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Abstract

In this paper, we consider the vibrations of an inhomogeneous damped string under a distributed

disturbing force which is clamped at both ends. The well-possedness of the system is studied. We

prove that the amplitude of such vibrations is bounded under some restriction of the disturbing

force. Finally, we establish the uniform exponential stabilization of the system when the disturbing

force is insignificant. The results are established directly by means of an exponential energy decay

estimate.
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1. Introduction

The mathematical theory of stabilization of a distributed parameter system is currently a topic of

interest in application of vibrating control of various structures like strings, beams, plates, etc.
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The study of the stabilization for these problems is significant in the sense that it is intended to

suppress the vibrations to assure a good performance of the overall system. The vibrations of

flexible structures are usually non-linear in practice. As the non-linear study of such structures

is rather cumbersome for analytical treatment, linearized mathematical models are chosen for

simplicity and concise result. The linearized vibrations of flexible structures are usually governed

by a different type of partial differential equations. The question of energy decay estimates in

the context of boundary stabilization of a wave equation has earlier been studied by several

authors (see (Chen, 1979), (Gorain, 1997), (Lagnese, 1988), (Komornik and Zuazua, 1990)

and the reference therein). There are several papers on the problem for the solution of wave

equation in a bounded domain (see (Chen, 1979), (Chen, 1981), (Lagnese, 1988), (Lagnese,

1983), (Komornik and Zuazua, 1990) and the reference therein). (Chen, 1979) first established

explicitly the exponential energy decay rate for the solution of wave equation by considering

certain geometries of the domain. The theory of boundary stabilization of wave equation has

been improved in (Lagnese, 1983), (Komornik, 1991), obtained faster energy decay rate for such

problem by constructing a special type of feedback. There are different type of stability for the

vibrations of flexible structures and the most important of all these is uniform stability. The

question of uniform stabilization or point-wise stabilization of Euler-Bernoulli beams or serially

connected beams has been studied by a number of authors (Lions, 1988). Recently, (Gorain, 2013)

has established the uniform stabilization of longitudinal vibrations of inhomogeneous clamped

beam.

2. Mathematical Formulation of the Problemn

In this paper, we consider a clamped inhomogeneous string of length L. The vibrations of the

string can be described by the following partial differential equation

m(x)
∂2u

∂t2
+ 2α(x)

∂u

∂t
=

∂2u

∂x2
+ f on (0, L) × R

+, (2.1)

where R
+ := (0,∞). The variable parameters m(x) and α(x) respectively denote mass per unit

length and coefficient of damping at the point x which are assumed to be continuous up to second

order partial derivatives over [0, L]. In fact, for a general inhomogeneous string they belong to

C2[0, L]. The distributed force f : (0, L) × R
+ → R is the uncertain disturbance appearing in

the model.

For a clamped string, the boundary conditions are

u(0, t) = 0, u(L, t) = 0 on R
+. (2.2)

Let initially the string is set to vibrate with

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) on (0, L). (2.3)

The function u0(x) and u1(x) are assumed to be continuous up to second order partial derivatives

over [0, L] so that the solution is continuously differentiable on (0, L) × R
+.
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Our aim in this work is to study the stability results of different types for the solutions of the

mathematical problem (2.1) subject to the boundary and initial conditions (2.2) and (2.3). To

achieve the results, we adopt a direct method by constructing a suitable Layapunov functional

associated with the energy functional of the system.

3. Existence and Uniqueness of Solutions

In this section, we study the setting of the semigroup as in (Pazy, 1983) and we establish the

well-possedness for the problem (2.1)-(2.3). We will use the following standard L2(0, L) space

in which the scaler product and norm are denoted by

〈

u, v
〉

L2(0,L)
=

∫ L

0

uvdx, ‖ u ‖2
L2(0,L) =

∫ L

0

| u |2dx.

We have the Poincaré inequality

‖ u ‖2
L2(0,L) ≤ Cp ‖ ux ‖2

L2(0,L) for all u ∈ H1
0 (0, L)

where Cp is the Poincaré constant.

Taking ut = v, the initial boundary problem (2.1)-(2.3) can be reduced to the following abstract

initial value problem

d

dt
U(t) = AU(t) + F (x, t), U(0) = U0 for all t > 0, (3.1)

with U(t) = (u, v)T and U0 = (u0, v0)
T , where the linear operator A : D(A) ⊂ H → H is given

by

A

(

u

v

)

=

(

v
1

m(x)

(

uxx − 2α(x)v
)

)

, F =

(

0

f(x, t)

)

(3.2)

Now, we introduce the energy space H = H1
0 (0, L)×L2(0, L) equipped with inner product given

by
〈

(u, v), (u′, v′)
〉

H

=

∫ L

0

m(x)vv′dx +

∫ L

0

uxux
′dx, (3.3)

and norm by

||(u, v)||H =

∫ L

0

m(x)| v |2dx +

∫ L

0

| ux |2dx (3.4)

we can show that norm ||.||
H

is equivalent to the usual norm in H. Instead of dealing with the

system of equation (2.1)-(2.3) we conceder (3.1) in the Hilbert space H with domain D(A) of

the operator A given by

D(A) =
[

(u, v) ∈ H : u ∈ H1
0 (0, L) ∩ H2(0, L)

]

.

We now show that the operator space A generates a C0-semigroup of contractions on the space

H.
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Theorem 1. The operator A generates a C0-semigroup SA(t) of contractions on the space H.

Proof: We will show that A is a dissipative operator and 0 belong to resolvent set of A, denoted

by ρ(A). Then our conclusion will follow using the well known Lumer-Phillips theorem (see

(Pazy, 1983)). We observe that if U = (u, v) ∈ D(A), then

〈

AU, U
〉

H

=

∫ L

0

m(x)
1

m(x)
(uxx − 2α(x)v)vdx +

∫ L

0

vxuxdx

=

∫ L

0

uxxvdx − 2

∫ L

0

α(x)| v |2dx +

∫ L

0

vxuxdx

= 2iIm

∫ L

0

vxuxdx − 2

∫ L

0

α(x)| v |2dx. (3.5)

Hence,

Re
〈

AU, U
〉

H

= −2

∫ L

0

α(x)| v |2dx ≤ 0. (3.6)

Thus A is a dissipative operator. Now, we show that 0 ∈ ρ(A). In fact, given F = (f1, g1) ∈ H,

we must show that there exits a unique U = (u, v) ∈ D(A) such that AU = F , that is,

v = f1, (3.7)

uxx − 2α(x)v = m(x)g1. (3.8)

Replacing (3.7) in (3.8), we have

uxx = m(x)g1 + 2α(x)f1. (3.9)

It is known that there is a unique u ∈ H2(0, L) satisfying (3.9). It is easy to show that ||U ||
H
≤

C||F||
H

for a positive constant C . Therefore, we conclude that 0 ∈ ρ(A).

Now from theorem 1 and theorem 2.4 in (Pazy, 1983), we can state the following result.

Theorem 2. For any U0 ∈ H, there exists a unique solution U(t) = (u, ut) of the system

(2.1)-(2.3) satisfying

u ∈ C([0,∞[: H1
0 (0, L)) ∩ C1([0,∞[: L2(0, L)).

However, if U0 ∈ D(A) then

u ∈ C([0, L[: H1
0 (0, L)) ∩ H2(0, L)) ∩ C1([0,∞[: L2(0, L)).

4. Energy of the System

Now we proceed as in (Gorain, 2007), (Komornik, 1991), (Shahruz, 1996) by defining energy

functional for every solution u(x, t) of the system (2.1)-(2.3). We define energy of u at any

instant t by the functional

E(u(t)) :=
1

2

∫ L

0

[

m(x)
(∂u

∂t

)2

+
(∂u

∂x

)2]

dx for all t ≥ 0. (4.1)
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Differentiate (4.1) with respect to t to obtain

dE

dt
=

∫ L

0

[

m(x)
∂u

∂t

∂2u

∂t2
+

∂u

∂x

∂2u

∂x∂t

]

dx. (4.2)

Using (2.1) in (4.2) and applying the conditions in (2.2), we get

dE

dt
= −2

∫ L

0

α(x)
(∂u

∂t

)2

dx +

∫ L

0

∂u

∂t
f dx. (4.3)

Since
dE

dt
6= 0, it follows from (4.3) that the system is not energy conserving. Now, when the

uncertain disturbing force is not present that is f(x, t) ≡ 0 for all (x, t) ∈ (0, L) × (0,∞), the

system (2.1)-(2.3) is energy dissipating and hence on integration (4.3) with respect to t over [0, t],

the solution u satisfy energy estimate

E(u(t))− E(u(0)) = −2

∫ t

0

∫ L

0

[

α(x)
(∂u

∂τ
(x, τ )

)2]

dxdτ for t ≥ 0, (4.4)

where

E(u(0)) =
1

2

∫ L

0

[

m(x)(u1)
2 + (u0

′)2
]

dx. (4.5)

In view of (4.4) and (4.5), we may conclude that u0 ∈ H1
0 (0, L) and u1 ∈ L2(0, L), where

H1
0 (0, L) =

[

ϕ : ϕ ∈ H1(0, L) and ϕ(0) = ϕ(L) = 0
]

is the subspace of the classical Sobolev space

H1(0, L) =
[

ϕ : ϕ ∈ L2(0, L),
dϕ

dx
∈ L2(0, L)

]

of real valued function of order one. Then obviously

E(u(t)) ≤ E(u(0)) < ∞ for t ≥ 0. (4.6)

Now, we have to study bounded-input and bounded-output stability of the system in presence

of uncertain input disturbance f(x, t). We introduce two function spaces as specified in (Gorain,

2007)

X :=
[

ϕ(x, t) : (0, L) × R
+ → R : sup

t∈R+

[

∫ L

0

ϕ2dx
]

1

2

< ∞
]

, (4.7)

Y :=
[

ϕ(x, t) : (0, L) × R
+ → R

+ : sup
t∈R+

sup
x∈(0,L)

|ϕ| < ∞
]

, (4.8)

with ‖ϕ‖X = sup
t∈R+

[

∫ L

0

ϕ2dx
]

1

2

< ∞ and ‖ϕ‖2
Y = sup

t∈R+

sup
x∈(0,L)

|ϕ| < ∞. From (4.7) and (4.8),

it follows that Y ⊂ X as L∞(0, L) ⊂ L2(0, L).

5. Stability Results
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On account of uncertain disturbance force f(x, t) as an input disturbance, the system evolves

from its initial state (u0, u1) to
(

u,
∂u

∂t

)

at any instant t. The result of the bounded-output solution

for the restriction of f(x, t) is in the following theorems.

Theorem 3. If u(x, t) be the solution of the system (2.1)-(2.3) with f ∈ X then u ∈ Y for every

set of initial values (u0, u1) ∈ H1
0 (0, L) × L2(0, L).

Theorem 4. Let u(x, t) be the solution of the system (2.1)-(2.3) corresponding to the initial

value (u0, u1) ∈ H1
0 (0, L) × L2(0, L) then for every T > 0

∫ T

0

E(u(t))dt ≤ κE(u(0)) + σ

∫ T

0

‖f‖2
L2(0,L)dt (5.1)

where κ and σ are positive constant given by (5.38).

In an ideal case, when the uncertain disturbance force is not present in the system (2.1)-(2.3),

then the energy function given by (4.1) is a dissipative function of time. So naturally a question

arises as to whether this decay is exponentially or not, and the affirmative answer of this question

is found in the following theorem.

Theorem 5. If u(x, t) be the solution of the system (2.1)-(2.3) with f(x, t) ≡ 0 and (u0, u1) ∈

H1
0 (0, L) × L2(0, L) then the solution → 0 exponentially as time t → +∞, that is, the energy

function given by (4.1) satisfy

E(u(t)) ≤ Ae−νtE(u(0)) for all t ∈ R
+ (5.2)

for some reals ν > 0 and A > 1.

To prove the above theorems, we need the following inequalities and few lemmas.

I. For any real number α > 0, we have Young’s Inequality (see (Mitrinović et al., 1991))

∣

∣

∣
f.g

∣

∣

∣
≤

1

2

(

α|f |2 +
|g|2

α

)

. (5.3)

II. Poincaré type Scheeffer’s inequality (see (Mitrinović et al., 1991))

∫ L

0

u2dx ≤
L2

π2

∫ L

0

(∂u

∂x

)2

dx, (5.4)

as u(x, t) satisfy boundary condition (2.2).

III. CauchySchwartz inequality for integral calculus (see (Mitrinović et al., 1991))

∣

∣

∣

∫ L

0

f.gdx
∣

∣

∣
≤
[

∫ L

0

f2dx

∫ L

0

g2dx
]

1

2

. (5.5)
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Thus by Mean value theorem of integral calculus, there are reals ξ1, ξ2, η1, η2, ζ ∈ [0, L] satisfying

∫ L

0

m(x)u2 dx = m(ξ1)

∫ L

0

u2 dx, (5.6)

∫ L

0

m(x)
(∂u

∂t

)2

dx = m(ξ2)

∫ L

0

(∂u

∂t

)2

dx, (5.7)

∫ L

0

α(x)u2 dx = α(η1)

∫ L

0

u2 dx, (5.8)

∫ L

0

α(x)
(∂u

∂t

)2

dx = α(η2)

∫ L

0

(∂u

∂t

)2

dx. (5.9)

Now we define

µ0 =
L

π

√

m(ξ1), µ1 = 2α(η1)
L2

π2
, µ2 =

α(η2)

m(ξ2)
. (5.10)

It is obvious that m(ξ1), m(ξ2), α(η1), α(η2) are all positive and they are bounded above by their

corresponding upper bound over [0, L].

Now, we need the following lemmas.

Lemma 1. For every solution u = u(x, t) of the system (2.1)-(2.3), the time derivative of the

functional G defined by

G(u(t)) :=

∫ L

0

[

m(x)u
∂u

∂t
+ α(x)u2

]

dx, (5.11)

satisfies
dG

dt
= 2

∫ L

0

m(x)
(∂u

∂t

)2

dx +

∫ L

0

u f dx − 2E(u(t)). (5.12)

Proof: Differentiate (5.11) with respect to t, we get

dG

dt
=

∫ L

0

[

m(x)u
∂2u

∂t2
+ m(x)

(∂u

∂t

)2

+ 2α(x)u
∂u

∂t

]

dx. (5.13)

Using (2.1) in (5.13) and applying condition (2.2), we get

dG

dt
=

∫ L

0

ufdx +

∫ L

0

m(x)
(∂u

∂t

)2

dx +

∫ L

0

u
∂2u

∂x2
dx. (5.14)

Using energy equation (4.1) we get from (5.14)

dG

dt
= 2

∫ L

0

m(x)
(∂u

∂t

)2

dx +

∫ L

0

ufdx − 2E((u(t)). (5.15)

Hence the lemma is proved.

Lemma 2. The functional G(u(t)) given by (5.11) satisfies the inequality

−µ0E(u(t)) ≤ G(u(t)) ≤ (µ0 + µ1)E(u(t)) for t ≥ 0. (5.16)
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Proof: By using (5.4), (5.8) and (5.9), we get

∫ L

0

α(x)u2dx = α(η1)

∫ L

0

u2dx

≤ α(η1)
L2

π2

∫ L

0

(∂u

∂x

)2

dx

≤ 2α(η1)
L2

π2
E(u(t))

= µ1E(u(t)) for t ≥ 0. (5.17)

By using (5.3), (5.4) and (5.6), we get

∣

∣

∣

∫ L

0

m(x)u
∂u

∂t
dx
∣

∣

∣
=

∣

∣

∣

∫ L

0

√

m(x)u
√

m(x)
∂u

∂t
dx
∣

∣

∣

≤
1

2

[ π

L
√

m(η1)

∫ L

0

m(x)u2(x)dx

+
L
√

m(η1)

π

∫ L

0

m(x)
(∂u

∂t

)2

dx
]

≤
1

2

[L
√

m(η1)

π

∫ L

0

(∂u

∂x

)2

+
L
√

m(η1)

π

∫ L

0

m(x)
(∂u

∂t

)2

dx
]

=
1

2

L
√

m(η1)

π

∫ L

0

[

m(x)
(∂u

∂t

)2

+
(∂u

∂x

)2]

dx

=
L
√

m(η1)

π
E(u(t))

= µ0E(u(t)). (5.18)

Now by (5.11), (5.17) and (5.18), we get

−µ0E(u(t)) ≤ G(u(t)) ≤ (µ0 + µ1)E(u(t)) for t ≥ 0.

Hence the lemma is proved.

To prove the above theorems, we proceed like (Komornik, 1994), (Gorain, 2007), (Gorain, 1997).

Let us introduce an energy like Layapunov functional V defined by

V (u(t)) := E(u(t)) + εG(u(t)) for t ≥ 0, (5.19)

where ε is a small positive real number given by (5.25). The lemma 2 yields for V (u(t)) that

estimates

(1 − µ0ε)E(u(t)) ≤ V (u(t)) ≤ [1 + (µ0 + µ1)ε]E(u(t)) for t ≥ 0, (5.20)

where we choose ε <
1

µ0
, so that V (u(t)) ≥ 0 for t ≥ 0.
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Also by (5.3) and (5.4), we can estimate

∫ L

0

ufdx ≤
1

2

[

∫ L

0

2pπ2

L2

∫ L

0

u2dx +
L2

2pπ2

∫ L

0

f2dx
]

≤
1

2

[

2p

∫ L

0

(∂u

∂x

)2

dx +
L2

2pπ2

∫ L

0

f2dx
]

= p

∫ L

0

(∂u

∂x

)2

dx +
L2

4pπ2

∫ L

0

f2dx (5.21)

and also by (5.3) and (5.4), we can estimate

∫ L

0

∂u

∂t
fdx ≤

1

2

[

2pεm(η2)

∫ L

0

(∂u

∂t

)2

dx +
1

2pεm(η2)

∫ L

0

f2dx
]

= pε

∫ L

0

m(x)
(∂u

∂t

)2

dx +
1

4pεm(η2)

∫ L

0

f2dx, (5.22)

where p is a real number satisfying 0 < p < 1.

Now taking time derivative of (5.19) and applying the results (4.3), (5.15), (5.21) and (5.22), we

get

dV

dt
=

dE

dt
+ ε

dG

dt

= −2

∫ L

0

α(x)
(∂u

∂t

)2

dx +

∫ L

0

∂u

∂t
fdx

+ε

∫ L

0

ufdx + 2ε

∫ L

0

m(x)
(∂u

∂t

)2

dx − 2εE(u(t))

≤ −2

∫ L

0

α(x)
(∂u

∂t

)2

dx − 2εE(u(t))

+2ε

∫ L

0

m(x)
(∂u

∂t

)2

dx + pε

∫ L

0

m(x)
(∂u

∂t

)2

dx

+pε

∫ L

0

(∂u

∂x

)2

dx +
1

4pεm(η2)

∫ L

0

f2dx +
L2ε

4pπ2

∫ L

0

f2dx

= −2εE(u(t)) + pε

∫ L

0

[

m(x)
(∂u

∂t

)2

+
(∂u

∂x

)2]

dx

−2(µ2 − ε)

∫ L

0

m(x)
(∂u

∂t

)2

dx +
( 1

4pεm(η2)
+

L2ε

4pπ2

)

∫ L

0

f2dx

≤ −2ε(1 − p)E(u(t))− 2(µ2 − ε)

∫ L

0

m(x)
(∂u

∂t

)2

dx

+C

∫ L

0

f2dx, (5.23)

where

C =
1

4p

( 1

εm(ξ2)
+

L2ε

π2

)

. (5.24)
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Since ε is small, we assume that

ε < ε0 = min
{ 1

µ0

, µ2

}

. (5.25)

Hence from (5.23), we get the differential inequality

dV

dt
≤ −2(1 − p)εE(u(t)) + C ‖ f ‖2

L2(0,L)

≤
−2(1 − p)ε

[1 + (µ0 + µ1)ε]
V (u(t)) + C ‖ f ‖2

L2(0,L)

in view of (5.20). Thus we have

dV

dt
+ λV ≤ C ‖ f ‖2

L2(0,L), (5.26)

where

λ =
2(1 − p)ε

[1 + (µ0 + µ1)ε]
> 0. (5.27)

Multiplying (5.26) by eλt and integrating over [0, t] for any t ≥ 0 we get

eλtV (u(t))− V (u(0)) ≤

∫ t

0

C ‖ f ‖2
L2(0,L) eλτdτ.

Thus we have

V (u(t)) ≤ e−λt

[

V (u(0)) +

∫ t

0

C ‖ f ‖2
L2(0,L) eλτdτ

]

. (5.28)

By using (5.20) in (5.28), we get

E(u(t)) ≤
1

(1 − µ0ε)

[

(1 + (µ0 + µ1)ε)E(u(0))e−λt + C

∫ t

0

‖ f ‖2
L2(0,L) e−(t−τ )λdτ

]

, (5.29)

where E(u(0)) is given by (4.5).

Proof of theorem 3: Let f ∈ X such that ||f ||X = sup
t∈R+

||f ||L2(0,L) < ∞. Putting t − τ = θ in

(5.29), we get

E(u(t)) ≤
1

(1 − µ0ε)

[

(1 + (µ0 + µ1)ε)E(u(0))e−λt + C

∫ t

0

‖ f ‖2
X e−λθdθ

]

≤
1

(1 − µ0ε)

[

(1 + (µ0 + µ1)ε)E(u(0))e−λt + C ‖ f ‖2
X

∫ ∞

0

e−λθdθ
]

≤
1

λ(1 − µ0ε)

[

2(1 − p)εE(u(0)) + C ‖ f ‖2
X

]

for t ∈ R
+. (5.30)

Hence,

sup
t∈R+

E(u(t)) < ∞ (5.31)

for every set of initial value (u0, u1) ∈ H1
0 (0, L) × L2(0, L) and for every f ∈ X. Thus the

energy of the system (2.1)-(2.3) is uniformly bounded function of time.
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Again from (2.2), we have u(0, t) = 0 so we can write

∣

∣

∣
u(x, t)

∣

∣

∣
=
∣

∣

∣

∫ x

0

∂u

∂x
dx
∣

∣

∣
≤

(

∫ L

0

12dx
)

1

2
(

∫ L

0

∣

∣

∣

∂u

∂x

∣

∣

∣

2

dx
)

1

2

≤ L
1

2

(

∫ L

0

(∂u

∂x

)2

dx
)

1

2

(5.32)

using the inequality (5.5), for all (x, t) ∈ (0, L) × R
+.

Thus, in view of (4.1),

∣

∣

∣
u(x, t)

∣

∣

∣

2

≤ L

∫ L

0

(∂u

∂x

)2

dx ≤ 2LE(u(t)) < ∞ (5.33)

for every (x, t) ∈ (0, L) × R
+.

Hence,

u ∈ Y (5.34)

for every set of initial values (u0, u1) ∈ H1
0 (0, L) × L2(0, L) and for every f ∈ X.

Hence the theorem is proved.

Remark 1. This result shows that the output solution u is Y -bounded for every X-bounded input

disturbance f. Thus the system is bounded-input bounded-output stable.

Proof of Theorem 4: Integrating (5.29) over [0, T ] for T > 0, we get

∫ T

0

E(u(t))dt ≤
1

(1 − µ0ε)

[

(

1 + (µ0 + µ1)ε
)

E(u(0))

∫ T

0

e−λtdt

+C

∫ T

0

e−λtF (t)dt

]

, (5.35)

where

F (t) =

∫ t

0

‖ f ‖2
L2(0,L) eλτdτ. (5.36)

Integrating (5.35) by parts, we have

∫ T

0

E(u(t))dt ≤
1

(1 − µ0ε)

[

2(1 − p)ε

λ2
E(u(0))(1 − e−λT )

+
C

λ

[

F (0)− e−λTF (t) +

∫ T

0

e−λtdF

dt
dt
]

]

= κE(u(0))(1 − e−λT )

+σ
[

F (0)− e−λTF (t) +

∫ T

0

e−λtdF

dt
dt
]

≤ κE(u(0)) + σ

∫ T

0

‖f‖2
L2(0,L)dt, (5.37)
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where

κ =
2(1 − p)ε

λ2(1 − µ0ε)
and σ =

C

λ(1 − µ0ε)
, (5.38)

since F (0) = 0 and
dF

dt
= eλt||f ||2L2(0,L).

Hence, the theorem is proved.

Remark 2. Thus the above result shows that if u(x, t) is a solution of the system (2.1)-(2.3) with

f ∈ L2(0, T, H1(0, L)) then the solution u ∈ L2(0, T, H1
0(0, L)). The factor σ in (5.37) may be

defined as the tolerance factor of this disturbing force f on the total energy over [0, T ].

Proof of Theorem 5: When the disturbing force f(x, t) is not taking into our account in the

equation (2.1), the result (4.3) shows that the energy E(u(t)) of the system (2.1)-(2.3) is a

non-increasing function of time. Consequently, the terms in (5.21) and (5.22) are insignificant

following (4.3) and (5.15). Thus we can get rid off the terms involving p in (5.23) and hence

differential inequality (5.26) becomes

dV

dt
+ νV ≤ 0 for t ≥ 0, (5.39)

where

ν =
2ε

1 + (µ0 + µ1)ε
. (5.40)

Multiplying (5.39) by eνt and integrating over [0, t] for any t ∈ R
+, we get

V (u(t)) ≤ e−νtV (u(0)). (5.41)

Applying (5.20) in (5.41), we get

E(u(t)) ≤
1 + (µ0 + µ1)ε

1 − µ0ε
e−νtE(u(0)).

Thus

E(u(t)) ≤ Ae−νtE(u(0)),

where

A =
1 + (µ0 + µ1)ε

1 − µ0ε
> 1. (5.42)

Hence the theorem is proved.

Remark 3. Thus the above result shows that the solution of the system (2.1)-(2.3) decay

exponentially with time and u(x, t) → 0 as t → +∞ for every (u0, u1) ∈ H1
0 (0, L) × L2(0, L).

Remark 4. The exponential stability result (5.2) can be obtain directly by setting f ≡ 0 in

(5.29). In that case, the exponential decay rate of energy would be λ which is less than ν. Thus

the exponential energy decay rate ν given by (5.40) is a stronger one. Since

ν =
2ε

1 + (µ0 + µ1)ε
,
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we have
dν

dε
=

2

1 + (µ0 + µ1)ε
> 0.

The exponential decay rate ν of energy as a function of ε will be maximum for the largest value

ε0 of ε given by (5.25). In view of (5.25), an upper bound of which is given by ε0 that depends

explicitly on µ0 and µ2, as defined by (5.10). It signifies that the decay of energy will be slower

for a longer string.

6. Conclusion

In this study, we deal with the mathematical stability results of a vibrating clamped string modeled

by linear differential equation (2.1) and well-possedness of the system. We have established the

boundedness of output solution under boundedness of input disturbances. We also estimate the

total energy of the system over any time interval with a tolerance level of the input disturbance.

Finally, we prove that the energy of the system decay exponentially with time whenever the input

disturbance is not so significant or important.
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