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Abstract  

The Composite Convolution Operator is an operator which is obtained by composing 

Convolution operator with Composition operator. Volterra composite convolution operator is a 

composition of Volterra convolution operator and Composition operator. The Composite 

Convolution Operators and Composite Convolution Volterra operators have been defined by 

using the Expectation operator and Radon-Nikodym derivative.  In this paper an attempt has 

been made to investigate applications of Composite Convolution Operators (CCO) in Integral 

Convolution Type Equations (ICTE).  The study may explore a new technique to solve Fredholm 

Convolution type integral equations and Volterra Convolution type integral equations. Some 

methods for solving integral convolution type equations by using Composite Convolution 

Operators have also been studied. For integral convolution type equations, theorems on 

existence, uniqueness and estimates for solution have also been proved without any restriction 

for the parameter. In order to determine the solution by the method of successive approximations 

in this paper, I have made use of the concept of the Resolvent Kernel to obtain Neumann Series. 

The Banach Contraction Principle has also been used to obtain some results. The method of 

Variational Iteration has been applied to find out the approximate solution of integral equations 

by using Composite Convolution Operators. In this paper Numerical Methods have also been 

adopted for solution of these integral equations. Fourier transform has been used to solve Integral 

convolution type equations and Laplace transform has been applied to solve Volterra convolution 

type equations. 
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1. Introduction 

Let (X, Ω,) be a σ-finite measure space. For each f  L
p
(), 1   p < , there exists a unique    

-1
(Ω) measurable function E(f)  such that   

   dfgEdgf )(  

for every -1
(Ω) measurable function g for which left integral exists. The function E (f) is called 

conditional expectation of f with respect to the sub- algebra -1
(Ω). For more details about 

expectation operator, one can refer to Parthasarthy (1977). Given f, g  L
2
(R), then the 

convolution of  f and g,  f*g is defined by        

f*g(x) =   dyfyxg )()( , 

where g is fixed, k(x,y) = g(x-y) is  a convolution kernel, and the integral operator defined by   

Ik f(x) =   )()()( ydyfyxk   

is known as convolution operator. Suppose  : [0,1]→ [0,1] is a measurable transformation, then   

Ik  f (x) = )()()())(()( ydyfyxkyfyxk      

 

is known as composite convolution operator (CCO) induced by pair (k,), where 

    

k (x-y) = E(fo(y)k(x-y)-1
(y)).  

 

The adjoint of composite convolution operator Ik, is an integral operator induced by the kernel 
*

k and  

*

,k
I f(x) = )()()(* ydyfyxk   ,  

 where  
*

k (x-y) = .)( xyk   
Also,    

n

k
I

,
f(x)  =   )()()()())(()( ydyfyxkydyfyxk nn   ,   

where kernel 
nk  is defined as 

nk  (x-y)  =  

).()...()()()()...()()(... 1321132211    nn zdzdzdzdyzkzzkzzkzxk        (1.1) 
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The integral operators, and in particular convolution operators, have been studied extensively 

over the last few decades. For more details about composition operators, integral operators, 

convolution operators and composite integral operators, I have referred to Singh and Manhas 

(1993), Halmos and Sunder (1978), Stepanov [(1978) and (1980)] Gupta and Komal (2011), 

Gupta [(2014) and (2015)]. Whitley (1987) established the Lyubic’s conjecture (1984) and 

generalized it to Volterra composition operators on L
p
[0,1].  

 An integral equation can be defined as equation which is a result of transformation of points in a 

given vector space of integrable functions by the use of certain specific integral operators to 

points in the same space.  A computational approach for solving integral equation is an essential 

work in scientific research. For integral convolution type equations, theorems on existence, 

uniqueness and estimates for solution in L
p
[0,1], 1   p < , were proved without any restriction 

for the parameter λ. In recent years, many different methods have been used to approximate the 

solution of integral equations and Volterra integral equations of convolution type by Srivastava 

and Buschman (1992), Estrada and Kanwal (2000),  Kathe and Puri (2002), Mishra (2007), 

Mishra and Mishra (2012), Mishra, Khatri and Mishra (2013), Deepmala (2014), Deepmala and 

Mishra (2015) and Saeedi, Tari and Momeni Masuleh (2013). This paper is an extension of 

Gupta [(2014) and (2015)].  

 

Here, I recall some basic notion in operator theory. Let H be a Hilbert space and B(H) be the 

algebra of all bounded linear operators acting on H. Let L
2
() consist of all measurable functions  

f : X → R (or C) such that (∫ |𝑓(𝑥)|2 𝑑𝜇)½𝑑𝜇 < ∞. The space L
2
(X, S, µ) is a Banach space 

under the norm defined by  

    ||𝑓|| = (∫ |𝑓(𝑥)|2 𝑑𝜇)½ .    

Also, L
2
(µ), the space of square-integrable functions, is a Hilbert space. The Laplace 

transform of a function f ( t )  is defined as 

 L{f(t)}= F(s) = dtetf st






0

)( . 

The inverse of Laplace transform   L
-1

{F(s)}= f(t).  

A function   𝐹̂(w) is defined as the Fourier transform of  f(x) if 

𝐹̂(w) =  𝐹̂ {f(t)} = ∫ 𝑓(𝑡)𝑒𝑖𝑤𝑡 𝑑𝑡   

exists, and  

( ₣̂)
-1

{𝐹̂(w)}=  
1

2𝜋
 ∫ 𝑒𝑖𝑤𝑥  𝐹 ̂(𝑤)𝑑𝑤     

is called  the inverse Fourier transform of  𝐹̂(w).  
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 In this paper, the prime focus is to solve Integral Convolution Type Equations (ICTE) using 

Composite Convolution Operators (CCO) by applying different techniques. 

2. Methods to solve ICTE using CCO 

In this section, an attempt has been made to use Composite Convolution Operators to solve the 

integral equations. The Banach Contraction Principle has been used to obtain the results. The 

Variational Iteration method has been successfully applied to find the approximate solution of 

integral equation using composite convolution operators. 

 

Theorem 2.1.   
 

Let k  L
2
(  ). Suppose Ik,  B(L

2
[0,1)).  If λ is a complex number such that

 

| λ |K <1, then 

for any g L
2
[0,1] there exists a unique f L

2
[0,1] such that (I – λ Ik,)f = g, where I is the 

identity operator and  K =  (∬ |𝑘∅(𝑥 − 𝑦)|2𝑑𝜇(𝑥)𝑑𝜇(𝑦))½1

0
.      

  

Proof:  

 

Let A  B( L
2
[0,1]) be defined as A(f) = λ Ik, f + g, for any g L

2
[0,1]. To show A is a 

contraction, we have  

 

|| Af  -  Afo || = ||  λ Ik,  f - λ Ik,  fo ||, 

                       | λ | (∬ |𝑘∅(𝑥 − 𝑦)|2𝑑𝜇(𝑥)𝑑𝜇(𝑦))½1

0
(∬ |𝑓(𝑦) − 𝑓0

1

0
(𝑦)|2𝑑𝜇(𝑦))½ .  

 

Then, 

 

 ||A f - Afo||  d || f - f0
 
||,  

 

using the given condition  |λ| K < 1, where 0 ≤ d  = | λ | K < 1. Hence, A is a contraction. Then, 

A has a unique fixed point, say g, by Banach Contraction Principle. That is, Af = f   has a unique 

solution, and therefore, 

 

 (I – λ Ik,)f  = g. 

 

Theorem 2.2. 

 

If k  L
2
(  ) and g  L

2
[0,1], then the Fredholm ICTE of the second kind 

 

f(x) = g(x) + 𝜆 ∫ 𝑘∅(𝑥 − 𝑦)𝑓(𝑦)𝑑𝜇(𝑦)
1

0
 = g + λ Ik, f .                                              (2.1)                       

 

has unique solution f  L
2
[0,1] for sufficiently small values of  scalar λ . 
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Proof:  
 

For every f  L
2
[0,1], define   

 

T : L
2
[0,1] →  L

2
[0,1]  as  Tf  = h  for each h  L

2
[0,1],    

 

 where 

 

 h(x) = g(x) + 𝜆 ∫ 𝑘∅(𝑥 − 𝑦)𝑓(𝑦)𝑑𝜇(𝑦)
1

0
.  

 

To show ѱ(x)  L
2
[0,1], where   

 

 ѱ(x) = ∫ 𝑘∅(𝑥 − 𝑦)𝑓(𝑦)𝑑𝜇(𝑦)
1

0
            

 

 for every  f  L
2
[0,1]. Now, 

 

| ∫ 𝑘∅(𝑥 − 𝑦)𝑓(𝑦)𝑑𝜇(𝑦)|  ≤ (∫ |𝑘∅(𝑥 − 𝑦)|21

0

1

0
𝑑𝜇(𝑦))½(∫ |𝑓(𝑦)|2𝑑𝜇(𝑦))½1

0
. 

                                              (by using Cauchy-Schwartz’s inequality) 

 

Therefore,  

 

∫ |
1

0

ѱ(𝑥)|2𝑑𝑥 ≤  ∬ |𝑘∅(𝑥 − 𝑦)|2
1

0

𝑑𝜇(𝑦)𝑑𝜇(𝑥) ∬ |𝑓(𝑦)|2
1

0

𝑑𝜇(𝑦)𝑑𝜇(𝑥)   <  ∞, 

 

since k  L
2
(  ) and f  L

2
[0,1]. Thus, ѱ(x)  L

2
[0,1]. 

 

To show T is a contraction mapping, we have 

 

 || T f - Tfo ||= || h - ho ||,  

 

And 

  

|| h - ho || = || λ ∫ 𝑘∅
1

0
(𝑥 − 𝑦)[𝑓(𝑦) − 𝑓0(𝑦)]𝑑𝜇(𝑦)|| , 

                ≤   |𝜆| (∬ |𝑘∅(𝑥 − 𝑦)|21

0
𝑑𝜇(𝑦)𝑑𝜇(𝑥))½ ∬ |𝑓(𝑦) −  𝑓0 (𝑦)|21

0
𝑑𝜇(𝑦))½. 

 

If 

 

|𝜆|  <  
1

(∬ |𝑘∅(𝑥 − 𝑦)|21

0
𝑑𝜇(𝑦)𝑑𝜇(𝑥))½

. 

 

 Then, 
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 || Tf  -  T fo ||   M || f  -f0
 
||,   

 

where  

 

 0 ≤ M = [| λ|(∬ |𝑘∅(𝑥 − 𝑦)|21

0
𝑑𝜇(𝑦)𝑑𝜇(𝑥))½] <  1.    

 

This proves that T is a contraction and hence it
 
has a unique fixed point by Banach Contraction 

Principle,  say f* L
2
[0,1] , i.e. Tf* = f*. Thus, f* is a unique solution of Equation (2.1). 

 

Theorem 2.3.  
 

Let  

 

k  L
2
() and g  L

2
[0,1].  

 

Then, the solution of integral Equation (2.1) is given by 

 

f(x) = g(x) +  λ∫ 𝛤𝜆,∅(𝑥 − 𝑦)𝑓(𝑦)𝑑𝜇(𝑦).
1

0
                                                                      (2.2)                        

 

where λ  C  is a parameter, the resolvent kernel 

 

  Γλ, (x- y) = ∑  𝜆𝑚−1∞
𝑚=1 𝑘∅

𝑚(𝑥 − 𝑦)  

 

and  iterated kernel 
mk (x-y) is defined in Equation (1.1). 

 

Proof:  

 

To determine the solution by the method of successive approximation and obtain Neumann 

series, assume that the kernel k  is a bounded function in the square  

 

  [0,1] = { (x,y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}, 

 

 so that |k(x,y)| ≤ C  for all x,y [0,1].  Also, 

 

 B1
 
=∫ |𝑘∅(𝑥 − 𝑦)|2𝑑𝜇(𝑦)

1

0
. 

  

Suppose zero-order approximation is given by f0(x) = g(x). When this value is substituted into 

the right side of Equation (2.1), we get first-order approximation 

f1(x) = g(x) + λ∫ 𝑘∅(𝑥 − 𝑦)𝑓0(𝑦)𝑑𝜇(𝑦)
1

0
. 
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This function, when substituted into the right side of Equation (2.1) yields second-order 

approximation 

 

f2(x) = g(x) + λ∫ 𝑘∅(𝑥 − 𝑦)𝑓1(𝑦)𝑑𝜇(𝑦)
1

0
. 

 

Continuing the above process, the (n+1)
th 

approximation can be obtained by substituting the n
th

 

approximation in the right side of Equation (2.1).  

 

The general recurrence relation has the form 

 

fn+1 (x) = g(x) + λ∫ 𝑘∅(𝑥 − 𝑦)𝑓𝑛(𝑦)𝑑𝜇(𝑦)
1

0
. 

 

If fn(x) tends uniformly to a limit as n → ∞, then a limit is required solution. For this, consider 

first- and second-order approximations 

 

 f1(x) = g(x) + λ∫ 𝑘∅(𝑥 − 𝑦)𝑓0(𝑦)𝑑𝜇(𝑦)
1

0
, 

 

and  

 

f2(x) = g(x) + λ∫ 𝑘∅(𝑥 − 𝑦)[𝑔(𝑦) +
1

0
 λ∫ 𝑘∅(𝑦 − 𝑧)𝑔(𝑧)𝑑𝜇(𝑧)] 𝑑𝜇(𝑦)

1

0
 

       = g(x) +λ∫ 𝑘∅(𝑥 − 𝑦)𝑔(𝑦)𝑑𝜇(𝑦)
1

0
 + 𝜆2 ∬ 𝑘∅

1

0
(𝑥 − 𝑦)𝑘∅(𝑦 − 𝑧)𝑑𝜇(𝑦)𝑔(𝑧)𝑑𝜇(𝑧). 

 

f2(x) = g(x) + λ∫ 𝑘∅(𝑥 − 𝑦)𝑔(𝑦)𝑑𝜇(𝑦)
1

0
 + 𝜆2 ∬ 𝑘∅

21

0
(𝑥 − 𝑧)𝑔(𝑧)𝑑𝜇(𝑧). 

 

By changing order of integration and setting  

 
2

k (x-y) = ∫ 𝑘∅
1

0
(𝑥 − 𝑧)𝑘∅(𝑧 − 𝑦)𝑑𝜇(𝑧). 

 

The third approximation is given by 

 

f3(x) = g(x) + ),()()()()()()()()(

1

0

1

0

3

1

0

322 ydygyxkydygyxkydygyxk      

  where  

 
3

k (x-y) =  ∫ 𝑘∅(𝑥 −  𝑧)𝑘∅
2(𝑧 −  𝑦)𝑑(𝑧)

1

0
.            

 

By repeating this process, the n
th 

approximate solution of Equation (2.1) is 

 

f n (x) = g(x) +   ∑ 𝜆 𝑚𝑛
𝑚=1 ∫ 𝑘∅

𝑚1

0
(𝑥 − 𝑦)𝑔(𝑦)𝑑𝜇(𝑦). 

f(x)= lim𝑛→∞ 𝑓𝑛 (𝑥) = g(x) +  ∑ 𝜆 𝑚∞
𝑚=1 ∫ 𝑘∅

𝑚1

0
(𝑥 − 𝑦)𝑔(𝑦)𝑑𝜇(𝑦).                            (2.3) 
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To find the condition under which the series (2.3) converges, we have  

 

|∫ 𝑘∅
𝑚1

0
(x-y)g(y)d𝜇(𝑦)|2   ≤  ∫ 𝑘∅

𝑚1

0
(𝑥 − 𝑦)|2𝑑𝜇(𝑦) ∫ |𝑔(𝑦)|21

0
𝑑𝜇(𝑦). 

 

Hence, 

 

 |∫ 𝑘∅
𝑚1

0
(x-y)g(y)d𝜇(𝑦)|2 ≤  Bm D

2
, 

 

Where 

 

 Bm
 
= ∫ 𝑘∅

𝑚1

0
(𝑥 − 𝑦)|2𝑑𝜇(𝑦) and D

2
 =∫ |𝑔(𝑦)|21

0
𝑑𝜇(𝑦).  

 

Again, 

 

 |
mk (x-y) |

2
 ≤  ∫ 𝑘∅

𝑚1

0
(𝑥 − 𝑧)|2𝑑𝜇(𝑧) ∫ |𝑘∅(𝑧 − 𝑦)|21

0
𝑑𝜇(𝑧),  

 

∫ 𝑘∅
𝑚1

0
(𝑥 − 𝑦)|2𝑑𝜇(𝑦) ≤ Bm-1 M

2
,   

 

 where  

 

M  = ∬ |𝑘∅(𝑧 − 𝑦)|2𝑑𝜇(𝑧)𝑑𝜇(𝑦)
1

0
. 

 

Thus, 

 

| ∫ 𝑘∅
𝑚(𝑥 − 𝑦)𝑔(𝑦)𝑑𝜇(𝑦)|21

0
  ≤ B1 D

2 
M

2m-2
. 

 

The infinite series (2.3) converges uniformly if |λ| M < 1. For a given λ, it trivially follows that 

Equation (2.1) has a unique solution. That is,      

  

f(x) = g(x) +  λ∫ ∑  𝜆𝑚−1∞
𝑚=1 𝑘∅

𝑚(𝑥 − 𝑦)𝑓(𝑦)𝑑𝜇(𝑦)
1

0
.  

 

f(x) = g(x) +  λ ∫ 𝛤𝜆,∅(𝑥 − 𝑦)𝑓(𝑦)𝑑𝜇(𝑦),
1

0
  

 

where Resolvent Kernel  is given by 

 

 Γλ, (x- y) = ∑  𝜆𝑚−1∞
𝑚=1 𝑘∅

𝑚(𝑥 − 𝑦). 

 

Theorem 2.4.  
 

Let  
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k  L
2
() and Ik,  B(L

2
()).  

 

Then, for any g  L
2
[0,1] and  λ  C there exists a unique f  L

2
[0,1] such that solution of 

integral Equation (2.1) is given by 

 

f = g + ∑ 𝜆𝑛 ∞
𝑛=1 𝐼𝑘,∅ 

𝑛 𝑔,                                                                                                   (2.4) 

 

where 𝐼𝑘,∅ 
𝑛

 
is a composite convolution operator with kernel 

nk  as defined in (1.1). 

 

Proof:  

 

Define a mapping T:  L
2
[0,1] → L

2
[0,1]  as  

 

Tf    =   g + λ Ik, f . 

 

Then, the goal is to prove that T
n
 is a contraction for some n  N. 

 

Now,   

 

T
n
f   = g + λ Ik, f + λ

2
 2

,k
I g +…+ λ

n n

k
I

,
g, 

       = λ
n n

k
I

,
g +  ∑ 𝜆𝑚 𝑛−1

𝑚=1 𝐼𝑘,∅ 
𝑚 𝑔.  

 

Then, for n ≥ 2, we have  

|| T
n 

f1 - T
n 
f2 || 

2
 ≤  

| 𝜆|2𝑛 

  (𝑛−1)!
  || 

nk  ||
2
 || f1 - f2 ||

2
 .    

Thus, there exists m N such that T
m 

is a contraction. Therefore, Tf = f  has a unique solution by 

using Banach contraction theorem. Hence,    

 

f = 
n

lim  T
n
 f. 

  

3.  Numerical methods to solve ICTE 
 

Method –I: Laplace Transform.   

 

In this section Laplace transform has been used to solve Volterra convolution type equation 

VCTE. To find the solution of VCTE, first obtain the Laplace Transform of the problem and then 

find the inversion of Laplace transform.  

 

Suppose the VCTE of first kind is given by  
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  f(x) = )()()(
0

ydygyxk

x

  ,                                                                                      (3.1) 

where k(x- y) is a convolution kernel and it depends only on difference (x-y). The solution of 

Equation (3.1) can be obtained by using Laplace transform.  

 

That is, 

 

F(s) = G(s)K(s), 

 

G(s) = 
𝐹(𝑠)

𝐾(𝑠)
 , 

 

and the solution can be obtained by inversion. This method is also applicable to the VCTE of 

second  kind,    

 

 g(x) = f(x) + ),()()(
0

ydygyxk

x

                                                                               (3.2) 

 G(p) = F(p)+ K(p) G(p). 

 

That is,      

    

 G(p) = 
𝐹(𝑝)

1−𝐾(𝑝)
 . 

 

Method –II: Fourier Transform:  

 

It is easy to see that Fourier transform has also been used to solve ICTE. To find the solution of 

ICTE, first obtain the Fourier Transform of the Equation (2.1). 

 

f(x)  =  g(x) + λ ).()()(
0

ydygyxk

x

     

 

Applying Fourier transform on both sides, we obtain  

 

  𝑓 = λ (2)
1/2

 𝐼𝑘,∅ 𝑓 + 𝑔̂, 

 

where  𝐼𝑘,∅  is a Fourier transform of CCO  Ik, . Then, the solution of above equation is given by 

taking the inverse Fourier transform, that is,  

 

f(x) = ₣( 
𝑔̂

1− 𝜆(2𝜋)½𝐼𝑘,∅ 
),

      
 

 

f(x) =
 
∫ 𝑒𝑖𝑤 𝑔̂(𝑤)

1− 𝜆(2𝜋)½𝐼𝑘,∅(𝑤)
 dw. 
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4.  Conclusion 
 

 Composite Convolution Operators are defined by using expectation operator and Radon-Nikodym 

Derivative. In this paper, Fubini theorem is used frequently. The definition of Composite Convolution 

Integral Operator is motivated by Whitley, wherein he composed Composition Operator with Volterra 

integral operator to study Lyubic’s conjecture. The Composite Convolution Operators have immense 

applications in dynamical systems as well as in the theory of integral and partial differential equations. 

 

 The study may be useful for investigating new technique to solve integral equations and Volterra integral 

equations. In this paper major results/findings have been successfully achieved in deriving applications of 

Composite Convolution Operators (CCO) in integral convolution type equations (ICTE). The Methods for 

solving ICTE using CCO were studied and obtained. The results on existence, uniqueness and 

estimates of integral convolution type equations have been obtained and solution of ICTE has 

also been proved without any restriction for the parameter. The method of successive 

approximations has also been used to determine the solution of integral convolution type equations 

(ICTE). The Variational Iteration method has been applied to find out the approximate solution of 

integral equations using Composite Convolution Operators. In this paper Numerical Methods are 

also adopted for solution of these integral equations. Fourier transform has been used to solve 

integral convolution type equations and Laplace transform has been applied to solve Volterra 

convolution type equations. 

 

 One can study other Numerical methods like Inversion method, Wavelet method, Matrix method 

to solve Integral Convolution Type Equations (ICTE). We can extend application of Integral 

Convolution Type Equations (ICTE) to partial differential equations. The study may open new 

horizons to solve integral equations and Volterra integral equations. 
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