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Abstract

The domination integrity of a connected graph G = (V (G), E(G)) is denoted as DI(G) and
defined by DI(G) = min{|S| + m(G − S)}, where S is a dominating set and m(G − S) is
the order of a maximum component of G− S. This paper discusses domination integrity of line
splitting graph and central graph of some graphs.
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1. Introduction

All graphs considered in this paper are finite and undirected, without loops and multiple edges.
Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The degree of a
vertex v in a graph G is the number of edges of G incident with v and it is denoted by deg(v).
dxe denotes the smallest integer number that greater than or equals to x with bxc to the greatest
integer number that smaller than or equals to x. For graph theoretic terminology, we refer to
Harary (1969). For any undefined terminology and notation related to the concept of domination
we refer to Haynes et al. (1998).

In the remaining portion of this section we will give brief summary of definitions and information
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related to the present work. The stability of a communication network composed of processing
nodes and communication links is of prime importance to network designers. As the network
begins losing links or nodes, eventually there is a loss in its effectiveness. Thus communication
networks must be constructed to be as stable as possible, not only with respect to the initial
disruption but also with respect to the possible reconstruction of the network. The communication
network can be represented as an undirected graph. Tree, mesh, hypercube, and star graph are
popular communication networks. If we think of the graph as modeling a network, there are
many graph theoretical parameters used in the past to describe the stability of communication
networks. Most notably, the vertex-connectivity and edge-connectivity have been frequently used.
The best known measure of reliability of a graph is its vertex-connectivity κ(G) defined to be
the minimum number of vertices whose deletion results in a disconnected or trivial graph. The
difficulty with these parameters is that they do not take into account what remains after the graph
is disconnected. Consequently, a number of other parameters have recently been introduced in
order to attempt to cope with this difficulty.

The concept of integrity was introduced as a measure of graph vulnerability in this sense.
Formally, the vertex-integrity (frequently called just the integrity) is I(G) = min{|S|+m(G−S) :
S ⊆ V (G)}, where m(G−S) denotes the order of a maximum component of G−S. This concept
was introduced by Barefoot et al. (1987).

Definition.

A subset S of V (G) is said to be an I -set, if I(G) = |S|+m(G− S).

The connectedness of a graph is not essential to define integrity. The integrity of middle graphs
is discussed by Mamut and Vumar (2007) while integrity of total graphs is discussed by Dundar
and Aytac (2004).

A set S ⊆ V (G) is called a dominating set of G if each vertex of V −S is adjacent to at least one
vertex of S. The domination number of a graph G, denoted as γ(G), is the minimum cardinality
of a dominating set in G. We refer to Haynes et al. (1998). If D is any minimal dominating set
and if the order of the largest component of G−D is small, then the removal of D will crash
the communication network. The decision making process as well as communication between
remaining members will also be highly affected. Considering this aspect, Sundareswaran and
Swaminathan (2010) introduced the concept of domination integrity which is defined as follows.

Definition.

The domination integrity of a connected graph G denoted by DI(G) is defined as DI(G) =

min{|S| + m(G − S) : S is a dominating set}, where m(G − S) is the order of a maximum
component of G− S.

Sundareswaran and Swaminathan (2010) have investigated domination integrity of middle graph
of some graphs, while Vaidya and Kothari (2013) have investigated domination integrity of
splitting graph of path and cycle. Kulli and Biradar (2002) introduced the concept of line splitting
graph of a graph as follows.
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Definition.

For each edge ei of G, a new vertex e′i is taken and the resulting set of vertices is denoted
by E1(G). The line splitting graph Ls(G) of a graph G is defined as the graph having vertex
set E(G) ∪ E1(G) with two vertices adjacent if they correspond to adjacent edges of G or one
corresponds to an element e′i of E1(G) and the other to an element ej of E(G) where ej is in
N(ei).

In the present work, we investigate domination integrity of line splitting graphs of path, cycle
and star. We also investigate domination integrity of central graph of path, cycle and star.

2. Line Splitting Graphs

Theorem 2.1.

For p ≥ 2,

γ(Ls(Pp)) =


2, if p = 2, 3, 4,
p
2
, if p ≡ 0, 2(mod 4), and p > 4,

p−1
2
, if p ≡ 1(mod 4), and p > 4,

p+1
2
, if p ≡ 3(mod 4), and p > 4.

Proof:

By definition of line splitting graph, the graph Ls(Pp) is having vertex set
{e1, e2, ..., ep−1, e′1, e′2, ..., e′p−1}, where e′1, e

′
2, ..., e

′
p−1 are the vertices corresponding to the edges

e1, e2, ..., ep−1 which are added to obtain Ls(Pp). As N(e′1) = {e2} and N(e′p−1) = {ep−2}, at
least one vertex from each pair {e′1, e2} and {e′p−1, ep−2} must belong to any dominating set
of Ls(Pp). As well at least one vertex from e′i−1, e

′
i+1 must belong to any dominating set as

N(e′i) = {ei−1, ei+1}, and N(ei) = {ei−1, ei+1, e
′
i−1, e

′
i+1} where 2 ≤ i ≤ p− 2. Accordingly,

|S| ≥ p− 1

2
for any dominating set S.

For p = 2 , we consider S = {e1, e′1}, for p = 3 , we consider S = {e1, e2} and for p = 4 , we
consider S = {e2, e′2}.

Based upon the number of vertices in Pp, the following subsets are considered:
For 0 ≤ j < bp

4
c − 1, and p > 4, S = {e2+4j, e3+4j, ep−3, ep−2}, |S| = p

2
for p ≡ 0(mod 4).

For p > 4, 0 ≤ j < bp
4
c, S = {e2+4j, e3+4j}, |S| = p−1

2
for p ≡ 1(mod 4),

S = {e2+4j, e3+4j, ep−2}, |S| =
p

2
for p ≡ 2(mod 4),

S = {e2+4j, e3+4j, ep−3, ep−2}, |S| =
p+ 1

2
for p ≡ 3(mod 4).

Also each S is minimal since the vertex e′2+4j will not be dominated by any of the vertices when
the vertex e3+4j is removed.
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So S is minimal and minimum dominating set of (Ls(Pp)). Therefore

γ(Ls(Pp)) =


2, if p = 2, 3, 4,
p
2
, if p ≡ 0, 2(mod 4), and p > 4,

p−1
2
, if p ≡ 1(mod 4), and p > 4,

p+1
2
, if p ≡ 3(mod 4), and p > 4.

2

Theorem 2.2.

DI(Ls(Pp)) =



p, if p = 2, 3,

p− 1, if 4 ≤ p ≤ 10,

p− 2, if p = 11, 12, 13,

p− 3, if p = 14, 15, 16,

p− 4, if p = 17, 18, 19,

15, if p = 20.

Proof:

By definition, Ls(Pp) has vertex set {e1, e2, ..., ep−1, e′1, e′2, ..., e′p−1}, where {e′1, e′2, ..., e′p−1} is
the set of vertices corresponding to e1, e2, ..., ep−1 which are added to obtain Ls(Pp).

To prove this result we consider following four cases.

Case 1: p = 2. From Theorem 2.1, we have DI(Ls(P2)) = 2, p = 3. From Theorem 2.1,
γ(Ls(P3)) = 2 and D = {e1, e2} is a γ-set of Ls(P3). Then m(Ls(P3) −D) = 1. This implies
that DI(Ls(P3)) = γ(Ls(P3)) + m(Ls(P3) − D) = 2 + 1 = 3. Since γ(Ls(P3)) ≤ |S| and
m(Ls(P3)−D) ≤ m(Ls(P3)−S) for any dominating set S of Ls(P3), it follows that γ(Ls(P3))+

m(Ls(P3) − D) ≤ |S| + m(Ls(P3) − S) for any dominating set S of Ls(P3). For this reason
DI(Ls(P3)) = 3.

Case 2: p = 4. From Theorem 2.1, γ(Ls(P4)) = 2 and D = {e2, e′2} is a γ-set of Ls(P4). We
have DI(Ls(P4)) = 3. Similar to case 1.

Case 3: 5 ≤ p ≤ 7. By Theorem 2.1, γ(Ls(Pp)) = p− 3 and D = {e2, e3, ..., ep−2} is a γ-set of
Ls(Pp). Then, m(Ls(Pp)−D) = 2.
Therefore,

DI(Ls(Pp)) ≤ γ(Ls(Pp)) +m(Ls(Pp)−D)

≤ p− 3 + 2 = p− 1.
(1)

If S is any dominating set of Ls(Pp) other than D with m(Ls(Pp)− S) = 1, then |S| ≥ p− 1.
This implies that

|S|+m(Ls(Pp)− S) ≥ p− 1 + 1 = p > p− 1. (2)

If m(Ls(Pp) − S) ≥ 3, then trivially |S| +m(Ls(Pp) − S) > p − 1. Thus for any dominating
sets, |S|+m(Ls(Pp)− S) > p− 1. Hence, from (1) and (2), DI(Ls(Pp)) = p− 1.
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Case 4: p = 8. From Theorem 2.1, γ(Ls(P8)) = 4 and D = {e2, e3, e5, e6} is a γ-set of Ls(P8).
Then m(Ls(P8)−D) = 3. Therefore,

DI(Ls(P8)) ≤ γ(Ls(P8)) +m(Ls(P8)−D) = 4 + 3 = 7. (3)

Let’s claim that if S1 is any dominating set of Ls(P8) other than D with m(Ls(P8)− S1) = 2,

then |S1| ≥ 5. So,
|S1|+m(Ls(P8)− S1) ≥ 5 + 2 = 7. (4)

Consider S2 is any dominating set of Ls(P8) other than D and S1 with m(Ls(P8) − S2) = 1,

then |S1| ≥ 7. Hence,
|S2|+m(Ls(P8)− S2) ≥ 7 + 1 = 8. (5)

Therefore, from (3), (4) and (5), DI(Ls(P8)) = 7.

Case 5: 9 ≤ p ≤ 20. It is known

DI(Ls(Pp)) ≤ γ(Ls(Pp)) +m(Ls(Pp)−D). (6)

The domination number with γ(Ls(Pp)) +m(Ls(Pp)−D) and set S with |S|+m(Ls(Pp)− S)
for different paths are shown in Table I.

Table I: The values of parameters: γ(Ls(Pp)) +m(Ls(Pp)−D) and |S|+m(Ls(Pp)− S)

p γ(Ls(Pp)) m(Ls(Pp)−D) γ(Ls(Pp)) +m(Ls(Pp)−D) S m(Ls(Pp)− S) |S|+m(Ls(Pp)− S)
9 4 6 10 {e2, e3, e5, e6, e7} 3 8

10 5 6 11 {e2, e3, e5, e6, e7, e8} 3 9

11 6 6 12 {e2, e3, e5, e6, e8, e9} 3 9

12 6 6 12 {e2, e3, e5, e6, e7, e9, e10} 3 10

13 6 6 12 {e2, e3, e5, e6, e7, e8, e10, e11} 3 11

14 7 6 13 {e2, e3, e5, e6, e8, e9, e11, e12} 3 11

15 8 6 14 {e2, e3, e4, e6, e7, e9, e10, e12, e13} 3 12

16 8 6 14 {e2, e3, e4, e6, e7, e8, e10, e11, e13, e14} 3 13

17 8 6 14 {e2, e3, e5, e6, e8, e9, e11, e12, e14, e15} 3 13

18 9 6 15 {e2, e3, e5, e6, e8, e9, e11, e12, e14, e15, e16} 3 14

19 10 6 16 {e2, e3, e5, e6, e8, e9, e11, e12, e14, e15, e16, e17} 3 15

20 10 6 16 {e2, e3, e5, e6, e8, e9, e11, e12, e14, e15, e17, e18} 3 15

From Table I,
|S|+m(Ls(Pp)− S) ≤ γ(Ls(Pp)) +m(Ls(Pp)−D). (7)

Consider S1 is any dominating set of Ls(Pp) other than D and S with m(Ls(Pp)−S1) = 4 or 5,

then |S1| ≥ |S|. This implies that

|S|+m(Ls(Pp)− S) ≤ |S1|+m(Ls(Pp)− S1). (8)

If S2 is any dominating set of Ls(Pp) other than D, S1 and S with m(Ls(Pp) − S2) = 2, then
|S2| ≥ p− 3. Therefore,

|S2|+m(Ls(Pp)− S2) ≥ p− 3 + 2 = p− 1. (9)
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If S3 is any dominating set of Ls(Pp) other than D, S1, S2 and S with m(Ls(Pp) − S3) = 1,

then |S3| ≥ p− 1. This implies that

|S3|+m(Ls(Pp)− S3) ≥ p− 1 + 1 = p. (10)

Thus from Table I and the results (6) to (10), conclude that

DI(Ls(Pp)) = |S|+m(Ls(Pp)− S) =



p, if p = 2, 3,

p− 1, if 4 ≤ p ≤ 10,

p− 2, if p = 11, 12, 13,

p− 3, if p = 14, 15, 16,

p− 4, if p = 17, 18, 19,

15, if p = 20.

2

Theorem 2.3.

DI(Ls(Pp)) = γ(Ls(Pp)) + 6, for every p ≥ 21. (11)

Proof:

By definition of line splitting graph, the graph Ls(Pp) has vertex set {e1, e2, ..., ep−1, e′1, e′2, ..., e′p−1},
where {e′1, e′2, ..., e′p−1} is the set of vertices corresponding to e1, e2, ..., ep−1 which are added to
obtain Ls(Pp). Then from Theorem 2.1, for p ≥ 3,

γ(Ls(Pp)) =


2, if p = 3,
p
2
, if p ≡ 0, 2(mod 4),

p−1
2
, if p ≡ 1(mod 4),

p+1
2
, if p ≡ 3(mod 4).

(12)

D = {e2+4j, e3+4j, ep−3, ep−2} where 0 ≤ j < bp
4
c − 1 for p ≡ 0(mod 4), and p > 4;

D = {e2+4j, e3+4j}, where 0 ≤ j < bp
4
c for p ≡ 1(mod 4), and p > 4;

D = {e2+4j, e3+4j, ep−2}, where 0 ≤ j < bp
4
c for p ≡ 2(mod 4), and p > 4;

D = {e2+4j, e3+4j, ep−3, ep−2}, where 0 ≤ j < bp
4
c for p ≡ 3(mod 4), and p > 4 are γ-sets of

Ls(Pp). Then, m(Ls(Pp)−D) = 6. Therefore,

DI(Ls(Pp)) ≤ γ(Ls(Pp)) + 6. (13)

Let’s claim that if m(Ls(Pp)− S) 6= 6 for any dominating set S other than D, then

|S|+ (Ls(Pp)− S) ≥ γ(Ls(Pp)) + 6. (14)

We have the following cases:

Case 1. If S1 is any dominating set other than D and m(Ls(Pp) − S1) > 4 or 5, then |S1| ≥
γ(Ls(Pp)) + 2. So, |S1|+m(Ls(Pp)− S1) ≥ γ(Ls(Pp)) + 6.
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Case 2. Consider S2 is any dominating set of Ls(Pp) other than D and S1 with m(Ls(Pp)−S2) =

3, then |S2| ≥ (p−1−dp
3
e). Consequently, |S2|+m(Ls(Pp)−S2) ≥ (p−dp

3
e)+2 > γ(Ls(Pp))+6.

Case 3. If S3 is any dominating set of Ls(Pp) other than D, S1 and S2 with m(Ls(Pp)−S3) = 2,

then |S3| ≥ p− 3. Then |S3|+m(Ls(Pp)− S3) ≥ (p− 3) + 2 = p− 1 > γ(Ls(Pp)) + 6.

Case 4. Consider S4 is any dominating set of Ls(Pp) other than D, S1, S2 and S3 with m(Ls(Pp)−
S4) = 1 then |S4| ≥ p−1. Consequently |S4|+m(Ls(Pp)−S4) ≥ p−1+1 = p > γ(Ls(Pp))+6.

Hence, from (13) and (14), DI(Ls(Pp)) = γ(Ls(Pp)) + 6. 2

Theorem 2.4.

For all p ≥ 3,

γ(Ls(Cp)) =


2, if p = 3, 4,
p
2
, if p ≡ 0(mod 4) and p ≥ 5,

p+1
2
, if p ≡ 1, 3(mod 4) and p ≥ 5,

p+2
2
, if p ≡ 2(mod 4) and p ≥ 5.

Proof:

By definition of line splitting graph, Ls(Cp) has vertex set {e1, e2, ..., ep, e′1, e′2, ..., e′p}, where
{e′1, e′2, ..., e′p} is the set of vertices corresponding to edges e1, e2, ..., ep which are added to obtain
Ls(Cp). S is chosen as follows:

For p = 3, 4, consider S = {e1, e2}, Let’s claim that S is a minimal dominating set of Ls(C3)

and Ls(C4), because the vertex e′2 will not be dominated when the vertex e1 is removed. Thus
S is minimal dominating set, hence γ(Ls(C3)) = 2 and γ(Ls(C4)) = 2.

For 1 ≤ j < bp
4
c, and p ≥ 5, S = {e1, e4j, e4j+1, ep}, |S| = p

2
for p ≡ 0(mod 4),

For 1 ≤ j ≤ bp
4
c, and p ≥ 5, S = {e1, e4j, e4j+1}, |S| = p+1

2
for p ≡ 1(mod 4),

For 1 ≤ j ≤ bp
4
c, and p ≥ 5, S = {e1, e4j, e4j+1, ep}, |S| = p+2

2
for p ≡ 2(mod 4),

For 1 ≤ j ≤ bp
4
c, and p ≥ 5, S = {e1, e4j, e4j+1, ep}, |S| = p+1

2
for p ≡ 3(mod 4).

We claim that each S is a minimal dominating set of Ls(Cp), as N(e1) = {e2, ep, e′2, e′p}, N(e4j) =

{e4j−1, e4j+1, e
′
4j−1, e

′
4j+1}, N(e4j+1) = {e4j, e4j+2, e

′
4j, e

′
4j+2} and N(ep) = {e1, ep−1, e′1, e′p−1},

removal of e4j , a vertex e′4j+1 will not be dominated by any vertex, hence the proof is completed.
2

Theorem 2.5.

DI(Ls(Cp)) =

{
p+ 1, if 3 ≤ p ≤ 6,

p− bp
3
c+ 3, if 7 ≤ p ≤ 15.

Proof:

By definition of line splitting gresaph, Ls(Cp) has vertex set {e1, e2, ..., ep, e′1, e′2, ..., e′p}, where
{e′1, e′2, ..., e′p} is the set of vertices corresponding to edges e1, e2, ..., ep which are added to obtain
Ls(Cp).
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We have the following cases:

Case 1: p = 3. From Theorem 2.4, we have γ(Ls(C3)) = 2 and D = {e1, e2} is a γ-set of
Ls(C3), then m(Ls(C3)−D) = 3. Therefore,

DI(Ls(C3)) ≤ γ(Ls(C3)) +m(Ls(C3)−D)

= 2 + 3 = 5.
(15)

Consider S1 is any dominating set of Ls(C3) other than D with m(Ls(C3) − S1) = 2, then
|S1| ≥ 3. This implies that

|S1|+m(Ls(C3)− S1) ≥ 2 + 3 = 5. (16)

Let S2 = {e1, e2, e3} be dominating set of Ls(C3) and m(Ls(C3)− S2) = 1. Thus

|S2|+m(Ls(C3)− S2) = 3 + 1 = 4. (17)

Hence, from (15), (16), and (17), DI(Ls(C3)) = 4.

Case 2: p = 4. From Theorem 2.4, γ(Ls(C4)) = 2 and D = {e1, e2} is a γ-set of Ls(C4), then
m(Ls(C4)−D) = 6. Therefore,

DI(Ls(C4)) ≤ γ(Ls(C4)) +m(Ls(C4)−D)

= 2 + 6 = 8.
(18)

If S1 is any dominating set of Ls(C4) other than D with m(Ls(C4)−S1) = 2 or 1, then |S1| ≥ 4.
This implies that

|S1|+m(Ls(C4)− S1) ≥ 4 + 2 = 6. (19)

Let S2 = {e1, e2, e3, e4} be dominating set of Ls(C4) and m(Ls(C3)− S2) = 1. Thus,

|S2|+m(Ls(C4)− S2) = 4 + 1 = 5. (20)

Hence, from (18), (19), and (20), DI(Ls(C4)) = 5.

Case 3: p = 5. From Theorem 2.4, we have γ(Ls(C5)) = 3 and D = {e2, e3, e4} is a γ-set of
Ls(C5), then m(Ls(C5)−D) = 6. Therefore,

DI(Ls(C5)) ≤ γ(Ls(C5)) +m(Ls(C5)−D)

= 3 + 6 = 9.
(21)

If S1 is any dominating set of Ls(C5) other than D with m(Ls(C5)−S1) = 4 or 5, then |S1| ≥ 4.
This implies that

|S1|+m(Ls(C5)− S1) ≥ 4 + 5 = 9. (22)

Consider S2 is any dominating set of Ls(C5) other than D and S1 with m(Ls(C5)− S2) = 2 or
3, then |S2| ≥ 5. This implies that

|S2|+m(Ls(C5)− S2) ≥ 5 + 2 = 7. (23)

Let S3 = {e1, e2, e3, e4, e5} be dominating set of Ls(C5) and m(Ls(C5)− S3) = 1. Thus,

|S3|+m(Ls(C5)− S3) = 5 + 1 = 6. (24)
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Hence, from (22), (23), and (24), DI(Ls(C5)) = 6.

Case 4: p = 6. From Theorem 2.4, γ(Ls(C6)) = 4 and D = {e1, e4, e5, e6} is a γ-set of Ls(C6),
then m(Ls(C6)−D) = 3. Therefore,

DI(Ls(C6)) ≤ γ(Ls(C6)) +m(Ls(C6)−D)

= 4 + 3 = 7.
(25)

If S1 is any dominating set of Ls(C6) other than D with m(Ls(C6) − S1) = 2 , then |S1| ≥ 6.
This implies that

|S1|+m(Ls(C6)− S1) ≥ 6 + 2 = 8. (26)

Let S2 = {e1, e2, e3, e4, e5, e6} be dominating set of Ls(C6) and m(Ls(C6)− S2) = 1. Thus,

|S2|+m(Ls(C6)− S2) = 6 + 1 = 7. (27)

Hence, from (25), (26), and (27), DI(Ls(C6)) = 7.

Case 5: 7 ≤ p ≤ 15.

DI(Ls(Cp)) ≤ γ(Ls(Cp)) +m(Ls(Cp)−D). (28)

The set S with |S|+m(Ls(Cp)− S) and domination number with γ(Ls(Cp) +m(Ls(Cp)−D)

are shown in Table II.

Table II: The values of parameters: γ(Ls(Cp)) +m(Ls(Cp)−D) and |S|+m(Ls(Cp)− S)

p γ(Ls(Cp)) m(Ls(Cp)−D) γ(Ls(Cp)) +m(Ls(Cp)−D) S m(Ls(Cp)− S) |S|+m(Ls(Cp)− S)
7 4 6 10 {e1, e2, e4, e5, e7} 3 8

8 4 6 10 {e1, e2, e3, e5, e6, e8} 3 9

9 5 6 11 {e1, e2, e4, e5, e7, e8} 3 9

10 6 6 12 {e1, e2, e4, e5, e7, e8, e10} 3 10

11 6 6 12 {e1, e2, e4, e5, e7, e8, e10, e11} 3 11

12 6 6 12 {e1, e2, e4, e5, e7, e8, e10, e11} 3 11

13 7 6 13 {e1, e2, e4, e5, e7, e8, e10, e11, e13} 3 12

14 8 6 14 {e1, e2, e4, e5, e7, e8, e10, e11, e13, e14} 3 13

15 8 6 14 {e1, e2, e4, e5, e7, e8, e10, e11, e13, e14} 3 13

From Table II, for any domination set S of Ls(Cp) other than D, we have

|S|+m(Ls(Cp)− S) ≤ γ(Ls(Cp) +m(Ls(Cp)−D). (29)

If S1 is any dominating set of Ls(Cp) other than D and S with m(Ls(Cp)− S1) = 4 or 5, then
|S| ≤ |S1|. This implies that

|S|+m(Ls(CP )− S) < |S1|+m(Ls(CP )− S1). (30)

If S2 is any dominating set of Ls(Cp) other than D , S and S1 with m(Ls(Cp)− S2) = 2 or 1,
then |S2| ≥ p. This implies that

|S2|+m(Ls(CP )− S2) ≥ p+ 1. (31)
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Thus from Table II and the results (28) to (31), we have that

DI(Ls(Cp)) = |S|+m(Ls(Cp)− S)

= p− bp
3
c+ 3.

(32)

2

Theorem 2.6.

For all p ≥ 16, DI(Ls(Cp)) = γ(Ls(Cp)) + 6.

Proof:

By definition of line splitting graph, Ls(Cp) has vertex set {e1, e2, ..., ep, e′1, e′2, ..., e′p}, where
{e′1, e′2, ..., e′p} is the set of vertices corresponding to edges e1, e2, ..., ep which are added to obtain
Ls(Cp). Then from Theorem 2.4,

For 1 ≤ j < bp
4
c, and p ≥ 5, S = {e1, e4j, e4j+1, ep}, for p ≡ 0(mod 4), For 1 ≤ j ≤ bp

4
c, and p ≥

5, S = {e1, e4j, e4j+1}, for p ≡ 1(mod 4), For 1 ≤ j ≤ bp
4
c, and p ≥ 5, S = {e1, e4j, e4j+1, ep},

for p ≡ 2(mod 4), For 1 ≤ j ≤ bp
4
c, and p ≥ 5, S = {e1, e4j, e4j+1, ep}, for p ≡ 3(mod 4) are

γ-sets of Ls(Cp). Then m(Ls(Cp)−D) = 6. Thus,

DI(Ls(Cp)) ≤ γ(Ls(Cp)) + 6. (33)

If m(Ls(Cp)− S) 6= 6 for any dominating set of Ls(Cp) other than D, then

|S|+m(Ls(Cp)− S) ≥ γ(Ls(Cp)) + 6. (34)

Case 1. Consider S1 is any dominating set of Ls(Cp) other than D and m(Ls(Cp)− S1) = 4 or
5, then |S1| ≥ γ(Ls(Cp)) + 3. So |S1|+m(Ls(Cp)− S1) ≥ γ(Ls(Cp)) + 6.

Case 2. If S2 is any dominating set of Ls(Cp) other than D and S1 with m(Ls(Cp)− S2) = 3,
then |S2| ≥ (p− bp

3
c). Thus |S2|+m(Ls(Cp)− S2) ≥ (p− bp

3
c) + 3 ≥ γ(Ls(Cp)) + 6.

Case 3. If S3 is any dominating set of Ls(Cp) other than D, S1 and S2 with m(Ls(Cp)−S3) = 2

or 1, then |S3| ≥ p. Consequently |S3|+m(Ls(Cp)− S3) ≥ p+ 1 > γ(Ls(Cp)) + 6. Thus, from
(33) and (34), we get the result. 2

Theorem 2.7.

γ(Ls(K1,p−1)) = 2.

Proof:

By definition of line splitting graph, Ls(K1,p−1) has vertex set {e1, e2, ..., ep−1, e′1, e′2, ..., e′p−1},
where {e′1, e′2, ..., e′p−1} is the set of vertices corresponding to edges e1, e2, ..., ep−1 which are
added to obtain Ls(K1,p−1).

Consider S = {e1, e2}, a dominating set of Ls(K1,p−1) and |S| = 2. We claim that S is a minimal
dominating set of Ls(K1,p−1). Because e1 is adjacent to all vertices except the vertex e′1, and e2
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is adjacent to all vertices except the vertex e′2, if e1 or e2 is removed from set S, then e′1 or e′2
will not be dominated. Thus, S is minimal dominating set, hence γ(Ls(K1,p−1)) = 2. 2

Theorem 2.8.

DI(Ls(K1,p−1)) = p.

Proof:

From Theorem 2.7, γ(Ls(K1,p−1)) = 2. Let D = {e1, e2} be a γ-set of graph Ls(K1,p−1). Then,
m(Ls(K1,p−1)−D) = 2p− 4. Therefore,

DI(Ls(K1,p−1)) ≤ γ(Ls(K1,p−1)) +m(Ls(K1,p−1)−D)

= 2 + 2p− 4 = 2p− 2.
(35)

Consider S = {e1, e2, ..., ep−1} , a dominating set of Ls(K1,p−1), where ei is correspond to the
edges of K1,p−1. Then, the remaining graph Ls(K1,p−1) − S is totally disconnected. That is,
m(Ls(K1,p−1)− S) = 1, so

DI(Ls(K1,p−1)) ≤ |S|+m(Ls(K1,p−1)− S)
≤ p.

(36)

To show that the number |S|+m(Ls(K1,p−1)−S) is minimum. It is assumed that m(Ls(K1,p−1)−
S) ≥ 1, then trivially |S|+m(Ls(K1,p−1)− S) ≥ p. Thus, from (35) and (36),
DI(Ls(K1,p−1)) = p. 2

3. Central Graphs

For a given graph G = (V,E) of order p, the central graph C(G) is obtained by subdividing each
edge in G exactly once and joining all the nonadjacent vertices of G (Thilagavathi and Roopesh
(2007)).

Theorem 3.1.

For any path Pp, p ≥ 2

γ(C(Pp)) =

{
p
2
, if p ≡ 0(mod 2),

dp
2
e, if p ≡ 1(mod 2).

Proof:

Let Pp be path of length p− 1 with vertices {v1, v2, ..., vp}. Let ui be the vertex of subdivision
of edges vivi+1(1 ≤ i ≤ p). Also let viui = ei and uivi+1 = e′i(1 ≤ i ≤ p− 1).

By the definition of central graph, the non-adjacent vertices vi and vj of Pp are adjacent in
C(Pp) by the edge eij . Therefore, V (C(Pp)) = {vi/1 ≤ i ≤ p} ∪ {ui/1 ≤ i ≤ p − 1} and
E(C(Pp)) = {ei/1 ≤ i ≤ p− 1} ∪ {e′i/1 ≤ i ≤ p− 1} ∪ {eij/1 ≤ i ≤ p− 2, i+ 2 ≤ j ≤ p}.
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Based upon the number of vertices in Pp the following subsets are considered:

• if p = 2, S1 = {u1}.
• if p = 3, S2 = {v1, u2}.
• if p = 4, S3 = {v2, v3}.
• for 0 ≤ j < p

2
: S4 = {v1+2j}, |S4| = p

2
, for p ≡ 0(mod 2), p ≥ 5.

• for 0 ≤ j < dp
2
e : S5 = {v1+2j}, |S5| = dp2e, for p ≡ 1(mod 2), p ≥ 5.

It is clear that S1, S2 and S3 is a minimal dominating set. We claim that S4 and S5 is a minimal
dominating set. None of the vertices does dominated the vertices u2j, j ≥ 1 when the vertex
v1+2j is removed. Hence,

γ(C(Pp)) =

{
p
2
, if p ≡ 0(mod 2),

dp
2
e, if p ≡ 1(mod 2).

2

Corollary 3.2.

For any path Pp, p ≥ 3

γ(C(L(Pp))) = γ(C(Pp−1)).

Theorem 3.3.

For any path Pp, p ≥ 2

DI(C(Pp)) =

{
2, if p = 2,

p+ 1, if p ≥ 3.

Proof:

Let Pp be any path of length p−1, and let V L(Pp) = {v1, v2, ..., vp} and E(Pp) = {e1, e2, ..., ep−1}.
By the definition of central graph, C(Pp) has the vertex set V (Pp)∪{ui : 1 ≤ i ≤ p− 1}, where
ui is a vertex of subdivision of the edge vivi+1(1 ≤ i ≤ p− 1).

Case 1: p = 2. From Theorem 3.1, γ(C(P2)) = 1 and D = {u1}, is a γ-set of C(P2). Then
m(C(P2))−D) = 1. This implies that DI(C(P2)) = γ(C(P2)) +m(C(P2)−D) = 1 + 1 = 2.

Case 2: p = 3. From Theorem 3.1, γ(C(P3)) = 2 and D = {v1, u2}, is a γ-set of C(P3). Then
m(C(P3)−D) = 2. This implies that DI(P3) = γ(C(P3)) +m(C(P3)−D) = 2 + 2 = 4.

Case 3: p ≥ 4. Consider S = {v1, v2, ..., vp} is dominating set of C(Pp). This implies that

DI(C(Pp)) ≤ |S|+m(C(Pp)− S) = p+ 1. (37)

For showing that the number |S|+m(C(Pp)−S) is minimum, m(C(Pp)−S1) ≥ 2 be considered,
then trivially |S1|+m(C(Pp)− S1) ≥ p+ 1. Hence for any dominating set S1,

|S1|+m(C(Pp)− S1) ≥ p+ 1. (38)

From (37) and (38), DI(C(Pp)) = p+ 1. 2
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Corollary 3.4.

For any path Pp, p ≥ 3

DI(C(L(Pp))) =

{
2, if p = 3,

p, if p ≥ 4.

Theorem 3.5.

For any cycle Cp, γ(C(Cp)) =


2, if p = 3,

3, if p = 4,
p
2
, if p ≡ 0(mod 2),

dp
2
e, if p ≡ 1(mod 2).

Proof:

Let Cp be any cycle of length p and let V (Cp) = {v1, v2, ..., vp} and E(Cp) = {e1, e2, ..., ep}.
By the definition of central graph, C(Cp) has the vertex set V (Cp) ∪ {ui : 1 ≤ i ≤ p}, where ui
is a vertex of subdivision of the edge vivi+1(1 ≤ i ≤ p) and up is a vertex of subdivision of the
edge vpv1. We note that in C(Cp),

(1) deg(vi) = p− 1 for every i,
(2) deg(ui) = 2 for every i, also {ui : 1 ≤ i ≤ p} is an independent set.

Depending upon the number of vertices in Cp, the following subsets are available:

• if p = 3, S1 = {v1, u2}.
• if p = 4, S2 = {v1, u2, v4}.
• for 0 ≤ j < p

2
, p > 4, and for p ≡ 0(mod 2), S3 = {v1+2j}, |S3| = p

2
,

• for 0 ≤ j ≤ bp
2
c, p > 4, and for p ≡ 1(mod 2), S4 = {v1+2j}, |S4| = dp2e.

It is clear that S1 and S2 are a minimal dominating sets. We claim that S3 and S4 are also minimal
dominating sets, since the vertices u2j, j ≥ 1 will not be dominated by any of the vertices when
the vertex v1+2j is removed. Hence,

γ(C(Cp)) =


2, if p = 3,

3, if p = 4,
p
2
, if p ≡ 0(mod 2),

dp
2
e, if p ≡ 1(mod 2).

2

Corollary 3.6.

For any cycle Cp, γ(C(L(Cp))) =


2, if p = 3,

3, if p = 4,
p
2
, if p ≡ 0(mod 2),

dp
2
e, if p ≡ 1(mod 2).
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Proof:

Since L(Cp) = Cp, hence the result follows. 2

Theorem 3.7.

For any cycle Cp, DI(C(Cp)) = p+ 1.

Proof:

Let Cp be any cycle of length p, let V (Cp) = {v1, v2, ..., vp} and E(Cp) = {e1, e2, ..., ep}.
By the definition of central graph, C(Cp) has the vertex set V (Cp) ∪ {ui : 1 ≤ i ≤ p}, where ui
is a vertex of subdivision of the edge vivi+1(1 ≤ i ≤ p) and up is a vertex of subdivision of the
edge vpv1. We consider the following cases:

Case 1: p = 3. From Theorem 3.5, γ(C(C3))) = 2 and D = {v1, u2} is a γ-set of C(C3)). Then,
m(C(C3)−D) = 2. This implies that DI(C(C3)) = γ(C(C3)) +m(C(C3)−D) = 2 + 2 = 4.

Case 2: p = 4. From Theorem 3.5, γ(C(C4)) = 3 and D = {v1, u2, v4}. is a γ-set of C(C4)).
Then, m(C(C4)−D) = 2. This implies that DI(C(C4)) = γ(C(C4))+m(C(C4)−D) = 3+2 = 5.

Case 3: p = 5. Consider S = {v1, u2, v4, v5}, a dominating set of C(C5). Then, m(C(C5)−S) =
2. This implies that

DI(C(C5)) = |S|+m(C(C5)− S) = 4 + 2 = 6. (39)

From Theorem .13, γ(C(C5)) = 3 and D = {v1, v3, v5} is a γ-set of C(C5). Then, m(C(C5)−
D) = 6. This implies that

DI(C(C5)) = γ(C(C5)) +m(C(C5)−D) = 3 + 6 = 9. (40)

If S1 is any dominating set other than D and S with m(C(C5))−S1) ≥ 3, then |S1| ≥ |S|. This
implies that

|S|+m(C(C5)− S) ≤ |S1|+m(C(C5)− S1). (41)

Hence from (39), (40) and (41), DI(C(C5)) = 6.

Case 4: p ≥ 6. Consider S = {v1, v2, ..., vp} a dominating set of C(Cp). This implies that

DI(C(Cp)) ≤ |S|+m(C(Cp)− S) = p+ 1. (42)

We will show that the number |S| +m(C(Cp) − S) is minimum. If m(C(Cp) − S1) ≥ 2, then
trivially |S1|+m(C(Cp)− S1) ≥ p+ 1. Hence for any dominating set S1,

|S1|+m(C(Cp)− S1) ≥ p+ 1. (43)

From (42) and (43), DI(C(Cp)) = p+ 1. 2

Corollary 3.8.

For any cycle Cp, DI(C(L(Cp))) = p+ 1.
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Proof:

Since L(Cp) = Cp, hence the result follows. 2

Theorem 3.9.

For any star K1,p−1, p ≥ 4

DI(C(K1,p−1)) = p+ 1.

Proof:

Let V (K1,p−1) = {v, v1, v2, ..., vp−1}. By the definition of central graph, C(K1,p−1) has the vertex
set {vi/1 ≤ i ≤ p − 1} ∪ {ui/1 ≤ i ≤ p − 1} ∪ {v}, where ui is a vertex of subdivision of the
edge vvi(1 ≤ i ≤ p− 1).

Consider S = {v, v1, v2, ..., vp−1}, a dominating set of C(K1,p−1), and m(C(K1,p−1) − S) = 1.
Therefore

DI(C(K1,p−1)) ≤ |S|+m(C(K1,p−1)− S)
≤ p+ 1.

To show that the number |S|+m(C(K1,p−1)−S) is minimum. Consider m(C(K1,p−1)−S) ≥ 1,
then |S|+m(C(K1,p−1)− S) ≥ p+ 1. Thus DI(C(K1,p−1)) = p+ 1. 2

4. Conclusion

The domination and vulnerability of a network are two important concepts for the network
security. We have studied an important measure of vulnerability known as domination integrity
and investigate the domination integrity of line splitting graph and central graph of path, cycle
and star graphs. We propose the following open problems to the readers for further research
work.

Open Problem 1.

Find domination integrity of line splitting graph and central graph of other family of graphs.

Open Problem 2.

Investigate the edge-integrity for line splitting graph and central graph of graphs.
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