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Abstract 
 
In this paper, we present two qualitative results concerning the solutions of some second order 
nonlinear equations, under suitable assumptions. The first result centers on the boundedness of 
the solutions while the second discusses the square integrability of the solutions. These results 
are obtained by extending and improving the current literature through sound mathematical 
analysis. 
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1. Introduction 
 
We consider here the equation 
 

(p(t)x’)’+f(t,x,x’)x’+a(t)g(x)=q(t,x,x’),                            (1) 
 
under the following conditions: 
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i)  p and q are  continuous  functions on I:=[0,+∞) such  that 0 < p0  ≤  p(t) <+∞ and 0 < 
a0 ≤ a(t)  a1 <+∞. 

 
ii)  f is a continuous function  on IxR2 satisfying 0 <  f0  ≤  f(t,x,x’). 

iii)  g is also a continuous function  for all x such that xg(x)>0 for x ≠ 0 and 



0

)( dxxg . 

iv)  )()x'x,q(t, te , where e(t) is a non-negative and continuous function of  t satisfying 

 

           



0

)( Mdtte   

 
       and M is a constant.  
 
We shall determine sufficient conditions for the boundedness and the L2 properties of the 
solutions of equation (1). Our approach differs from those of the earlier research as all they 
constructed energy or Liapunov Functions; so, our results differ significantly from those 
obtained previously, see some attempts in that sense in Kroopnick (2008) and Tunc (2011a), and 
references cited therein. 
 
The solutions of equation (1) are bounded if there exists a constant K>0 such that x(t)< K for 
all t ≥ T > 0 for some T.  

By an L2-solution, we mean a solution of equation (1) such that 



0

2 )( dttx . 

In the last four decades, many authors have investigated the Liénard equation 
 

x’’+f(x)x’+g(x)=0.                             (2) 
 
They examined some qualitative properties of the solutions. The book of Sansone and Conti 
(1964) contains an almost complete list of papers dealing with these equations as well as a 
summary of the results published up to 1960. The book of Reissig, Sansone and Conti (1963) 
updates this list and summary up to 1962. The list of the papers which appeared between 1960 
and 1970 is presented in the paper of Graef (1972). Among the papers published in the last years 
are Burton (1965); Burton and Townsend (1968); Hara and Yoneyama (1985); Hricisakova 
(1993); Kato (1988); Nápoles (2000); Omari, Villari and Zanolin (1987); Tunc (2011a); Villari 
(1983); and Villari (1987).  
 
If in (1) we make p(t)≡1, q(t,x,x’)≡0, f(t,x)=f(x) and a(t)≡1, then equation (1) becomes equation 
(2) so, every qualitative result for the equation (1) produces a qualitative result for (2). 
 
The paper is organized as follows: in §2 we state and prove our results on boundedness and L2 
properties of solutions of (1); in the §3 we present some applications of our results to show the 
advantages over those reported in the literature and in §4 we reflect on a particular case of 
Theorem 1, an open problem, a simple example of the necessary criterion for positivity of the 
function f and some relations with results obtained recently. 
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2. Results 
 
We now state and prove a general boundedness theorem. Without loss of generality, we shall 
assume t ≥ 0. 
 
Theorem 1.  
 
Assuming that conditions i)-iv) above holds, then any solution x(t) of (1), as well as its derivative, 

is bounded as t and 



0

2 )(' dttx  

Proof:  
 
By standard existence theory, there is a solution of (1) which exists on [0,T) for some T>0. 
Multiply the equation (1) by x’ and integrate from 0 to t and apply the assumptions i) and iv) we 
obtain 
 

     2 2( )
2

0

0 (0) 0

'( ) '(0)
( , ( ), '( )) '( ) ( ) ( ) '( ) .

2 2

x st t

x

x t x
p f s x s x s x s ds a g u du p e s x s ds                (3) 

 
Now if x(t) becomes unbounded  then it follows that all terms on the left hand  side of (1) are 
positive from our hypotheses. By the Cauchy-Schwarz inequality for integrals on the right hand 
side of (3), we get 
 

     
1 1

2 2( ) 2 2
2 2 2

0

0 (0) 0 0

'( ) '(0)
( , ( ), '( )) '( ) ( ) ( ) ' ( ) .

2 2

x st t t

x
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Now, let 
2

1

0

2 )(')( 







 

t

dssxtX . Dividing both sides by X(t) yields 
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             (4) 

 
Taking into account the positivity of the left hand side of (4) if x(t) increase without bound and 
the term 
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is bounded by the right hand side of equation (4) we obtain that x’ is square integrable and is also 
bounded after we examine the first term of the left hand side of (4). However, the above implies 
that x(t) must be bounded. Otherwise, the left hand side of (4) becomes infinite which is 
impossible. A standard argument now permits the solution to be extended to all t of I, see for 
example Boudonov (nodated); Reissig, Sansone and Conti (1963) and Sansone and Conti (1964). 
The proof is thus complete. 
 
By imposing more stringent conditions on g(t,x) and p(t), all solutions become L2-solutions. This 
case is covered by the following result. 
 
Theorem 2.  
 
Under hypotheses of Theorem 1, we suppose that g(x)x >g0 x

2 for some positive constant g0>0, 
and 0< p < p(t) < P <+∞, then all the solutions of equation (1) are L2-solutions. 
 
Proof:  
 
In order to see that xL2[0,) we must  first multiply equation (1) by x, the integration from 0 to 
t yields 
 

2

0 0 0

0

( ( ) ') ( ) ' ( ) ( , , ') ( ) '( ) ( ) ( ) ( ( ))

(0) (0) '(0) (( , ( , '( )) ( ) .

t t t

t

x p t x p s x s ds f t x x x s x s ds x s a s g x s ds

x p x q s x s x s x s ds

  

 

  


 

Next, let  
)(

)0(

1 )()',),((
tx

x

xFdzzzzxzf . So, the above equation may be rewritten as  

 ,)()()(')(')(
0

2
00

0

2  
tt

KdssxgaxFdssxPtxtpx            (5) 

where  
 

dssxsexxPK
t


0

)()()0(')0( .  

 
Notice that the last term is bounded by 
 

 
2

1

0

2
2

1

0

2 )()( 
















tt
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by using the Cauchy-Scwharz inequality. Dividing the left hand side of (9) by 
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and using the hypotheses of Theorem 2 we obtain 
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           (6) 

 
Since the right hand side of (10) is bounded and all the terms of the left hand side are either 
bounded or positive, the result follows because the left hand side cannot be unbounded. Here, we 
need that x is square integrable. 
 
3. Some Applications 
 
In this section our results are applied to some reported in the literature. 
 
If in (1) the functions involved satisfies p(t)  1, e(t)  0, f(t,x,x’)  f0 and g(x)=g0x, from 
assumptions ii) and iii) of Theorem 1 we obtain 
 

ii’)  f0>0, 

iii’)  g0>0. 

 
Then, these assumptions amount to the usual Routh-Hurwitz criterion (see Boudonov). 
 
In Nápoles (1999) the author proved for the generalized Liénard equation (2) with restoring term 
h(t), the following result: 
 
Theorem 1. We assume that gC(R), with limit at infinity and  
 

g(-)<g(x)<g(+), xR. 
 
In addition, either pV, g(-)<p(t)<g(+), or pL(I), g(-)=-, g(+)=g(+), where 
 

 })(:)({ 




 
T

T
m inuniformlydtthLimhILhV





 ;  

 
denoting by hm the medium value of h, then (2) has a solution in W2,(R). Also,  > 0,  >0 
such that for any solution x(t) of (2) with x(t0)+ x’(t0) , for some t0I, then 
x(t)+x’(t), t  t0.  
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This result is easily obtained from our Theorem 1. 
 
In Repilado and Ruiz (1985) and Repilado and Ruiz (1986) the authors studied the asymptotic 
behaviour of the solutions of the equation 
 

x’’+f(x)x’+a(t)g(x)= 0             (7) 
 
under the following conditions: 
 

a) f is a continuous and nonnegative function for all xR, 
 
b) g is also a continuous function with xg(x)>0, for x  0, and 

 

c)  a(t) > 0, for all tI and aC1. 
 
In particular in Repilado and Ruiz (1986), the following result is proved: 
 
Theorem 2. Under conditions 
 

1.  



0

.)( dtta  

2.  


 
0 )(

)('
dt

ta

ta
, a’(t)- = max{-a’(t),0}. 

3.  There exists a positive constant N such that G(x) N for x(-,), where 


x

dssgxG
0

)()( , all solutions of equation (6) are bounded if and only if 





0

0 ,)]([)( dtttkfta           (8) 

 
for all k > 0 and some t0  0. 
 
The first result of this nature was obtained by Burton and Grimmer (1971) when they showed 
that all continuable solutions of equations x’’+a(t)f(x)=0 under condition b) and c) are 
oscillatory (and bounded) if and only if the condition (8) is fulfilled, with f instead of g. 
It is easy to obtain the sufficiency of the above result from our Theorem 1. 
 
If in (1) we take f(t,x)  0, e(t)  0 and g(t,x)=g(t)x, our result becomes Theorem 1 of  Nápoles 
and Negrón (1996), referent to boundedness of x(t) and p(t)x’(t), for all t  a with a some 
positive constant. 
 
Castro and Alonso (1987) considered the special case 
 

x’’+h(t)x’+x=0,            (9) 
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of equation (1) under condition hC1(I) and h(t)  b > 0. Further, they required that the condition 
ah’(t)+2h(t)  4a be fulfilled, and obtained various results on the stability of the trivial solution 
of  (8). It is clear that all assumptions of Theorem 1 are satisfied. Thus, we obtain a consistent 
result under milder conditions. 
 
This result completes those of Ignatiev referred to in equation (5), see Ignatiev (1997), with 
restoring term 
 

x’’+f(t)x’+g(t)x=h(t),         (10) 
 

Taking h(t) continuous on I (in Ignatiev’s results h  0) such that 



0

2 )( dtth  and f(t)>f0>0, 

g(t)>g0>0 with continuous nonpositive derivatives we have that all the solutions of (10), as well 
as their derivatives, are bounded and in L2(I). 
 
Our results contain and improve those of Ruiz (1988), obtained with h  0, referring to the 
boundedness of the solutions of equation 
 

x’’+f(t)x’+a(t)g(x)=h(t), 
 

because the author used regularity assumptions on function a(t), which are not used here. 
 
In Kroopnick (2008) the author discussed the boundedness and L2 character of equation (1) with 
f(t,x,x’)=c(t)f(x) and p(t)1. Thus, our results contain those of Kroopnick. 
 
Tunc studied the boundedness of the solutions of equation (1) under derivability assumptions on 
p(t) and a(t), see Tunc (2011a). Taking into account the results obtained above, these complete 
and improve Tunc’s work. 
 
The results obtained in this paper are consistent with those of Shao and Song (2011) where the 
authors study the sublinear equation (a(t)y’)’+b(t)y’k=0, with regularity assumptions on r(t). 
 
4. Conclusions 
 
At the end of this paper and to compare our results with several of the references, we give in this 
section a particular case of Theorem 1, an open problem, a simple example of the necessary 
character of positivity of function f and some concluding remarks. 
 
A particular case. 
 
Ignatiev (1997) considered an oscillator described by the following equation 
 

x’’+f(t)x’+g(t)x=0,         (11) 
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where the damping and rigidity coefficients f(t) and g(t) are continuous and bounded functions. If 
in equation (1) we put p(t)1, e(t)0, f(t,x)=f(t) and g(t,x)=g(t)x, then we improve the Theorem 1 
of Ignatiev, since the assumption 
 

0)t(f
)t(g

)t´(g

2

1
2   , 

 
is not necessary, and  
 

f(t)< M1, g(t)< M2, g’(t)< M3, 
 

is dropped. Under the above remarks, the Ignatiev’s Corollary 1 is obvious. 
 
An open problem. 
 
Taking into account the Application related to Theorem 2 of Repilado and Ruiz (1986), and 
Theorem 1 of same reference, raises the following open problem 
 

Under which additional hypotheses, the assumption 



0

)( dxxg is a necessary and sufficient 

condition for boundedness of the solutions of equation (1)? 
 
This is not a trivial problem. The resolution implies obtaining a necessary and sufficient 
condition for completing the study of asymptotic nature of solutions of (1). 
 
On the positivity of f. 
 
Under assumptions f(t,x,x’)  f0>0 for some positive constant f0, the class of equation (1) is not 
very large, but if this condition is not fulfilled, we can exhibit equations that have unbounded 
solutions. For example 
 

0e)1t(2'xe
t3

3

t

2

'

t3
3

t 33






































, 

 
has the unbounded solution x(t)=e2t and f(t,x,x’)0. 
 
Final Remarks. 
 
Tunc (2010) established some new sufficient conditions which guarantee the boundedness of 
solutions of non-linear differential equation: 
 

x’’+f(t,x,x’)g(t,x,x’)+b(t)h(x)=e(t,x,x’),          (12) 
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where b, f, g, h and e are continuous functions in their respective domains and b’(t) exists and its 
continuous. Under these assumptions he proved the following result. 
 
Theorem 2.  
 
In addition to the basic assumptions imposed on the functions b, f, g, h and e that appear in 
equation (12), we assume that there exists a positive constant  such that the following 
assumptions hold: 
 

i) f(t,x,x’)g(t,x,x’)0 , for all tR+:=[0,+) and  

  x,yR, b(t)1, b’(t) 0 , for all tR+, 
x

xh )(
 , for all x0. 

ii) )(),,( tpyxte  , with  
t

dssp
0

)( . 

Then all solutions of equation (12) are bounded. 
 
Clearly this theorem and our results are consistent and complement each other and they have 
different applications. Equation (1) contains a general function p(t) while in equation (12) p(t)1, 
the forcing term of both are similar, the function a(t) in equation (1) is wider than that p(t) in (12), 
the consideration of the function h(x) in (12) is more restrictive than ours on g(x), although the 
term restorer of equation (12) is more general than ours. 
 
The same author extends and completes several known results on boundedness and stability, to 
the case of functional differential equations of various types, which illustrates a work address 
very promising (see Tunc (2011b); Tunc (2012a) and Tunc (2012b)). 
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