 

{ , } ( , ) ( , , )e e e e e e ee K t a b a b c   
{ , }

?

{ , }.

e e

e e

K t

K t 
 

 
This is not a problem for someone who knows which choice to make, but a savvy hacker, even 
one who realizes the methodology, still has to make a choice, and this is his/her dilemma. After 
thirty characters of plaintext, there are over a billion possible combinations to muddle through. In 
short, a plaintext message can be coded in exactly one way, can be decoded easily, but would 
require a Herculean effort to crack. Changing the parameters of the ciphering algorithm to spawn 
a new cipher is easy, and can be done often with little work. Moreover, any number of other code 
scamblings could be used to further obfuscate the cipher. For example, ),( ba  could be sent as 

)7,3(  ba . Of course, a computer needs to be part of the whole process. 
 

 
9. Conclusion 
 
Some of the advantages of the  tMK  system for generating Pythagorean Triples include the 
following: 
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 Every triple has a unique generative set  tMK ,, , eliminating any need for multipliers or 
transposition to produce them. 

 Each member of a generative set  tMK ,,  has a geometric relationship to the triangle 
whose side lengths ),,( cba  they produce. 

 It organizes ‘all’ of the triples into countable families or cosets indexed by the value of K. 
 The cosets or families of triples can be graphed to visually display the members of the 

family. The members of each family are analytically related by the functions 
      tCtBtA KKK ,, . 

 As an unintended consequence, it has applications to cryptology. 
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APPENDIX 
 

Factorization of K 
 

0 1 2

0 1 2

0 01 2 1 2

0 0

1 2

11 1
1 2 1 2

2
1 2 1 2 1 2

2

1 1 1

2 ... 2

... 2 ...

... (2 ... ) 2 ...

(2 ) 2 ,

k

k

k k

n n

r rr r
k k

r rr r
k k

s s t ts s t t
k k k

k k k
s s t t

n n n
n n n

K p p p p k

p p p p p p

p p p p p p p p p

p p p

 

  

  

  

   

    

 

 

where 
2

1
,

2
0

0


 n

n

r
s

r
s  (integer division), 2mod

2

1
,2mod

2
0

0


 n

n

r
t

r
t  for kn ...,,2,1 . 

Note that either 0nt  or 1nt  for kn ...,,2,1,0 . Thus K can be written as the product 

LEDK  2 , where 

0 0

1 1 1

2 2 .n n

k k k
s s t t

n n n
n n n

D p E p L p
  

      

 


