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Abstract  
 

The aim of this work is to study the role that the cilia motion plays in the transport of a 

micropolar fluid in a uniform cylindrical tube. The transport due to systems of beating cilia is 

responsible for the transport of bio-fluids in numerous physiological processes. Cylindrical 

coordinates are used to formulate the system of equations with the suitable boundary 

conditions governing the flow. Such system is then simplified through considering the long 

wavelength and low Reynolds number assumptions. Solutions are found for the velocity 

components, the pressure gradient, and the stream function which include many parameters 

such as the cilia length parameter, the eccentricity parameter of the elliptical motion and the 

wave number. The results shows that the pumping machinery functions more efficiently to 

push ahead micropolar fluid than Newtonian fluid. The obtained results may help to 

understand more the processes of the transport of bio-fluids in human body. 
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1.  Introduction  
 

The study of the processes of transport of bio-fluids inside the human body has attracted 

many researchers in recent years. One of these processes is the transport due to systems of 

beating cilia. Cilia are a minor hair beat in rhythmic waves and it is responsible for the 

transport of bio-fluids in numerous physiological processes like the motion of epididymal 

fluid in the efferent ductus of the human male reproductive tract and the removal of 

tracheobronchial mucus in the respiratory track, the transport of ovulatory mucus and ovum 

in the oviduct of the female reproductive tract system. In the literature there are numerous 

theoretical investigations in cilia transport. Lardner and Shack (1972) have studied the 

mathematical model of cilia transport in the duetus efferentes of the male reproductive tract. 

After this investigation several theoretical and experimental studies have been presented to 

understand cilia transport. Agarwal and Anwaruddin (1984) have discussed the effect of 

variable viscosity on the fluid transported by cilia. The investigation of a power law fluid in 

the channel with ciliated walls has been presented by Siddiqui et al. (2010). Siddiqui et al. 

((2014 a) and (2014 b)) have considered the MHD effect on the fluid flow by cilia in a 

channel and tube respectively. The rheological of power law fluid flows in a tube by 

metachronal wave of cilia has been discussed by Maiti and Pandey (2017).  

 

The Navier-Stokes model of hydrodynamics has a radical restriction. It can’t depict fluids 

with microstructure and complex liquids. Eringen (1966) has introduced a mathematical 

model of fluid (micropolar fluid) comprising of rigid, randomly oriented particles suspended 

in a viscous medium. Microfluidics deal with the flow of liquids inside a micrometer-sized 

channels. Microfluidics have many applications such as water purification and genetics 

research. Many researchers have used the model established by Eringen to describe some 

biological problems. Srinivasacharya et al. (2003) have discussed the peristaltic flow of a 

micropolar fluid in a tube. The heat transfer distribution through a micropolar fluid in a 

porous channel with peristalsis has been introduced by Abd elmaboud (2011). Abd elmaboud 

(2013) has also studied the effect of peristaltic transport and heat transfer of a magneto 

micropolar fluid through porous channel. Vijaya et al. (2016) have discussed the effects of 

both stenosis and post stenotic dilatation on steady flow of micropolar fluid through an artery. 

 

With the above discussion in mind, the goal of this investigation is to formulate and solve the 

mathematical model which describe the transport due to systems of beating cilia for a 

micropolar fluid. We study the effects of micropolar parameters as well as cilia transport 

parameters on the fluid motion. Cylindrical coordinates are used to formulate the system of 

equations with the suitable boundary conditions governing the flow. Solutions are found for 

the velocity components, the pressure gradient, and the stream function which include many 

parameters such as the cilia length parameter, the eccentricity parameter of the elliptical 

motion and the wave number.  

 

2.  Formulation of the problem 
 

Consider a micropolar fluid in an infinite circular tube ciliated with metachronal waves. The 

movement of the fluid occurs due to aggregate beating of the cilia. The model of the problem 

is shown in figure 1. We can express mathematically the envelopes of the cilia tips as  

 

2
= = cos ( )R H a b Z ct





 
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 
                                                                    (1) 
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where a  is the radius of the tube, =b a  is the wave amplitude,   is a non-dimensional 

measure with respect to the cilia length,   is a measure of the eccentricity of the elliptical 

motion, 
0

Z   is a reference position,   is the wavelength, c  is the propagation velocity, and 

t   is time. 

 

In case of no-slip condition applied to the tube wall, the velocities conferred to fluid particles 

are just those of the cilia tips. To get the horizontal and radial velocities of the cilia we have  
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with help of equations (1-2) we get  
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The fluid is unsteady in the fixed frame ( , )R Z  . We introduce a new frame ( , )r z   

moving with velocity c  in which the fluid is steady. The transformation between the two 

frames are  

 

= , = , = , = ,        
z z r r

z Z ct r R v V c v V                                                     (7) 

 

where ( , )
r z

v v   denotes the radial and the axial velocity in the moving frame respectively. 

Using the transformation (7) the system of equations governing the steady flow of an 

incompressible micropolar fluid takes the form:  

 

' = 0,v                                                                                                                       (8) 
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                                                                                                                                      (10) 

 

where 'v  and 'w  are the velocity and the microrotation vectors respectively, p   is the fluid 

pressure,   and j   are the fluid density and microgyration parameters. Here for this flow 

the velocity vector is given by ' = ( ,0, )
r z

v v v  , while the microrotation vector is given by 

' = (0, ,0)w w

 .  Introducing the following dimensionless variables:  
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The non-dimensional governing equations (8-10) become  
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The corresponding boundary conditions are:  

 

                                                                                                                               (16) 

 

where = /a   is the wave number, = /Re ca   is the Reynolds number, 

= / ( )N k k   is the coupling number, 
2 2

0
= (2 ) / ( ( ))m a k k k     is the 

micropolar parameter.  

 

3.  Solution of the problem 
 

To solve this problem we use the long wavelength approximation <<1  with lubrication 

approach. Dropping terms of order Re  and 
2  and higher. Equations (12-16) reduce to  
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The associated boundary conditions in the moving frame are  
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From equations (19) and (20) we get,  
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Integrating equation (22) with respect to r  we have  
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Substituting equation (23) into equation (20), we get,  
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where 
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 . The general solution of equation (24) is  
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where 
1

I  and 
1

K  are modified Bessel functions of first order, first and second kind, 

respectively. Substituting equation (25) into equation (23) and integrating with respect to r  

we obtain:  
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where 
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I  and 
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K  are the first order modified Bessel functions of zero-order and 

1 2 3
, ,    and 

4
  are constants of integration. From equations (25 and 26) and the 

boundary conditions (21) the axial and microrotation velocities are given by  
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F
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From equation (17) the stream function can be defined as (
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v
r r




 and 

1
=

r
v

r z





 ), 

so the stream function takes the form  
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The non-dimensional flux in the moving frame (
2= /q q ca ) is given by  

 

 

 

 

               

 (30) 

 

from equation (30) the pressure gradient takes the form  
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The connection between the flow rates in fixed and moving frames over a period is obtained 

as  

 

2

10

1
= ( ) = ,

T

Q q h dt q q
T

                                                                             (32) 

 

where 
1 2

1 0
=q h dz . Substituting from equation (32) into (31) , we get  

 

2 3

0 1 1 1

1

2

( , ) =

2 ( ) 2 ( ) ( ) 4 ( )
{ }

8 ( )

2 cos(2 )
( 1)
1 2 cos(2 )

.
2



 

 

  






r z

mFhrI mh mh rI mh mr I mh FhI mrdp
rA

dz mI mh

z
r

z

0

2 2 0

1

= 2 =

2 ( )1 8 cos(2 ) 4
{4 ( )},

4 1 2 cos(2 ) ( )

 

 
    




h

z
q rv dr

AFhI mhz dp AF
h Ah

z dz m I mh



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 411 

1

2

2 0

1

4( ) 8 cos(2 )
( 4 )

1 2 cos(2 )
= .

2 ( )4

( )

Q q z

dp h z

AFhI mhAFdz
Ah

m I mh

 

 


 




 

                                           (33) 

 

The non-dimensional form of the pressure rise p  takes the form  
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In the absence of the cilia ( . = 0)i e   equations (27-29) take the form  
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These results are congruent with those obtained by Srinivasacharya [8]. 

 

4.  Numerical results and discussion 
 

In this section we discuss the effects of sundry parameters that are of relevance to our 

problem on the axial velocity 
z

v , microrotation velocity w


, pressure gradient 
dp

dz
, 

pressure rise p  and the stream function ( , )r z .  

 

4.1.  The Axial and microrotation velocities 

 

The effects of the studied parameters on the axial velocity 
z

v  are shown in Figures (2)-(6). 

While Figures (7)-(11) exhibit the effects of the parameters on the microrotation velocity 

w


. 

 

Figures (2)-(6) Show the variation of the axial velocity 
z

v  with the tube radius r . One can 
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note that there is a critical value of the tube radius r  below which 
z

v  is positive and above 

which 
z

v  is negative since the maximum value of the fluid velocity takes place at the center 

of the tube (i. e at = 0r ), as the tube radius r  increases the fluid gets closer to the 

boundary and consequently the fluid faces a resistance from the boundary and the fluid takes 

the boundary velocity which is negative according to the boundary condition (21). 

 

Figures (2), (4), (5), and (6) show that effects of the parameters , , ,N   and m  on 
z

v  

respectively. It can be noted that below a critical value of r  the velocity increases with the 

increase of the considered parameter (all other parameters are kept constant) and the opposite 

behavior is noted above such critical value of r . While figure (3) shows that 
z

v  decreases 

with the increase of the cilia length parameter   till a critical value of r , then 
z

v  increases 

with the increase of the cilia length parameter   after such critical value of r .  

As the wave number ( =
a




) increases the wavelength   decreases assuming that a  is 

fixed, consequently the metachronal waves accelerate the fluid motion till a critical value of 

r . For values of r  greater than such critical value, the effect of   on 
z

v  is reversed since 

near the boundary the clia motion is dominant. The effect of increasing the cilia length 

parameter   on 
z

v  is to decrease 
z

v  as r  increases from 0  till a critical value of r  in this 

region the increase of the cilia length decreases 
z

v  but for values bigger than the critical 

value of r  such effect is reserved (see Figure (3)). 

 

Figure (4) show that the increase of the eccentricity of the elliptical motion   increases the 

velocity 
z

v  for values of r  smaller than a critical value. But for values of r  bigger than 

such critical value 
z

v  decreases with increasing  . Since near the boundary the increase of 

the eccentricity impedes the fluid motion. In Figure (5), it is shown that the effect of 

increasing the coupling number N , is to increase the value of 
z

v  for values of r  smaller 

than a critical value, in this region the velocity of the micropolar fluid is greater than that of 

the Newtonian fluid ( = 0N ) which is justified by the fact that as N  increases the effect of 

micropolar fluid appears more and this accelerates the fluid motion. For values of r  greater 

than the critical value the effect of N  is reversed. In figure (6), the effect of the micropolar 

parameter m  is exhibited. One can note that for values of r  smaller than a critical value the 

velocity 
z

v  increases with the increase of m  till a critical value of m  and then decreases 

with increasing m . The inverse behavior can be noted for values of r  greater than the 

critical value. Figure (7) shows that as the wave number   increases the microrotation 

velocity w


 decreases this happens because as the wave number   increases the wavelength 

decreases which result in pushing the fluid to move along the axis of the tube and hence 

reduces the microrotation velocity. 

 

It can be observed from Figure (8) that as the cilia length parameter   increases the radius of 

the tube decreases for the considered value of z  ( = 0.4z ) due to boundary condition (21). 

The maximum value of w


 decreases with increasing  . with r . Figure (9) depicts the 

effect of the eccentricity parameter of the elliptical motion   on the microrotation velocity 
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w


. It is clear that as   elevates the microrotation velocity decreases. In the middle of the 

tube or near the boundary the effect is limited. The coupling number N  has a considerable 

effect on the microrotation velocity as shown in figure (10). One can see that as N  increases 

(so the fluid goes from Newtonian fluid to micropolar fluid ) the microrotation velocity 

increases. In Figure (11) the microrotation velocity increases with the increase of the 

micropolar parameter m . One can also note that as m  increases the maximum value of the 

microrotation velocity is shifted to the boundary. That is justified by the fact that near the 

boundary the concentration of the fluid particles is high which results in increasing the 

microrotation velocity and ultimately the particle in the vicinity of the boundary do not rotate. 

 

4.2.  Pressure Gradient and Pressure Rise 
 

The pressure gradient 
dp

dz
 is plotted versus z  in figures (12)-(16). One can see that the 

pressure gradient increases with the increase of z  reaching a maximum value at a critical 

value of z . After such critical value the pressure gradient decreases with the increase of z . 

This behavior can be understood in view of the fact that in the collapsed regions of the tube 

the pressure gradient elevates to sustain the fluid to move along the tube. while in the wider 

regions of the tube the pressure gradient decreases. In figure (12) one can see that the 

pressure gradient decreases with the increase of the wave number   in the wider regions of 

the tube. While the pressure gradient increases with the increase of   in the collapsed 

regions of the tube. The effect of the cilia length parameter   on the pressure gradient is 

shown in figure (13). In case of = 0  (Absence of cilia; regular tube) the pressure gradient 

is fixed along the axis of the tube. While the pressure gradient increases with the increase of 

the cilia length parameter   in the narrow regions of the tube, while the converse behavior is 

noticed in the wider regions of the tube. Figure (14) displays the effect of the eccentricity 

parameter of the elliptical motion   on the pressure gradient. One can see that the pressure 

gradient increases with the increase of   in the collapsed regions of the tube. While the 

converse behavior can be noticed in the wider regions.  

 

The effect of increasing the coupling number N  on the pressure gradient is shown in figure 

(15). One can note that in the case of Newtonian fluid ( = 0N ) the pressure gradient is less 

than the corresponding values in case of micropolar fluid ( > 0N ). This can be justified by 

the fact that the coupling between fluid particles requires a raise in pressure gradient in order 

to accelerate the fluid. Figure (16) shows the effect of the micropolar parameter m  on the 

pressure gradient. It is found that the pressure gradient decreases with the increase of m . 

 

Figure (17) shows that the variation of pressure rise p  with the cilia length parameter   

for different values of the eccentricity parameter of the elliptical motion  . Such figure 

shows that as   increases the pressure rise increases. One can also notice that the effect of 

  does not appear for small values of  . The figure also shows that with increasing the 

value of   the pressure rise increases and this because the occlusion that happens through the 

tube elevates the pressure rise. 

 

Figure (18) depicts the variation of pressure rise p  versus   for different values of the 

micropolar parameter m . It is clear that the pressure rise decreases as the micropolar 

parameter increases while it increases as the wave number increases. 
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Figure (19) shows the variation of the pressure rise p  with the flow rate Q  for different 

values of the coupling number N . It is evident that as the flow rate increases the pressure 

rise decreases and there is a critical value of the flow rate ( = 0.161Q ) this value is known 

as free pumping flux. Furthermore, we observe that an increase in the coupling number N  

causes an increase in the magnitude of the pressure rise p . This disclosures that the 

pumping machinery has to function more efficiently to push ahead a micropolar fluid 

( > 0N ) in comparison to a Newtonian fluid ( = 0N ). 

 

5.  Streamlines and fluid trapping 
 

Trapping is one of the important phenomenon in cilia transport, whereby a bolus is 

transported with the wave speed. Figure (20) shows the streamline graph for different values 

of the wave number   with fixed values of other parameters. It is noticed that both of the 

size and the number of the trapping bolus increase as the wave number   increases. The 

effect of the the cilia length parameter   on the streamlines is shown in Figure (21). It is 

clear that as the cilia length parameter   increases the number of the trapped bolus increases. 

The effect of the eccentricity parameter of the elliptical motion   on the trapping is 

illustrated in Figure (22). It is evident that both of the size and number of trapping bolus 

increase with increasing  .  

 

6.  Concluding remarks 
 

A mathematical model is formulated to describe the cilia transport of a micropolar fluid 

through a uniform cylindrical tube having metachronal waves. The velocity, pressure gradient 

as well as the stream function are obtained and discussed for various parameters. The 

fundamental discoveries can be summarized as follows:   

 

•  The axial velocity decreases with the increase of the cilia length parameter till a 

critical value of of the tube radius, then the axial velocity increases with the increase 

of the cilia length parameter after such critical value.  

 

•  The pressure gradient decreases with the increase of the wave number in the wider 

regions of the tube. While it increases with the increase of the wave number in the 

collapsed regions of the tube.  

 

•  In the case of Newtonian fluid the pressure gradient is less than the corresponding 

value in case of micropolar fluid.  

 

•  The occlusion that happens through the tube elevates the pressure rise.  

 

•  Both of the size and the number of the trapping bolus increase as the wave number 

of the elliptical motion increase.  

 

•  Both of the size and the number of the trapping bolus increase as the cilia length 

parameter increase.  

 

•  The pumping machinery functions more efficiently to push ahead micropolar fluid 

than Newtonian fluid.  
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Figure  1.  Geometry of the problem 
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Figure  2.   Variation of velocity with r  for different values of   at = 0.2 , = 0z , 

= 0.5 , = 1.2Q , = 2m , = 0.5N  

 

Figure  3.  Variation of velocity with r  for different values of   at = 0.1  , = 0z , 

= 0.5 , = 1.2Q , = 2m , = 0.5N  

 

Figure  4.  Variation of velocity with r  for different values of   at = 0.1  , = 0z , 

= 0.4 , = 1.2Q , = 2m , = 0.5N  
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Figure  5.  Variation of velocity with r  for different values of N  at = 0.1  , = 0z , 

= 0.4 , = 1.2Q , = 2m , = 0.5  

 

Figure  6.  Variation of velocity with r  for different values of m  at = 0.1  , = 0.4z , 

= 0.4 , = 1,2Q , = 0.5N , = 0.5  
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Figure  7.  Variation of microrotation velocity with r  for different values of   at = 0.2 , 

= 0.4z , = 0.5 , = 1.2Q , = 2m , = 0.5N  

 

 

Figure  8.  Variation of microrotation velocity with r  for different values of   at = 0.1  , 

= 0.4z , = 0.5 , = 1.2Q , = 2m , = 0.5N  



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 419 

 

 

Figure  9.  Variation of microrotation velocity with r  for different values of   at = 0.1 , 

= 0.4z , = 0.4 , = 1.2Q , = 2m , = 0.5N     

 

Figure  10.  Variation of microrotation velocity with r  for different values of N  at 

= 0.1  , = 0.4z , = 0.4 , = 1.2Q , = 2m , = 0.5  

 

 

Figure  11.  Variation of microrotation velocity with r  for different values of m  at 

= 0.1  , = 0.4z , = 0.4 , = 1,2Q , = 0.5N , = 0.5  
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Figure  12.    The variation of 
dp

dz
 with z  for different values of   at = 0.1 , = 0.5 , 

= 0.6Q  , = 2m , = 0.5N  

 

  

Figure  13.  The variation of 
dp

dz
 with z  for different values of   at = 0.1 , = 0.5 , 

= 0.6Q  , = 2m , = 0.5N  
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Figure  14.  The variation of 
dp

dz
 with z  for different values of   at = 0.1 , = 0.1 , 

= 0.6Q  , = 2m , = 0.5N  

 

 

 

Figure  15.  The variation of 
dp

dz
 with z  for different values of N  at = 0.1 , = 0.1 , 

= 0.6Q  , = 2m , = 0.2  
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Figure  16.  The variation of 
dp

dz
 with z  for different values of m  at = 0.1 , = 0.1 , 

= 0.6Q  , = 0.5N , = 0.2  

 

 

   

Figure  17.  The variation of p  with   for different values of   at = 0.1 , = 0Q , 

= 2m , = 0.5N  
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Figure  18.  The variation of p  with   for different values of m  at = 0.1 , = 0Q , 

= 0.4 , = 0.5N  

 

 

 

 

 

Figure  19.  The variation of p  with Q  for different values of N  at = 0.2 , = 0.1 , 

= 0.4 , = 2m  
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Figure  20.  Streamlines for different values of   ( = 0 ,  = 0.1 , Panels a,b ) with fixed 

values of = 0.4 , = 1.5Q , = 0.2 , = 8m , and = 0.5N , where 

[0, ( )]r h z  

Figure  21.  Streamlines for different values of   ( = 0.1 , = 0.2 , Panels a,b) with 

fixed values of = 0.4 , = 1.5Q , = 0.1 , = 8m , and = 0.5N , where 

[0, ( )]r h z  
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Figure  22. Streamlines for different values of   ( = 0 ,  = 0.5 , Panels a,b 

respectively) with fixed values of = 0.2 , = 1.5Q , = 0.1 , = 8m , and 

= 0.5N , where [0, ( )]r h z  

 


