Mathematical Model: Comparative Study of Thermal Effects of Laser in Corneal Refractive Surgeries

Gokul KC*, Dil Bahadur Gurung and Pushpa Raj Adhikary

Department of Natural Sciences (Mathematics)
School of Science
Kathmandu University
Dhulikhel, Kavre, Nepal

*Corresponding Author Email: gokulkc2@gmail.com

Received: June 10, 2014; Accepted: May 19, 2015

Abstract

Lasers have been widely used in ophthalmology. Refractive errors are some of the most common ophthalmic abnormalities worldwide. Laser refractive surgery was developed to correct refractive errors myopia, hyperopia and astigmatism. Two types of laser surgical techniques: lamellar and thermal are available to reshape the corneal curvature. Ultraviolet (UV) emitting argon fluoride (ArF) excimer laser is used to sculpt cornea in lamellar procedures, whereas, infrared (IR) emitting holmium yttrium aluminum garnet (Ho: YAG) laser is used to shrink cornea in thermal procedure. Tissue heating is common in all types of laser surgical techniques. Hence, in this paper, a finite element model is developed to investigate the temperature distribution of cornea in different laser refractive surgeries. Characteristics of optical and thermal processes and influence of the parameters of radiation and tissues on the results of laser action are investigated. The results of mathematical modeling in different surgical techniques are discussed, compared, and validated with experimental results.

Keywords: Temperature, Laser; Human eye; Refractive errors; LTK; LASIK; Finite element method

MSC 2010 No.: 92B05, 80A20, 80M10, 78A60
1. Introduction

1.1. Background of the study

After the development of infrared lasers many researchers performed investigation on their use in ophthalmology. Clinical experiences with applications of ultraviolet and infrared laser radiation for the treatment of different ocular diseases has shown marked advantages. Nowadays, lasers have become so universal that it is difficult to imagine ophthalmology without them. This increased use of lasers and widespread application of different types of eye surgeries have resulted in the need for quantitative understanding of basic interaction between laser radiation and the human eye tissues.

Light tissue interaction results in transmission, reflection, scattering or absorption of the light. Among these interactions absorption is most important because absorption of laser radiation by human eye tissue cause significant changes to the cellular material (Ansari and Mohajerani, 2011). The effects of observed laser photons on biological tissues can be divided into three general categories: photochemical, thermal and ionizing. Generally, thermal effects of laser on tissue is used in ophthalmology to treat retinopathy, macular degeneration etc., ionizing to treat tumors, cancer cells etc. and photochemical to treat refractive errors (Hojlo et al., 2007). Tissue heating is common in photochemical and ionizing effects. Therefore, the greatest concern is with the heating effects to the eye tissues (Ooi et al., 2008).

1.2. Significance and mechanism of corneal refractive surgeries

Refractive errors are some of the most common ophthalmic abnormalities worldwide. Eyeglasses are the mainstream treatment ever since. Refractive surgery was developed so that people could enjoy good vision with no or reduced dependence on glasses or contact lenses (Yu and Jackson, 1999). In normal eye, light is refracted first by the cornea and then by the lens to focus on the retina. The cornea contributes 60 – 70% of refractive power of the eye, the remaining 30 – 40% coming from the lens (Pustovalov and Jean, 2006).

People with refractive error have irregularities in cornea and/or shape of eyeball that cause light to focus too far in front of or too far behind retina. Laser refractive surgery reshapes the corneal curvature, making it flatter or steeper as required to counterbalance the patient’s refractive error. There are different laser surgical techniques, each with its own advantages/disadvantages, but they all have in common that they alter the structure, shape
and size of the cornea. Laser surgical techniques to correct refractive errors can be divided into 2 categories: lamellar and thermal (Yu and Jackson, 1999). In lamellar procedure, UV emitting argon fluoride excimer laser (ArF laser) is used to remove sub-micrometer amount of tissue from cornea through photo ablation. In thermal procedure, IR emitting holmium yttrium aluminum garnet (Ho: YAG laser) is used to shrink stromal collagen through heating.

Some common lamellar procedures are photorefractive keractomy (PRK), laser in situ keratomileusis (LASIK) and laser sub epithelial keratomileusis (LASEK). LASIK, PRK and LASEK are photo-ablation techniques where refractive power of the cornea is altered by removing bits and pieces from the corneal surface through ablation (Ooi and Ng, 2009). In PRK the epithelium is removed mechanically and the stromal bed is treated with excimer laser. In LASEK an epithelial flap is detached after application of diluted alcohol solution and laser is applied on it. After laser ablation, the epithelium is peeled back and repositioned. In LASIK, a thin-hinged corneal flap is created with a microkeratome and laser is applied. After photo-ablation, the flap is repositioned (Jr and Wilson, 2003).

Laser thermokeratoplasty (LTK) is the commonly used thermal procedure. LTK is a refractive procedure utilizing heat to reshape the surface of cornea through shrinkage of collagen within the stroma (Pustovalov and Jean, 2004). The increase in refractive power is achieved through this shrinkage of corneal collagen. Shrinkages are induced thermally through laser heating (Ooi et al., 2008). Corneal collagen is known to shrink when heated to temperature on the order of 100°C (Cvetkovic et al., 2011).

Although the result of these refractive surgeries is very predictable (over 90% of eyes will be within ±1.00D of the intended correction), overcorrection and under correction are still possible (Yu and Jackson, 1999). Under correction is more common than overcorrection, occurring in 4 – 10% of eyes. These problems may be permanent or may be corrected through a retreatment. Clinical studies reported that refractive success rate is in between 80 – 90% only (Hojlo et al., 2007). Another major complication is the dry eye, which is more frequent and severe in corneal refractive surgeries. Dry eye may be temporary side effect or become long term permanent (Teneri et al., 2003).

The most significant issue in the eye surgeries with laser is estimation of temperature distribution in eye tissue due to laser radiation intensity. If left unaddressed, the thermal effects may cause tissue damage and potentially reduce refractive outcomes. Therefore, modeling of heat transport is needed in order to explain the actual temperature variation in corneal refractive surgeries.

Most past models focused on modeling heat transport on different retinal diseases and injuries. Although some investigators modeled laser thermokeratoplasty on treating corneal refractive surgery, there is a lack of thermal modeling in excimer laser surgeries and extensive comparison between them. In the present paper, finite element method is used as a tool to find the transient temperature distribution of cornea in lamellar (PRK/LASIK/LASEK) and thermal (LTK) refractive surgeries. The possible effects of temperature increase in refractive outcomes are discussed and compared. The results so obtained are validated with experimental results.
2. Model Formulation

2.1 Discretization

A schematic diagram of human eye is displayed in figure 1. For modeling purpose, the opened eye is divided into six regions: cornea, aqueous humor, lens, vitreous humor, retina, and sclera. The choroid is relatively thin compared to retina, so we modeled choroid together with retina. Iris and ciliary body do not exist on pupillary axis, they are excluded from analysis. Each region is assumed perfectly bonded, homogeneous and the eye is assumed symmetrical about the pupillary axis. The diameter of the eye along pupillary axis is about 25.10 mm (Cvetkovic et al., 2011).

Initially, the eye is discretized into 6 regions based on thickness of each layer cornea, aqueous, lens, vitreous, retina and sclera. Furthermore, the analysis is carried out by increasing the mesh size. For convergence study, the mesh size is increased to 500, 5000 and 50000 elements and temperature values are calculated.

2.2 Governing equation and boundary conditions

The governing differential equation representing the bio-heat transfer in the human eye can be written by the well-known Pennes equation addressing the effect of blood perfusion and metabolism is given by (Pennes, 1998):

\[
\rho_b c_b \frac{\partial T}{\partial t} = k \nabla^2 T + \omega \rho_b c_b (T_b - T) + Q_m + Q_l. \tag{1}
\]

where, \(\rho_b \) = blood density (\(Kg m^{-3} \)), \(c_b \) = blood specific heat (\(J Kg^{-1} \circ C^{-1} \)), \(k \) = tissue thermal conductivity (\(W m^{-1} \circ C^{-1} \)), \(\omega \) = volumetric blood perfusion rate per unit volume (\(s^{-1} \)), \(T_b \) = blood temperature (\(\circ C \)), \(T \) = tissue temperature (\(\circ C \)), \(Q_m \) = heat generation due to metabolism (\(W m^{-3} \)) and \(Q_l \) = heat generation due to laser (\(W m^{-3} \)).
The heat generation in tissue due to laser radiation depends mainly on absorption coefficient $\alpha \,(m^{-1})$ and fluence rate $I(r, z)\,(W/m^2)$ in cylindrical coordinates is given by (Shibib 2013):

$$Q_t(r, z) = \alpha \, I(r, z), \quad (2)$$

where, the fluence rate is given by

$$I(r, z) = I_0 \, e^{-[(\alpha + (1-g)\,\alpha_s)\,z]}, \quad (3)$$

where, α_s is the scattering coefficient, g is anisotropy factor. If absorption dominates scattering then the fluence rate at any depth can be governed by Lambert-Beers law. The heat generation through the tissue due to laser photons absorption is

$$Q_t(r, z) = \alpha \, I_0 \, e^{-\alpha z}, \quad (4)$$

where, I_0 is the incident value of intensity. For top hat laser beam profile the induced power intensity is given by

$$I_0(r, z) = \frac{4P}{\pi\omega^2}, \quad (5)$$

where, P is laser power in watts, ω is the beam waist.

Hence the heat generation due to laser at cornea in one dimension ($r = 0, z = x$) is given by

$$Q_t(x) = \alpha \, I_0 \, e^{-\alpha x}, \quad (6)$$

Boundary conditions for the system can be defined as follows:

1. On the outer surface of the sclera, the heat flows run into the eye with the complicated network of ophthalmic vessels which are located inside the choroidal layer acting as a heating source to the sclera. This heat exchange between the eye and the surrounding is modeled using the following convection boundary condition:

$$\Gamma_2: \quad -k_s \frac{\partial T}{\partial n} = h_b(T - T_b), \quad (7)$$

where, n is the normal direction to the surface boundary, k_s is the thermal conductivity of sclera, h_b is the heat transfer coefficient between blood and eye ($W/m^2^\circ C$), and T_b is blood temperature ($^\circ C$).

2. Since outer surface of the eye (cornea or skin) is exposed to the environment, the heat loss caused via convection, radiation, and evaporation. This loss is modeled using the following boundary condition:

$$\Gamma_1: \quad -k_c \frac{\partial T}{\partial n} = h_a(T - T_a) + \varepsilon(\alpha T^4 - \varepsilon T_a^4) + E, \quad (8)$$

where, h_a presents the convection heat transfer coefficient between the cornea and ambient environment ($W/m^2^\circ C$), T_a is the ambient room temperature ($^\circ C$), α is the Stefan Boltzmann constant ($5.67 \times 10^{-8}W/m^2^\circ C^4$), ε is the emissivity of the cornea,
and E is evaporative heat loss (W/m^2) between cornea and environment.

The nonlinear radiation term in the boundary condition (8) is treated by using simple iterative procedure as follows:

$$-k_c \frac{\partial T_s}{\partial n} = [h_a + \sigma \varepsilon (T_s + T_a)(T_s^2 + T_a^2)](T_s - T_a) + E,$$

$$-k_c \frac{\partial T_{cr}}{\partial n} = h_{cr}(T_{cr}^m - T_a) + E,$$

where,

$$h_{cr} = h_a + \sigma \varepsilon (T_{cr}^{m-1} + T_a)((T_{cr}^{m-1})^2 + T_a^2),$$

$$h_{cr} = h_{convection} + h_{radiation},$$

where, T_{cr}^m are temperature sequences for $m = 1, 2, 3, \ldots$ and T_0^0 represents an initial guess of temperature.

The iteration is completed when the convergent condition is satisfied:

$$|| T_{cr}^m - T_{cr}^{m-1} || < \delta,$$

where, δ is iteration tolerance.

2.3. Numerical solution procedure

The partial differential equation (1) together with laser source equation (6) and boundary conditions (7) and (10) in one-dimensional variational form is:

$$I = \frac{1}{2} \int_0^L \left[K \left(\frac{d^2 T}{dx^2} \right)^2 + \omega \rho_c c_v (T_0 - T)^2 - 2Q_m T - 2Q_l T + \rho c \frac{dT^2}{dt} \right] dx + \frac{1}{2} h_b (T - T_0)^2 + \frac{1}{2} h_{cr} (T - T_a)^2 + ET.$$

To minimize I, we differentiate I partially with respect to T_i and equating to zero as follows,

$$\frac{\partial I}{\partial T_i} = 0,$$

Equation (15) is the system of linear equations, which can be written in matrix form as

$$[C]\{\vec{T}\} + [K]\{T\} = \{R\},$$

where $\{\vec{T}\} = \left[\frac{\partial T}{\partial t} \right]$, $\{T\} = \{T_i\}$ and $\{R\} = \{R_i\}$ are $N \times 1$ vectors. Similarly, $[C]$ and $[K]$ are $N \times N$ matrices called conductivity and capacity matrices respectively. N is the total number of nodal points in discretization of the domain.

Now Crank-Nicolson method is applied to solve the system (16) with respect to time using the following relation
\[
\left(\frac{1}{\Delta t} [C] + \frac{1}{2} [K] \right) \{T\}_{n+1} = \left(\frac{1}{\Delta t} [C] - \frac{1}{2} [K] \right) \{T\}_n + \{R\}, \quad (17)
\]

where, \(\Delta t \) is time interval.

The temperature increases from outer surface of the eye towards core, when ambient temperature is less than 37°C and vice versa. Hence, we consider the temperature increases/decreases in linear order towards eye core with regard to thickness. For initial nodal temperatures \(\{T\}_0 \) at time \(t = 0 \), we assume the following initial condition

\[
T(x = l_i, t = 0) = T(0,0) + \gamma l_i, \quad (18)
\]

where, \(i \) ranges from 1,2,3, ..., 6. \(T(0,0) = 20°C \) and \(\gamma \) = constant to be determined. The equation (17) is repeatedly solved to get the required nodal temperatures.

2.4. The Control Parameters

The cornea is comprised of five distinct layers: epithelium, Bowman’s membrane, stroma, Descent’s membrane and endothelium. The two major physiologic functions of the cornea are as a bio-defense and as a refractive system. The cornea contributes 60 – 70% of refractive power of the eye (Yu and Jackson 1999). Water is the main component of corneal tissue. Collagen is the major structural component of the corneal stroma accounting for 12 – 15% of its weight (Pustovalov and Jean 2004). The cornea causes negligible light scattering (Petit and Ediger 1996). The major absorbers of far UV and IR laser light are proteins, peptides, pigments and water. The cornea absorbs almost all wavelengths greater than 3000nm, less than 300nm and most radiation above 1400nm (Voike 2008). The cornea absorbs more than 90% of laser energy in the wavelength between 1.85μm and 2.1μm (Ooi et al. 2008) and remaining light transmits and absorbed in aqueous humor.

ArF excimer laser emits high energy ultraviolet light at a wavelength of 193nm. Common ArF excimer lasers for medical purpose have average laser power 0.64W, spot size 0.97 mm², pulse duration 10 – 50ns, relaxation time 2000 – 10000μs (Silfvast 2009). An average ablation rate of 10.9μm per spherical equivalent dioptr of correction was recently reported for three clinical refractive surgery systems (Fisher and Hahn 2011). The absorption coefficient of cornea is taken as 39900cm⁻¹ for 193nm wavelength of ArF laser (Petit and Ediger 1996). Fisher and Hahn (2011) developed a functional relationship between laser pulse energy and ablation rates using experimental setup as

\[
y = 0.18094 x + 0.39666. \quad (19)
\]

where, \(x \) = laser pulse energy (mJ) and \(y \) = ablation depth (μm).

Ho: YAG laser emits infrared light at a wavelength of 2070nm. The general parameter values for this laser are: wavelength(λ) = 2.1μm, laser energy =25mJ/pulse, pulse duration = 200μs, relaxation time = 2s, laser power = 150W, beam diameter = 0.6mm (Silfvast 2009). Corneal collagen starts to denature when heated above 45°C and shrink when heated to temperatures above 55°C and when its temperature exceeds 90°C, it relaxes to contour the intended corneal shrinkage (Ooi et al. 2008). The absorption coefficient of Ho: YAG laser for corneal tissues lie in the range 25 – 100cm⁻¹ (Pustovalov and Jean 2006).
The parameter values for different parts of eye are presented in Table 1.

Table 1. Thermal properties of human eye tissues (Gokul et al. 2013, 2014)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Thermal Conductivity (K) (W m(^{-1})°C(^{-1}))</th>
<th>Blood Perfusion((\omega)) (s(^{-1}))</th>
<th>Metabolic Rate (Qm) (W m(^{-3}))</th>
<th>Density ((\rho)) (Kg m(^{-3}))</th>
<th>Specific heat (C) (J Kg(^{-1}) °C(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornea</td>
<td>0.58</td>
<td>0</td>
<td>0</td>
<td>1050</td>
<td>4178</td>
</tr>
<tr>
<td>Aqueous</td>
<td>0.58</td>
<td>0</td>
<td>0</td>
<td>996</td>
<td>3997</td>
</tr>
<tr>
<td>Lens</td>
<td>0.400</td>
<td>0</td>
<td>0</td>
<td>1050</td>
<td>3000</td>
</tr>
<tr>
<td>Vitreous</td>
<td>0.603</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>4178</td>
</tr>
<tr>
<td>Retina</td>
<td>0.565</td>
<td>0.0222</td>
<td>22000</td>
<td>1050</td>
<td>3680</td>
</tr>
<tr>
<td>Sclera</td>
<td>1.0042</td>
<td>0</td>
<td>0</td>
<td>1100</td>
<td>3180</td>
</tr>
</tbody>
</table>

2.5. Methodology

Nowadays up to, \(-14D\) of myopia, \(+6D\) of hyperopia and \(±6D\) of astigmatism can be corrected using ArF excimer laser. For modeling purpose, we take 3D correction as a base. Since, \(1D\) correction is equivalent to \(10.9\mu m\) of ablation; \(3D\) correction is equivalent to \(32.7\mu m\) of ablation. The average energy per pulse is \(1.5mJ\) with maximum \(2.5mJ\) and average frequency \(100Hz\) with maximum \(250Hz\) are currently used in practice. Thus in this study, the temperature distribution are calculated at pulse energies \(1.5mJ, 2.5mJ\) and \(5mJ\) and at frequencies \(100Hz, 250Hz\) and \(500Hz\) respectively. The relaxation time between two laser pulses is sampled in \(10\mu s\) steps.

LTK shows much promise in correcting the refractive errors of hyperopia and astigmatism. Nowadays, LTK can correct mild hyperopia, astigmatism or combination of them without involving corneal epithelium or central visual axis. Typical application consists of delivering several laser pulses in an annular pattern in order to induce local shrinkage of the corneal collagen. According to Ooi et al. (2008), a typical pulsed LTK treatment consists of seven laser pulses, which we consider here. The temperature distribution during Ho: YAG laser surgery is calculated at different absorption coefficients \(2500, 4000\) and \(5000m^{-2}\). The relaxation time between two laser pulses is sampled in \(1\mu s\) steps.

The governing equation (1) with boundary conditions (7) and (10) is solved without laser source in steady state using different parameter values as tabulated in table 1. The obtained steady state results are utilized as initial condition for the transient analysis when laser is subjected to corneal stroma. To approximate the solution, finite element method with Lagrange linear basis function is used for space and finite difference method (Crank – Nicholson) is used for time. The nonlinear term in boundary condition (8) is linear zed using iterative procedure as discussed in section 2.2. The tolerance value (\(\varepsilon\)) is chosen as \(10^{-5}\).

3. Results

The convergence study has been carried out by varying the mesh size of the domain in steady state case without using laser. Our initial mesh consists of 6 elements representing each eye tissues. The mesh size is increased to \(500, 5000\) and \(50000\) elements and temperature values are calculated. The obtained temperature values are tabulated in table 2.
Table 2. Convergence study

<table>
<thead>
<tr>
<th>Mesh Type</th>
<th>Mesh size</th>
<th>Temperature values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>6</td>
<td>32.1745°C</td>
</tr>
<tr>
<td>Normal</td>
<td>500</td>
<td>32.1754°C</td>
</tr>
<tr>
<td>Fine</td>
<td>5000</td>
<td>32.1768°C</td>
</tr>
<tr>
<td>Extremely fine</td>
<td>50000</td>
<td>32.1782°C</td>
</tr>
</tbody>
</table>

Figure 2 shows the peak temperature distribution of single pulse during the application of different laser pulse energies in ArF laser surgery. The peak temperature (at single pulse) obtained are 140°C, 156.93°C and 234.14°C respectively. Figure 3 shows the peak temperature distribution during the application of different absorption coefficients in LTK. The peak temperature obtained are 91.29°C, 105.49°C and 152.08°C respectively. The temperature values on the order of 100°C are required to initiate shrinking of corneal tissues.

![Figure 2. Peak temperature for different laser power in ArF refractive surgery](image)

![Figure 3. Peak temperature for different absorption coefficients in LTK](image)

![Figure 4. Temperature distribution of cornea at frequency 100Hz](image)

![Figure 5. Temperature distribution of cornea at absorption coefficient 2500m⁻¹](image)
Figure 6. Temperature distribution of cornea at frequency 250Hz

Figure 7. Temperature distribution of cornea at absorption coefficient 4000m$^{-1}$

Figure 8. Temperature distribution of cornea at frequency 500Hz

Figure 9. Temperature distribution of cornea at absorption coefficient 5000m$^{-1}$

According to the functional relationship between ArF laser pulse energy and ablation rates in PRK developed by Fisher and Hahn, the ablation rate at 2.5mJ pulse energy is 0.85μm per pulse. To ablate 32.7μm of corneal stroma, approximately 38 pulses are needed.

Figure 4 shows the temperature distribution of cornea in LASIK at laser frequency 100Hz and constant pulse energy 2.5mJ. Initially temperature rises very fast and after some pulses, it reaches in steady state. The steady state temperature obtained after 38 pulses is 34.60°C. Similarly, steady state temperature obtained after 38 pulses at laser frequencies 250 Hz and 500Hz are 40.70°C and 51.99°C as shown in figures 6 and 8 respectively.

Figure 3 shows the temperature distribution pattern of 7 pulses and at absorption coefficient 2500m$^{-1}$ in LTK. The corneal temperature increases above 100°C with steady state temperature 47.31°C. Figure 5 and 7 show the temperature distribution pattern of 7 pulses and at absorption coefficient 4000m$^{-1}$ and 5000m$^{-1}$ respectively. The steady state
temperature obtained after 7 pulses at absorption coefficients 4000m$^{-1}$ and 5000m$^{-1}$ are 53.72°C and 59.27°C respectively.

4. Discussion

In ArF laser surgeries, corneal epithelium is removed first and laser is applied on the bed of stroma. If the stromal temperature reaches greater than 45°C, collagen denaturation may starts. Even in 40°C stromal temperature in presence of environmental oxygen, several chemical reactions like oxidation may possible. These effects may cause tissue damage and potentially may reduce refractive outcomes. Hence the increase in temperature and chemical reactions may damage (in the sense of ablation) stroma, which may be the cause of over/under correction in LASIK.

After removal of epithelium flap in LASIK, due to high evaporation, the steady corneal temperature is achieved at 30°C, which is closed to the experimental studies. Based on this normal value, the temperature is increased up to 5°C, 15°C and 33°C during 100Hz, 250Hz and 500Hz frequency used for 3D correction. Moldonado-Codina et al. (2001) investigated the temperature changes occurs during photorefractive keratectomy (PRK) when performed in 19 bovine corneas. They observed an average temperature rise at the corneal surface is 8°C. Morchen et al. (2009) observed a maximum temperature increase of 15°C in bovine corneas for $-9.00D$ myopia treatment and 11°C for $+6D$ hyperopia correction. Betney et al. (1997) observed maximum temperature increase of 9.5°C during PRK surgery. This shows that our results in LASIK are in good agreement with past experimental results.

We discussed above the effects of temperature increase in ArF surgeries. The major side effect discussed in ArF surgeries is under and over correction. Over and under correction are due to the denaturation of proteins and collagen shrinkage. Hence in ArF surgeries collagen shrinkage is the major side effect, however in LTK collagen shrinkage is the intended effect. In LTK, temperature should reach to that threshold value from where corneal shrinkage starts. In ArF surgeries, high energy UV laser’s very short pulses heats up stroma for very small time (10 – 30ns) and break intermolecular bonds. This process vaporizes stromal collagen precisely and sculpts the cornea. In LTK, IR laser’s very long (200μs) pulses (compare to ArF laser) heats up cornea constantly to a certain degree and evaporates water from stroma/epithelium.

After the epithelium is removed from cornea, exposure to environmental air dehydrates the corneal tissue and establishes a hydration gradient. The majority of corneal stroma consists of lamellae composed of type I collagen fibers that are of uniform dimension and are evenly spaced by a matrix of proteoglycans. Proteoglycans are more efficient at holding water and plays important role in corneal hydration. Evaporation of water from matrix of proteoglycans, leading to decreased spacing of collagen fibers. This precisely shrinks and makes steeper cornea in LTK. However, Slight variation in corneal hydration is considered a potential source of variation in stromal ablation rates in LASIK. The stromal ablation rate increases with increasing hydration and hydration increases with corneal depth (Fisher and Hahn 2011). Therefore, one possible variable behind over/under correction may be stromal hydration.

The main problem of LTK is related to the selection of laser radiation parameters that provide effective heating and shrinkage of the entire volume of stroma irradiated by laser beam. The use of radiation with $\lambda = 1.0 - 1.35\mu m$ with very low value of α in the range 0.1 – 5cm$^{-1}$
is dangerous because of very deep penetration of radiation in intraocular tissues. The use of
radiation with wavelength $> 2.5\mu m$ and absorption coefficient $\alpha = 100 - 1000 cm^{-1}$ leads
to very shallow penetration and heating of corneal tissues.

The results show that it is possible to achieve the tissue heating above $100^\circ C$ for collagen
shrinkage. The level of shrinkage very strongly depends on temperature. Ooi et al. (2008)
investigated the temperature distribution of cornea using boundary value method. They
obtained the maximum temperature of $110^\circ C$ after 7 pulses. Cvetkovic et al. (2011) obtained
significantly higher temperature values $230.12^\circ C$ after LTK. Pustovalov et al. (2004) found
relatively lower temperature values $70 – 85^\circ C$ inside the stroma after LTK. Our results lie
within the results from past literatures and show the best temperature values for corneal
shrinkage and hence for LTK.

The variation of the absorption coefficient of corneal tissue leads to significant changes of the
shape, position and dimension of the heated region. Within a given temperature range,
thermal denaturation is associated with collagen shrinkage parallel to the axis of the collagen.
This is the intended effect in LTK. Long term stability depends on the parameters of laser
radiation and cornea tissue, all of which contribute to control stable collagen shrinkage.
There are many cases of failure and of unwanted adverse effects and applications for LTK.

Lamellar procedures (PRK/LASIK/LASEK) are the most widely used methods in refractive
surgery. Because they are stable and gives long lasting results until presbyopia starts.
Excimer laser surgeries show more promise over LTK in correcting mild to severe myopia,
mild hyperopia and astigmatism but not the combination of them. The thermal procedure
(LTK) is a repeatable procedure demonstrating more stable results over five to eight years.
LTK is effective for hyperopia and astigmatism but not for myopia because LTK does not
perform in the central part of the cornea. LTK makes more spherical and natural shape of the
corneal surface than excimer laser surgery. LTK shows more promise over excimer laser
surgeries in correcting hyperopia, astigmatism and combination of them.

5. Conclusion

We developed a finite element mathematical model based on time dependent Pennes bioheat
equation of human cornea during PRK/LASIK/LASEK and LTK. The temperature increase
by ArF excimer laser in lamellar procedures and by Ho: YAG laser in thermal procedures of
corneal refractive surgeries are discussed. The temperature values obtained by varying
absorption coefficients, laser power and frequencies show good agreement with experimental
results. Heating due to absorption of laser photons by corneal tissues causes collagen
shrinkage, protein denaturation, and more evaporation of water and vaporization of stroma. In
lamellar procedure these are the side effects and in thermal procedures these are the intended
effects. However, the temperature control for better results in both surgical techniques is still
a challenge. Although refractive surgery techniques are safe and effective, temperature
increase should be considered as a risk factor. It is possible to increase success rate of
refractive surgeries by selecting the appropriate laser parameters in different spectral ranges.
We can extend this model to predict the thermal effects due to laser radiation by various
lasers in different tissues of human body. It is expected that, the information generated from
this model are useful to laser surgeons, biomedical engineers, medical scientists and future
researchers.
REFERENCES

Cvetkovic M., Poljak D., Peratta A. (2011) FETD Computation of the Temperature Distribution Induced into a Human Eye by a Pulsed Laser, Prog. in Electromagnetics, Vol. 120.