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Abstract                                                                                                                                          
 

The system comprises of a commensal (S1) common to two hosts S2 and S3 with mortality rate 

for the host (S3). Here all the three species posses limited resources. The model equations 

constitute a set of three first order non-linear simultaneous coupled differential equations. 

Criteria for the asymptotic stability of all the eight equilibrium states are established. Trajectories 

of the perturbations over the equilibrium states are illustrated. Further the global stability of the 

system is established with the aid of suitably constructed Liapunov’s function and the numerical 

solutions for the growth rate equations are computed using Runge-Kutta fourth order scheme. 

Keywords: Commensal; equilibrium state; host; trajectories; mortality rate; stable; unstable 

2010 Mathematics Subject Classifications:  92D25, 92D40 

 

1.  Introduction 

 
Ecology is a branch of life and environment sciences which asserts the existence of diverse 

species in the same environment and habitat. It is natural that two or more species living in a 

common habitat interact in different ways. The Ecological interactions can be broadly classified 

as Ammensalism, Competition, Commensalism, Neutralism, Mutualism, Predation Parasitism 

and so on. Lotka (1925) and Volterra (1931) pioneered theoretical ecology significantly and 
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opened new eras in the field of life and biological sciences. The general concepts of modeling 

have been discussed by several authors [Colinvaux (1986), Kapur (1985), Kushing (1977), 

Meyer (1985)]. Srinivas (1991) studied competitive ecosystem of two species and three species 

with limited and unlimited resources. Later, Narayan et al. (2007) studied prey-predator 

ecological models with partial cover for the prey and alternate food for the predator. Stability 

analysis of competitive species was carried out by [Reddy et al. (2007), Sharma et al. (2008)], 

while Ravindra Reddy (2008) investigated mutualism between two species. Acharyulu et al. 

(2010, 2011) derived some productive results on various mathematical models of ecological 

Ammensalism with multifarious resources in the manifold directions. Further Kumar (2010) 

studied some mathematical models of ecological commensalism. The present author Prasad et al. 

(2011, 2012, and 2013) investigated on the stability of three and four species syn-ecosystems. 

 

The present investigation is on an analytical study of three species (S1, S2, S3) syn-eco system 

with mortality rate for the host (S3). The system comprises of a commensal (S1), two hosts S2 and 

S3, i.e., S2 and S3 both benefit S1, without getting themselves affected either positively or 

adversely. Further S2 is a commensal of S3 and S3 is a host of both S1, S2.  

 

Commensalism is a symbiotic interaction between two populations where one population (S1) 

gets benefit from (S2) while the other (S2) is neither harmed nor benefited due to the interaction 

with (S1). The benefited species (S1) is called the commensal and the other (S2) is called the host. 

Some real-life examples of commensalism are presented below. 

 

i. Sucker fish (echeneis) gets attached to the under surface of sharks by its sucker. This        

provides easy transport for new feeding grounds and also food pieces falling from the sharks 

prey, to Echeneis.  

 

ii. A squirrel in an oak tree gets a place to live and food for its survival, while the tree remains 

neither benefited nor harmed. 

 

iii. A flatworm attached to the horse crab and eating the crab’s food, while the crab is not put to 

any disadvantage. 

 

2.  Basic Equations of the Model 
 

The model equations for the three species syn ecosystem is given by the following system of first 

order non-linear ordinary differential equations employing the following notation: 

 

Notation Adopted 

 

 iN t : The population strength of iS  at time t , 1,2,3i                                                                          

t :  Time instant                                                                                                                        

3d :  Natural death rate of 3S                                                                                                     

ia :  Natural growth rate of iS , 1,2i                                                                                    

iia :  Self inhibition coefficients of iS , 1,2,3i                                                                   
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12 13,a a :  Interaction coefficients of 1S  due to 2S  and 1S  due to 3S                                             

23a :  Interaction coefficient of 2S  due to 3S                                                                         

3
3

33

d
e

a
 : Extinction coefficient of 3S                                                                                        

i
i

ii

a
k

a
 : Carrying capacities of iS , 1,2i   

Further the variables 1 2 3, ,N N N  are non-negative and the model parameters 1 2 3 11 12, , , , ,a a d a a  

22 33 13 23, , ,a a a a  are assumed to be non-negative constants. 

The model equations for the growth rates of 1 2 3, ,S S S  are: 

 

               1
1 1 11 1 12 2 13 3 ,

dN
N a a N a N a N

dt
                  (2.1) 

                                                       2
2 2 22 2 23 3 ,

dN
N a a N a N

dt
     (2.2) 

and 

                                                         3
3 3 33 3 .

dN
N d a N

dt
     (2.3) 

 

3.   Equilibrium States 

The system under investigation has eight equilibrium states given by  

0, 1, 2, 3idN
i

dt
  . 

(i) Fully washed out state. 

 0,0,0: 3211  NNNE . 

(ii) States in which only one of the tree species is survives while the other two are not.  

 2 1 2 3 3: 0, 0,E N N N e    ,                                                                       

3 1 2 2 3: 0, , 0E N N k N   ,                                                                                 

4 1 1 2 3: , 0, 0E N k N N   . 

(iii) States in which only two of the tree species are survives while the other one is not. 
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 23 3
5 1 2 2 3 3

22

: 0, ,
a e

E N N k N e
a

     ,                                       

13 3
6 1 1 2 3 3

11

: , 0,
a e

E N k N N e
a

     ,                                                                                             

12 2
7 1 1 2 2 3

11

: , , 0
a k

E N k N k N
a

    . 

(iv) The co-existent state (or) normal steady state. 

 

12 23 3 23 312 2
8 1 1 13 2 2 3 3

11 22 11 22

: , ,
a a e a ea k

E N k a N k N e
a a a a

   
          
   

. 

 

4.    Stability of the Equilibrium States 
 

Let  

                                                        1 2 3, ,N N N N N U   ,                                                  (4.1) 

 

where  TuuuU 321 ,,  is a small perturbation over the equilibrium state  321 ,, NNNN  . 

 

The basic equations (2.1), (2.2) and (2.3) are quasi-linearized to obtain the equations for the 

perturbed state as, 

 

                                                                    
dU

AU
dt

 ,                                                             (4.2) 

with  

 

                     

1 11 1 12 2 13 3 12 1 13 1

2 22 2 23 3 23 2

3 33 3

2

0 2

0 0 2

a a N a N a N a N a N

A a a N a N a N

d a N

   
 

   
   

.              (4.3) 

 

The characteristic equation for the system is  

                                                                 det   0A I  .                                                        (4.4) 

The equilibrium state is stable, if all the roots of the equation (4.4) are negative in case they are 

real or have negative real parts, in case they are complex. 

4.1.  Fully washed out state 

In this case, we have  
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1

2

3

0 0

0 0

0 0

a

A a

d

 
 


 
  

.                                                      (4.5) 

The characteristic equation is 

                                                          1 2 3 0a a d      ,                                              (4.6) 

The characteristic roots of (4.6) are 1 2 3, ,a a d . Since two of these three are positive. Hence, the 

fully washed out state is unstable and the solutions of the equations (4.2) are: 

                                                  3

0 3 30;   , 1, 2ia t d t

i iu u e u u e i


   ,                                          (4.7) 

where 10 20 30, ,u u u  are the initial values of 1 2 3, ,u u u , respectively. 

 

Trajectories of perturbations 

The trajectories in  1 2u u  and 2 3u u  planes are  

                                                       
1 2 3

1 1 1

31 2

10 20 30

a a duu u

u u u



     
      

     
.                                              (4.8) 

 

4.2.  Equilibrium state 2 1 2 3 3: 0, 0,E N N N e     

 

In this case, we have   

                                                    

1 13 3

2 23 3

3

0 0

0 0

0 0

a a e

A a a e

d

 
 

 
 
  

.                                            (4.9) 

 

The characteristic roots are: 1 13 3 2 23 3 3 ,  and a a e a a e d  . Since one of these three roots is 

positive, hence the state is unstable. The equations (4.2) yield the solutions, 

 

                                         
   1 13 3 2 23 3 3

 

1 10 2 20 3 30; ;
a a e t a a e t d t

u u e u u e u u e
 

   .                               (4.10) 

 

Trajectories of perturbations  

The trajectories in the 1 2u u  and 2 3u u planes are given by 

                                                 
1 13 3 2 23 3 3

1 1 1

31 2

10 20 30

a a e a a e duu u

u u u

      
      

     
.                                      (4.11) 

4.3.  Equilibrium state 3 1 2 2 3: 0, , 0E N N k N     

In this case, we have  
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1 12 2

2 23 2

3

0 0

0

0 0

a a k

A a a k

d

 
 

 
 
  

.                                            (4.12) 

 

The characteristic roots are: 1 12 2 2 3 ,  anda a k a d   . Since one of these three roots is positive, 

hence the state is unstable. The equations (4.2) yield the solution curves, 

 

                                   1 12 2 3 32

1 10 2 20 2 2 3 30; ;
a a k t d t d ta tu u e u u e e u u e 
       ,                      (4.13) 

 

 

where  

                                                           23 2 30
2 2 3

2 3

 ;  
a k u

a d
a d

  


.                                                 (4.14) 

Trajectories of perturbations 

The trajectories in the 1 2u u  and 2 3u u  planes are given by 

 

                  

32

1 12 2 1 12 2
1 1

2 20 2 2

10 10

da

a a k a a ku u
u u

u u
 



    
     

   
 ;  

2

3
3 3 2

2 20 2

30 30

a

du u
u u

u u




 
   

 
.        (4.15) 

 

4.4.  Equilibrium state 4 1 1 2 3: , 0, 0E N k N N    

 

In this case, we get  

 

                                                          

1 12 1 13 1

2

3

0 0

0 0

a a k a k

A a

d

 
 


 
  

.                                                (4.16) 

 

The characteristic roots are: 1 2 3, ,a a d . Since two of these three roots are positive, hence the 

state is unstable. The equations (4.2) yield the solutions, 

 

                             3 31 2 2

1 10 1 2 1 2 2 20 3 30; ;
d t d ta t a t a tu u m m e m e m e u u e u u e       ,                 (4.17) 

 

where  

                                                 12 1 20
1

1 2

0
a k u

m
a a

 


; 13 1 30
2

1 3

0
a k u

m
a d

 


.                                      (4.18) 

 

Trajectories of perturbations 

The trajectories in the 1 2u u  and 2 3u u  planes are given by 
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                   

31

2 2
2 2 1 2

1 20 1 2 2

20 20 20

da

a au u m u
u u m m m

u u u



   
       

   
 and  

3 2

32

20 30

d a

uu

u u

   
   

   
.          (4.19) 

 

4.5.   Equilibrium state 23 3
5 1 2 2 3 3

22

: 0, ,
a e

E N N k N e
a

      

In this case, we get 

                                         

1 12 2 1

2

23 3
23 3 2 23 2

22

3

0 0

0

0 0

a a k b

a e
A a e a a k

a

d

  
 
   
 
 
  

 ,                            (4.20) 

 

where   

                                                           12 23 3
1 13 3

22

0
a a e

b a e
a

   .                                                 (4.21) 

 

The characteristic roots are: 1 12 2 1 23 3 2 3 ,  and a a k b a e a d   . Since one of these three roots is 

positive, hence the state is unstable. The equations (4.2) yield the solution curves, 

 

                             
     23 3 21 12 2 1 3 3

1 10 2 20 2 2 3 30; ;
a e a ta a k b t d t d t

u u e u u b e b e u u e
 

     ,                  (4.22) 

 

where   

                                         
 

 
 23 23 3 2 30

2 23 3 2 3

22 23 3 2 3

 ; 
a a e a u

b a e a d
a a e a d


  

   

.                                (4.23) 

 

Trajectories of perturbations  

The trajectories in the 1 2u u  and 2 3u u  planes are given by 

 

           

23 3 2 3

1 12 2 1 1 12 2 1
1 1

2 20 2 2

10 10

a e a d

a a k b a a k bu u
u u b b

u u



      
     

   
 ;  

23 3 2

3
3 3 2

2 20 2

30 30

a e a

du u b
u u b

u u



 
   

 
.   (4.24) 

 

4.6.   Equilibrium state 13 3
6 1 1 2 3 3

11

: , 0,
a e

E N k N N e
a

      

In this case, we get  
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2

12 13 3 13 3
13 3 1 12 1 13 1

11 11

2 23 3

3

0 0

0 0

a a e a e
a e a a k a k

a a

A a a e

d

 
   

 
  
 
 
 
 

.                              (4.25) 

 

The characteristic roots are: 13 3 1 2 23 3 3, and a e a a a e d  . Since one of these three roots is positive, 

hence the state is unstable. The equations (4.2) yield the solution curves, 

                        13 3 1 2 23 3 2 23 33 3

1 10 1 2 1 2 2 20 3 30; ;
a e a t a a e t a a e td t d t

u u e e e u u e u u e   
  

       ,       (4.26) 

 

where  

                              
 

   

 

 
12 13 3 1 20 13 13 3 1 30

1 2

11 3 13 23 1 2 11 13 3 1 3

 ;
 

 
          

a a e a u a a e a u

a e a a a a a a e a d
  ,                 (4.27) 

with   

     3 13 23 1 2 13 3 1 3 ;     e a a a a a e a d . 

 

Trajectories of perturbations 

The trajectories in the 1 2u u  and 2 3u u  planes are 

 

                

13 3 1 3

2 23 3 2 23 3
2 1 2 2

1 10 1 2 2

20 20 20

a e a d

a a e a a eu u u
u u

u u u


  



    
       

   
 ; 

3 2 23 3

32

20 30

d a a e

uu

u u



   
   

   
.     (4.28) 

 

4.7.   Equilibrium state 12 2
7 1 1 2 2 3

11

: , , 0
a k

E N k N k N
a

     

In this case, we get  

                                    

 
2

12 13 212 2
1 12 2 1 12 1 13

11 11

2 23 2

3

0

0 0

a a ka k
a a k k a k a

a a

A a a k

d

 
    
 
  
 

 
 
 

.                           (4.29) 

 

The characteristic roots are:  1 12 2 2 3,  and a a k a d    , and these are all negative, hence the 

state is stable. The equations (4.2) yield the solutions: 
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   

 

1 12 2 32

3 32

1 10 1 2 1 2

2 20 3 3 3 30

;

; ,

  

 

     


    

a a k t d ta t

d t d ta t

u u e e e

u u e e u u e

   

 
                            (4.30) 

 

where 

 

             
  

 

  

 
12 1 12 2 20 3 1 12 2 12 3 13 30 23 2 30

1 2 3

11 1 12 2 2 11 1 12 2 3 2 3

 ; ;  
a a a k u a a k a a u a k u

a a a k a a a a k d a d

 
  

   
  

    
.     (4.31) 

 

It can be noticed that 1 20, 0u u  and 3 0u   as t  .                               

 

Trajectories of perturbations 

The trajectories in 1 3u u  and 2 3u u  planes are given by 

 

              

1 12 2 2 2

3 3 3
3 3 2 3 3 3 3

1 10 1 2 1 2 20 3

30 30 30 30 30

;

a a k a a

d d du u u u u
u u u u

u u u u u

 
   



     
            

     
.  (4.32) 

 

 

4.8.   The normal steady state  3218 ,, NNNE   

 

In this case, we get  

                                                 

13 112 1
1

11 11

2

23 3
23 3 2 23 2

22

3

0

0 0

aa

a a

a e
A a e a a k

a

d



 

  
 
 

   
 
 
 
 

,                                        (4.33) 

 

where  

                                           1 1 12 2a a k     ; 12 23 3
13 3

22

0
a a e

a e
a

    .                                (4.34) 

 

The characteristic roots are; 1 23 3 2 3,  anda e a d  . Since one of these three roots is positive, hence 

the state is unstable. The equations (4.2) yield the solution curves, 

 

                                         
   

   

23 3 2 31

23 3 2 3 3

1 10 1 2 1 2

2 20 3 3 3 30

; 

; ,





     


    

a e a t d tt

a e a t d t d t

u u e e e

u u e e u u e

   

 
                              (4.35) 

 

where 
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 

 
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 

 

 
12 1 3 20 1 12 3 13 30 23 23 3 2 30

1 2 3
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, ,
  

  
    

a u a a u a a e a u

a a e a a d a a e a d

   
  

 
,         (4.36) 

 

with  

 

23 3 2 1 1 3 23 3 2 3;  ;     a e a d a e a d  . 

 

Trajectories of perturbations 

Trajectories in 1 3u u  and 2 3u u  planes are given by 

                                    

 

 

23 3 21

3 3

23 3 2

3

3 3 3 2
1 10 1 2 1

30 30 30

3 3 3
2 20 3

30 30

,

.






            
    


 
   
  

a e a

d d

a e a

d

u u u
u u

u u u

u u
u u

u u




  




                        (4.37) 

 

 

5.    Liapunov’s function for global stability 
            

In section 4 we discussed the local stability of all eight equilibrium states. From which only the 

state,  7 1 2, ,0E N N  is stable and rest of them are unstable. We now examine the global stability 

of dynamical system (2.1), (2.2) and (2.3) at this state by suitable Liapunov’s function.  

 

 

 

 

Theorem.   

 

The equilibrium state 12 2
7 1 2

11

, , 0
a k

E k k
a

 
 

 
 is globally asymptotically stable. 

 

Proof :   
 

Let us consider the following Liapunov’s function 

 

                              1 2
1 2 1 1 1 1 2 2 2

1 2

, ln ln
N N

V N N N N N l N N N
N N

    
         

    
,                    (5.1) 

 

where 1l  is a suitable constant to be determined as in the subsequent steps. 

Now, the time derivative of V, along with solutions of (2.1) and (2.2) can be written as 
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                                             1 1 1 2 2 2
1

1 2

N N dN N N dNdV
l

dt N dt N dt

    
    
   

,                                    (5.2) 

     1 1 1 11 1 12 2 1 2 2 2 22 2N N a a N a N l N N a a N       , 

      
2 2

11 1 1 12 1 1 2 2 1 22 2 2a N N a N N N N l a N N         
 

, 

                  
2

11 1 1 1 22 2 2 1 11 22 12 1 1 2 22
dV

a N N l a N N l a a a N N N N
dt

         
 

.  (5.3) 

 

The positive constant 1l  is so chosen that the coefficient of   1 1 2 2N N N N   in (5.3) is to 

vanish. 

Then, we have 
2

12
1

11 22

0
4

a
l

a a
   and, with this choice of the constant 1l  , 

                        
2

1 12 2
1 2 1 1 1 2 2 2

1 11 22 2

, ln ln
4

N a N
V N N N N N N N N

N a a N

    
         

    
.                (5.4) 

                                              
2

12
11 1 1 2 2

112

adV
a N N N N

dt a

 
     

  

,                                 (5.5) 

 

which is negative definite.  Hence, the state is globally asymptotically stable. 

 

6.    A numerical approach of the growth rate equations 
 

The numerical solutions of the growth rate equations (2.1), (2.2) and (2.3) computed employing 

the fourth order Runge-Kutta method for specific values of the various parameters that 

characterize the model and the initial conditions.  The results are illustrated in Figures 6.1 to 6.6. 

 

Example 1. Let 1 2 3 11 22 33 123.51, 0.504, 0.432, 2.538, 0.252, 0.972, 0.432,a a d a a a a        

                    13 231.273, 1.35a a   
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Figure 6.1.  Variation of 1 2 3, ,N N N against time (t) for 10 20 301.5, 0.83, 0.22N N N    
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Figure 6.2.  Variation of 1 2 3, ,N N N against time (t) for 10 20 306, 0.2, 6N N N    

 

 

Example 2. Let 1 2 3 11 22 33 120.43, 14.184, 2.45, 7.452, 12.798, 0.378, 2.59,a a d a a a a        

                    13 230.288, 13.842a a   
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Figure 6.3.  Variation of 1 2 3, ,N N N against time (t) for 10 20 309.684, 8.244, 6.444N N N    
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Figure 6.4.  Variation of 1 2 3, ,N N N against time (t) for 10 20 300.09, 4.288, 2.448N N N    

 

Example 3. Let 1 2 3 11 22 33 120.756, 2.78, 0.28, 13.39, 3.474, 0.504, 1.404,a a d a a a a        

                    13 230.558, 1.656a a   
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Figure 6.5.  Variation of 1 2 3, ,N N N against time (t) for 10 20 300.558, 2.484, 3.402N N N    
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Figure 6.6.  Variation of 1 2 3, ,N N N against time (t) for 10 20 30 5N N N    

 

 

7.    Observations of the above graphs 
 

Case 1: In this case the initial conditions of S1, S2, S3 are in decreasing order. The natural growth 

rate of S2 and the natural death rate of S3 are almost equal. Further the first species 

dominates over the second species up to the time instant * 2t   after which the 

dominance is reversed as shown in Figure 6.1. 

 

Case 2: In this case the initial conditions of S1 and S3 are identical. Initially the first and third 

species dominates over the second till the time instant * 0.85t   and * 0.61t   

respectively and thereafter the dominance is reversed. Further we notice that the second 

species has the least initial value. (Figure 6.2). 

 

Case 3: This is a situation at the natural growth rate of the host (S2) is highest. In this case the 

initial conditions of S1, S2, S3 are in decreasing order. Further it is evident that all the 

three species asymptotically converge to the equilibrium point. (Figure 6.3). 
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Case 4: In this case the first species has the least initial value. The S3 dominates over the S1 

initially up to the time * 0.43t   after which the dominance is reversed. Further the 

initial conditions of S1, S3, S2 are in increasing order. (Figure 6.4). 

 

Case 5: This is a situation at the self inhibition coefficient of S1 is highest. In this case the initial 

conditions of S1, S2, S3 are in increasing order. Initially the S3 dominates by the S2 up to 

the time * 0.32t   and the S1 up to the time * 5.04t   and the dominances are reversed. 

(Figure 6.5). 

 

Case 6: This is a situation at the initial conditions of the three species are identical. In this case 

the self inhibition coefficients of S1, S2, S3 are in decreasing order. Further it is evident 

that all the three species asymptotically converge to the equilibrium point. (Figure 6.6). 

 

 

8.    Conclusion 
 

Investigate some relation-chains between the species such as Prey-Predation, Commensalism, 

Mutualism, Competition and Ammensalism between three species (S1, S2, S3) with the 

population relations. 

 

The present paper deals with an investigation on the stability of a three species syn eco-system 

with mortality rate for the host. The system comprises of a commensal (S1), two hosts S2 and S3, 

i.e., S2 and S3 both benefit S1, without getting themselves affected either positively or adversely. 

In this paper we established all possible equilibrium states. It is conclude that, in all eight 

equilibrium states, only one state E7 is stable. Further the global stability is established with the 

help of suitable Liapunov’s function and the growth rates of the species are numerically 

estimated using Runge-Kutta fourth order method.  
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