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Abstract 

In this paper, the extended (G'/G)-expansion method is used to seek more general exact 
solutions of the improved Eckhaus equation and the (2+1)-dimensional improved Eckhaus 
equation. As a result, hyperbolic function solutions, trigonometric function solutions and 
rational function solutions with free parameters are obtained. When the parameters are taken 
as special values the solitary wave solutions are also derived from the traveling wave 
solutions. Moreover, it is shown that the proposed method is direct, effective and can be used 
for many other nonlinear evolution equations in mathematical physics. 
 
Keywords:  Extended (G'/G)-expansion method; Improved Eckhaus equation;  
                    The (2+1)-dimensional Improved Eckhaus equation 
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1.  Introduction 

The investigation of the exact solutions to nonlinear partial differential equations (NLPDEs) 
plays an important role in the study of nonlinear physical phenomena. With the help of exact 
solutions, when they exist, the mechanism of complicated physical phenomena and 
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dynamical processes modeled by these NLPDEs can be better understood. They can also help 
to analyze the stability of these solutions and to check numerical analysis for these NLPDEs. 
In recent years, reducing PDEs into ordinary differential equations (ODEs) has proved a 
successful idea to generate exact solutions of nonlinear wave equations. Many approaches to 
exact solutions in the literature follow such an idea, which contains the tanh and extended 
tanh methods [Abdou (2007), Wazwaz (2007), Taghizadeh et al. (2010, 2011)], (G'/G)-
expansion method [Wang et al. (2008), Bekir (2008), Zhang et al. (2008, 2009), Zhu (2010), 
Zuo (2010), Jabbari et al. (2011), Kabir et al. (2011), Ebadi and Biswas (2010, 2011)], the 
homogeneous balance method [Wang (1995)], the Jacobi elliptic function method [Inc and 
Ergut (2005)], the exp-function method [Li et al. (2008)], the first-integral method [Feng 
(2002), Taghizadeh and Mirzazadeh (2011)], the sine-cosine method [Wazwaz (2004)] and so 
on. 
 
The (G'/G)-expansion method, was proposed by Wang et al.(2008) for the first time, to look 
for traveling wave solutions of nonlinear evolution equations. This method is based on the 
assumptions that the traveling wave solutions can be expressed as a polynomial in (G'/G) and 
that G = G( ) satisfies a second order linear ordinary differential equation (LODE). Next, 
Zhang et al. (2008, 2009) proposed a generalized (G'/G)-expansion method to improve and 
extend Wang et al.’s work for solving variable coefficient equations and high dimensional 
equations. Zhang et al. (2009) devised an algorithm for using the method to solve nonlinear 
differential-difference equations. Also, Zhang (2009) solved the equations with the balance 
numbers of which are not positive integers, by this method. More recently, Zhu (2010) 
proposed the extended (G'/G)-expansion method to seek the traveling wave solutions of 
nonlinear evolution equations. 
 
In this paper, the extended (G'/G)-expansion method is investigated. For illustration, we 
consider the improved Eckhaus equation, and the (2+ 1)-dimensional improved Eckhaus 
equation. 
 
  
2.  The Extended (G'/G)-Expansion Method 
 
We suppose that the given nonlinear partial differential equation for ( , )u x t to be in the form 
 

       ( , , , , , ,...) 0,x t xx xt xxxP u u u u u u                                                                                         (1) 

 
where P is a polynomial in its arguments. The essence of the (G'/G)-expansion method can be 
presented in the following steps: 
 
Step 1: Seek traveling wave solutions of equation (1) by taking ( , ) ( ),u x t U 

( ),k x ct    and transform equation (1) to the ordinary differential equation 
 

       ( , ', '', ''',...) 0,Q U U U U                                                                                  (2) 
                                                                                                            

where prime denotes the derivative with respect to   . 
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Step 2:  If possible, integrate equation (2) term by term one or more times. This yields 
constant(s) of integration. For simplicity, the integration constant(s) can be set to 
zero. 

 
Step 3:  Introduce the solution ( )U   of equation (2) in the finite series form 
 

       0 1

'( ) '( )
( ) ,

( ) ( )

i iM M

i i
i i

G G
U a b

G G

 
 



 

   
    

   
                                                       (3) 

 
where ia , ib  are real constants to be determined, M is a positive integer to be 

determined, and the function ( )G   is the general solution of the auxiliary linear 
ordinary differential equation 

 

       ''( ) '( ) ( ) 0,G G G                                                                                   (4) 

 
where  ,    are real constants to be determined. 

 
Remark:  

 
Expansion (3) reduces to the (G'/G)-expansion method for 0,ib  ( 1,..., )i M . 

 
Step 4:  Determine M .To determine the parameter M , we usually balance the linear terms 

of highest order in the resulting equation with the highest order nonlinear terms. 
 
Step 5:  Substituting (3) together with (4) into equation (2) yields an algebraic equation 

involving powers of (G'/G). Equating the coefficients of each power of (G'/G) to 
zero gives a system of algebraic equations for ia , ib  ,  ,    and  c . Then, we 

solve the system with the aid of a computer algebra system, such as Maple, to 
determine these constants. On the other hand, depending on the sign of the 

discriminant 2 4 ,     the solutions of equation (4) are well known to us. So, 
we can obtain exact solutions of equation (1). 

 
 
3.  Improved Eckhaus equation 

We first consider the improved Eckhaus equation [Taghizadeh and Mirzazadeh (2010)] 
 

       
2 4

2( ) 0.t xx xxiu u u u u u                                                                                        (5) 

 
 Using the wave variable 
 

       ( , ) ( ),iu x t e U   ,x t     2 ,x t                                                                  (6) 
 
where ( )U   is real function, the constants ,   are to be determined. Substituting (6) into 
equation (5), we have    
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2 2 5'' ( ) 2( ) '' 0.U U U U U       

 
Hence, 
 

       
2 2 2 5'' ( ) 4( ') 4 '' 0,U U U U U U U                                                                      (7) 

 
where prime denotes differentiation with respect to  . 
 

"Balancing  2''U U   with 5U  in equation (7) gives 2 2 5 .M M M    Then, 1.M  " 
  
Consequently, using (6), the extended (G'/G)-expansion method (3) admits the use of the 
finite expansion 
 

       

1

0 1 1

' '
( ) .

G G
U a a b

G G



        
   

                                                                                      (8) 

Substituting (8) into (7), setting coefficients of  
'

i
G

G
 
 
 

 to zero, we obtain the following 

underdetermined system of algebraic equations for ia ,  ib  ,  ,    and  : 

 

      

5
3 5
1 1

'
:12 0,

G
a a

G
    
   

      

4
3 2 4
1 0 1 0 1

'
: 20 20 5 0,

G
a a a a a

G
     

 
 

      

3
2 3 2 2 2 3 2 4

1 1 0 1 0 1 0 1 1 1 1 1

'
: 2 8( 2 ) 32 8 10 12 5 0,

G
a a a a a a a a a b a b

G
            

 
 

      

2
3 2 2 2 2 3 2

1 1 0 1 0 1 1 1 0 1 0 1 1

3
0 1 1

'
: 3 12 12( 2 ) 12 20 10 8

20 0,

G
a a a a a a a b a a a a b

G

a a b

              
 

 

 

1
2 2 2 2 2 2 4 2

1 1 0 1 0 1 0 1 1 1

2 2 3 2 2 2
1 1 1 1 0 1 1 0 1 1

'
: [( 2 ) ( )] 4 16 4( 2 ) 5 4

8( 2 ) 10 16 30 0,

G
a a a a a a a a a b

G

a b a b a a b a a b

       

  

           
 

     

 

0
2 5 2 2 2 2 2 2

1 1 0 0 0 1 0 1 0 1 0 1 1 1

2 2 2 2 3
1 1 0 1 1 0 1 1 0 1 1

'
: ( ) 4 4 4 4 12

12 8( 2 ) 30 20 0,

G
a b a a a a a b a a a b a b

G

a b a a b a a b a a b

       

  

           
 

     

 

      

1
2 2 2 2 2 2 4 2 2

1 1 0 1 0 1 0 1 1 1

2 2 2 3 2 2
1 1 1 1 0 1 1 0 1 1

'
: [( 2 ) ( )] 4 16 4( 2 ) 5 4

8( 2 ) 10 16 30 0,

G
b b a b a b a b a b

G

a b a b a a b a a b
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2
3 2 2 2 2 3 2 2

1 1 0 1 0 1 1 1 0 1 0 1 1

3
0 1 1

'
: 3 12 12( 2 ) 12 20 10 8

20 0,

G
b b a b a b a b a b a a b

G

a a b

      


         
 

 

 

      

3
2 2 3 2 2 2 2 3 2 2 4

1 1 0 1 0 1 0 1 1 1 1 1

'
: 2 8( 2 ) 32 8 10 12 5 0,

G
b b a b a b a b a b a b

G
     


          
 

 

      

4
3 2 2 4

1 0 1 0 1

'
: 20 20 5 0,

G
b a b a b

G
 


     
 

 

      

5
2 3 5

1 1

'
:12 0.

G
b b

G



    
 

 

 
Solving this system using Maple gives 
 
Case 1: 
 

       0 3 ,a i             1 2 3,a i           1 0,b             
21
.

64
                                  (9) 

 
Case 2: 
 

       0 3 ,a i             1 0,a           1 2 3 ,b i            
21
.

64
                                  (10) 

 
Case 3: 
  

       0 3 ,a i             1 2 3,a i            1 2 3 ,b i            21
,

64
                         (11) 

 
where   and    are arbitrary constants. Substituting equation (9) into equation (8) 
yields 

 

       

'
( ) 3 2 3 .

G
U i i

G
       

 
                                                                                         (12) 

 
Substituting general solutions of equation (4) into equation (12), we have three types of 
traveling wave solutions of the Improved Eckhaus equation as follow: 
 

When 2 4 0,    we obtain the hyperbolic function traveling wave solutions 
 

       

2 2

2

11 2 2

2

4 4
sinh[ ] cosh[ ]4 2 2( ) 3 2 3

2 24 4
cosh[ ] sinh[ ]

2 2

1 64
exp ( ) .

64

A B
u i i

A B

i x t

       
    



             
    

   
   

  
   

  

 (13) 
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When 2 4 0,    we obtain the trigonometric function traveling wave solutions 
 

       

2 2

2

12 2 2

2

4 4
sin[ ] cos[ ]4 2 2( ) 3 2 3

2 24 4
cos[ ] sin[ ]

2 2

1 64
exp ( ) .

64

A B
u i i

A B

i x t

       
    



              
    

   
   

  
   

  

  (14) 

 

When 2 4 0,    we obtain the rational function traveling wave solutions 
 

       
 

2

13

1 64
( ) 3 2 3 exp ( ) ,

2 64

B
u i i i x t

A B

   


      
               

                              (15) 

 
where 2 ,x t    for (13)-(15). 
 
In solutions (13) − (15), A  and B are left as free parameters. 
 

In particular, if  0,A   0B    and we set 0  , 
1

96
    then  11u  becomes 

 

       

2

11

1 1 64
( ) tanh[ ( 2 )]exp ( ) ,

642 2 4 6

i
u x t i x t

  
  

     
  

                                       (16) 

 
which is the soliton solution of the improved Eckhaus equation. 
 
Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], 
we can see that the results are the same. 
 
Substituting equation (10) into equation (8) yields 
 

       

1
'

( ) 3 2 3 .
G

U i i
G

  


     
 

                                                                                  (17) 

 
Substituting general solutions of equation (4) into equation (17), we have three types of 
traveling wave solutions of the improved Eckhaus equation as follow: 
 

When 2 4 0,    we obtain the hyperbolic function traveling wave solutions 
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1
2 2

2

21 2 2

4 4
sinh[ ] cosh[ ]4 2 2( ) 3 2 3

2 24 4
cosh[ ] sinh[ ]

2 2

A B
u i i

A B

        
    

                    
    

  

          

                                                                                               
21 64

exp .
64

i x t


   
    

    
      (18) 

 

When  2 4 0,    we obtain the trigonometric function traveling wave solutions 
 

       

1
2 2

2

22 2 2

4 4
sin[ ] cos[ ]4 2 2( ) 3 2 3

2 24 4
cos[ ] sin[ ]

2 2

A B
u i i

A B

        
    

                     
    

 

            

                                                                                               
21 64

exp ( ) .
64

i x t


  
   

  
        (19) 

 

When 2 4 0,    we obtain the rational function traveling wave solutions 
 

       

1 2

23

1 64
( ) 3 2 3 exp ( ) ,

2 64

B
u i i i x t

A B

    


      
                

                           (20) 

 
where  2 ,x t    for (18)-(20). 
 
In solutions (18) − (20), A  and B are left as free parameters. 
 

In particular, if  0,A   0B   and we set 0  , 
1

96
   then  21u  becomes 

 

       

2

21

1 1 64
( ) coth[ ( 2 )]exp ( ) ,

642 2 4 6

i
u x t i x t

  
  

     
  

                                       (21) 

 
which is the soliton solution of the improved Eckhaus equation. 
 
Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], 
we can see that the results are the same. 
 
Substituting equation (11) into equation (8) yields 
 

       

1
' '

( ) 3 2 3 2 3 .
G G

U i i i
G G

  


         
   

                                                            (22) 

  
Substituting general solutions of equation (4) into equation (22), we have three types of 
traveling wave solutions of the improved Eckhaus equation as follow: 
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When 2 4 0,    we obtain the hyperbolic function traveling wave solutions 
 

      

2 2

2

31 2 2

4 4
sinh[ ] cosh[ ]4 2 2( ) 3 2 3

2 24 4
cosh[ ] sinh[ ]

2 2

A B
u i i

A B

       
    

             
    

   
  

 

         

      

1
2 2

2

2 2

4 4
sinh[ ] cosh[ ]4 2 22 3

2 24 4
cosh[ ] sinh[ ]

2 2

A B
i

A B

      
    

                  
    

  

                                                                                            
21 64

exp ( ) .
64

i x t


  
   

  
      (23) 

 

When  2 4 0,    we obtain the trigonometric function traveling wave solutions 
 

       

2 2

2

32 2 2

2 2

2

2 2

4 4
sin[ ] cos[ ]4 2 2( ) 3 2 3

2 24 4
cos[ ] sin[ ]

2 2

4 4
sin[ ] cos[ ]4 2 22 3

2 24 4
cos[ ] sin[ ]

2 2

A B
u i i

A B

A B
i

A B

   
    

   
 

   
   

   
 

              
       
   

         
   
  

  

1

21 64
exp ( ) .

64
i x t



 






  
   

     

         (24) 

 

When 2 4 0,    we obtain the rational function traveling wave solutions 
 

       

1

33

2

( ) 3 2 3 2 3
2 2

1 64
exp ( ) ,

64

B B
u i i i

A B A B

i x t

   
 



    
               

  
   

  

                                    (25) 

  
where  2 ,x t    for (23)-(25). 
 
In solutions (23) − (25), A  and B  are left as free parameters. 
 

In particular, if 0,A   0B   and we set 0  ,  
1

384
    then  31u   becomes 
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31

2

1 1
( ) tanh[ ( 2 )] coth[ ( 2 )]

4 2 8 6 8 6

1 64
exp ( ) ,

64

i
u x t x t

i x t

  



      
 

  
   

  

                         (26) 

 
which is the soliton solution of the improved Eckhaus equation. 
 
Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], we 
can see that the results are the same. 
 
These special results show that the extended (G'/G)-expansion method obtains general 
solutions and it can be seen that the solutions obtained in [Taghizadeh and Mirzazadeh 
(2010)], are special cases of our solutions. Also, the rational function solutions (15), (20) and 
(25) have not been reported previously. 
 
 
4.  (2+1)-dimensional improved Eckhaus equation 

In this section, we study the (2+1)-dimensional improved Eckhaus equation [Taghizadeh and 
Mirzazadeh (2010)] 
 

       
2 4

2( ) 0.t xx yy xxiu u u u u u u                                                                                 (27) 

 
 Using the wave variable 
 

       ( , , ) ( ),iu x y t e U     ,x y t         ,x cy dt                                            (28) 
 
where  ( )U   is real function, the constants , ,  ,  ,c  d  are real constant. Substituting 
(28) into equation (27), we find the relation 2( ),d c     then (27) is following nonlinear 
ordinary differential equation    
 

       
2 2 2 2 5(1 ) '' ( ) 2( ) '' 0.c U U U U U          

  
Hence, 
 

       
2 2 2 2 2 5(1 ) '' ( ) 4( ') 4 '' 0,c U U U U U U U                                                    (29) 

                                                      
where prime denotes differentiation with respect to  . 
 

"Balancing  2''U U   with 5U  in equation (29) gives 2 2 5 .M M M    Then, 1.M  " 

 
Consequently, the extended (G'/G)-expansion method (3) admits the use of the finite 
expansion 
 



380 Nasir Taghizadeh et al. 
 

       

1

0 1 1

' '
( ) .

G G
U a a b

G G



        
   

                                                                                  (30) 

 

Substituting (30) into (29), setting coefficients of  
'

i
G

G
 
 
 

 to zero, we obtain the following 

underdetermined system of algebraic equations for ia ,  ib  ,  ,    and  : 

 

      

5
3 5
1 1

'
:12 0,

G
a a

G
    
   

      

4
3 2 4
1 0 1 0 1

'
: 20 20 5 0,

G
a a a a a

G
     

 
 

      

3
2 2 3 2 2 2 3 2 4

1 1 0 1 0 1 0 1 1 1 1 1

'
: 2(1 ) 8( 2 ) 32 8 10 12 5 0,

G
c a a a a a a a a a b a b

G
             

 
 

      

2
2 3 2 2 2 2 3 2

1 1 0 1 0 1 1 1 0 1

3
0 1 1 0 1 1

'
: 3(1 ) 12 12( 2 ) 12 20 10

8 20 0,

G
c a a a a a a a b a a

G

a a b a a b

              
 

  

 

1
2 2 2 2 2 3 2 2 2

1 1 0 1 0 1

4 2 2 2 3 2 2 2
0 1 1 1 1 1 1 1 0 1 1 0 1 1

'
:[(1 )( 2 ) ] 4 16 4( 2 )

5 4 8( 2 ) 10 16 30 0,

G
c a a a a a a

G

a a a b a b a b a a b a a b

        

  

           
 

       
0

2 2 2 2 5 2 2 2 2
1 1 0 0 0 1 0 1 0 1

2 2 2 2 2 2 3
0 1 1 1 1 1 0 1 1 0 1 1 0 1 1

'
: (1 ) (1 ) ( ) 4 4 4

4 12 12 8( 2 ) 30 20 0,

G
c a c b a a a a a b a a

G

a b a b a b a a b a a b a a b

      

    

            
 

                
1

2 2 2 2 3 2 2 2
1 1 0 1 0 1

4 2 2 2 2 2 3 2 2
0 1 1 1 1 1 1 1 0 1 1 0 1 1

'
:[(1 )( 2 ) ] 4 16 4( 2 )

5 4 8( 2 ) 10 16 30 0,

G
c b b a b a b

G

a b a b a b a b a a b a a b

       

   


           
 

       

 

     

2
2 3 2 2 2 2 3 2

1 1 0 1 0 1 1 1 0 1

2 3
0 1 1 0 1 1

'
: 3(1 ) 12 12( 2 ) 12 20 10

8 20 0,

G
c b b a b a b a b a b

G

a a b a a b

     




         
 

  

 

3
2 2 2 3 2 2 2 2 3

1 1 0 1 0 1 0 1

2 2 4
1 1 1 1

'
: 2(1 ) 8( 2 ) 32 8 10

12 5 0,

G
c b b a b a b a b

G

a b a b

    




        
 

  

 

      

4
3 2 2 4

1 0 1 0 1

'
: 20 20 5 0,

G
b a b a b

G
 


     
 

 

      

5
2 3 5

1 1

'
:12 0.

G
b b

G



    
 

 

 
Solving this system using Maple gives 
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Case 1: 
 

      0 3 ,a i         1 2 3,a i       1 0,b         
2 2 2 41 1 1

.
64 32 64

c c                   (31) 

 
Case 2: 
 

      0 3 ,a i          1 0,a        1 2 3 ,b i        
2 2 2 41 1 1

.
64 32 64

c c                 (32) 

 
Case 3:  
 

       0 3 ,a i        1 2 3,a i       1 2 3 ,b i       2 2 2 41 1 1
,

64 32 64
c c           (33) 

 
where   and    are arbitrary constants. Substituting equation (31) into equation (30) 
yields 

 

       

'
( ) 3 2 3 .

G
U i i

G
       

 
                                                                                       (34) 

 
Substituting general solutions of equation (4) into equation (34), we have three types of 
traveling wave solutions of the (2+1)-dimensional improved Eckhaus equation as follow: 
 

When 2 4 0,    we obtain the hyperbolic function traveling wave solutions 
 

      

 

2 2

2

11 2 2

2 2 2 4

4 4
sinh[ ] cosh[ ]4 2 2( ) 3 2 3

2 24 4
cosh[ ] sinh[ ]

2 2

1 1 1
exp ( ) .

64 32 64

A B
u i i

A B

i x y c c t

       
    

   

             
       
    

            

        (35) 

 

When  2 4 0,    we obtain the trigonometric function traveling wave solutions 
 

       

2 2

2

12 2 2

2 2 2 4

4 4
sin[ ] cos[ ]4 2 2( ) 3 2 3

2 24 4
cos[ ] sin[ ]

2 2

1 1 1
exp ( ) .

64 32 64

A B
u i i

A B

i x c c t

       
    

  

              
       
    

           

        (36) 

 

When 2 4 0,    we obtain the rational function traveling wave solutions 
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2 2 2 4
13

1 1 1
( ) 3 2 3 exp ( ) ,

2 64 32 64

B
u i i i x c c t

A B

    


                          
  (37) 

 
where  2( ) ,x cy c t       for (35)-(37). 
 
In solutions (35) − (37),  A  and B  are left as free parameters. 
 

In particular, if 0,A   0B    and we set 0  ,  21
(1 )

96
c     then  11u  becomes 

 

       

2 2

11

2 2 2 4

1 1
( ) tanh[ ( 2 )]

2 2 4 6

1 1 1
exp ( ) ,

64 32 64

i c c
u x t

i x y c c t

 

   

 
  

            

                                 (38) 

and  12u  becomes 

 

       

2 2

12

2 2 2 4

1 1
( ) tan[ ( 2 )]

2 2 4 6

1 1 1
exp ( ) ,

64 32 64

i c c
u x t

i x y c c t

 

   

 
  

            

                 (39) 

                                                                                                                                                                              
which are the solitary and periodic wave solutions of the (2+1)-dimensional improved 
Eckhaus equation. 
 
Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], we 
can see that the results are the same. 
 
Substituting equation (32) into equation (30) yields 
 

       

1
'

( ) 3 2 3 .
G

U i i
G

  


     
 

                                                                                 (40) 

 
Substituting general solutions of equation (4) into (40), we have three types of traveling wave 
solutions of the (2+1)-dimensional improved Eckhaus Equation as follow: 
 

When 2 4 0,    we obtain the hyperbolic function traveling wave solutions 
 

       

1
2 2

2

21 2 2

2 2 2 4

4 4
sinh[ ] cosh[ ]4 2 2( ) 3 2 3

2 24 4
cosh[ ] sinh[ ]

2 2

1 1 1
exp ( ) .

64 32 64

A B
u i i

A B

i x y c c t

   
     

   
 

   

                    
    

            

  (41) 
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When  2 4 0,    we obtain the trigonometric function traveling wave solutions 
 

       

1
2 2

2

22 2 2

2 2 2 4

4 4
sin[ ] cos[ ]4 2 2( ) 3 2 3

2 24 4
cos[ ] sin[ ]

2 2

1 1 1
exp ( ) .

64 32 64

A B
u i i

A B

i x y c c t

   
     

   
 

   

                     
    

            

    (42) 

  

When 2 4 0,    we obtain the rational function traveling wave solutions 
 

       

  

1

23

2 2 2 4

( ) 3 2 3
2

1 1 1
exp ( ) ,

64 32 64

B
u i i

A B

i x y c c t

  


   

  
        

            

                         (43) 

 
where  2( ) ,x cy c t       for (41)-(43). 
 
In solutions (41) − (43), A  and B are left as free parameters. 
 

In particular, if 0,A   0B   and we set 0  ,  21
(1 )

96
c     then  21u  becomes 

 

       

2 2

21

2 2 2 4

1 1
( ) coth[ ( 2 )]

2 2 4 6

1 1 1
exp ( ) ,

64 32 64

i c c
u x t

i x y c c t

 

   

 
  

            

                           (44) 

 
and  22u  becomes 

 

       

2 2

22

2 2 2 4

1 1
( ) cot[ ( 2 )]

2 2 4 6

1 1 1
exp ( ) ,

64 32 64

i c c
u x t

i x y c c t

 

   

 
  

            

                         (45) 

 
which are the solitary and periodic wave solutions of the (2+1)-dimensional improved 
Eckhaus equation. 
 
Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], we 
can see that the results are the same. 
 
Substituting equation (33) into equation (30) yields 
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1
' '

( ) 3 2 3 2 3 .
G G

U i i i
G G

  


         
   

                                                            (46) 

  
Substituting general solutions of equation (4) into equation (46), we have three types of 
traveling wave solutions of the (2+1)-dimensional improved Eckhaus Equation as follow:  
                                 

When 2 4 0,    we obtain the hyperbolic function traveling wave solutions 
 

       

2 2

2

31 2 2

2 2

2

2 2

4 4
sinh[ ] cosh[ ]4 2 2( ) 3 2 3

2 24 4
cosh[ ] sinh[ ]

2 2

4 4
sinh[ ] cosh[ ]4 2 22 3

2 24 4
cosh[ ] sinh[ ]

2 2

A B
u i i

A B

A B
i

A B

   
    

   
 

   
   

   
 

             
       
   

        
  

 
 

1

2 2 2 41 1 1
exp ( ) .

64 32 64
i x y c c t   

 

 
 
 
 

            

         (47) 

 

When  2 4 0,    we obtain the trigonometric function traveling wave solutions 
 

       

      

2 2

2

32 2 2

2 2

2

2 2

4 4
sin[ ] cos[ ]4 2 2( ) 3 2 3

2 24 4
cos[ ] sin[ ]

2 2

4 4
sin[ ] cos[ ]4 2 22 3

2 24 4
cos[ ] sin[ ]

2 2

A B
u i i

A B

A B
i

A B

       
   

 

   
   

   
 

              
       
   

         
   
  

  

1

2 2 2 41 1 1
exp ( ) .

64 32 64
i x y c c t   

 






            

    (48) 

 

When 2 4 0,    we obtain the rational function traveling wave solutions 
 

       

1

33

2 2 2 4

( ) 3 2 3 2 3
2 2

1 1 1
exp ( ) ,

64 32 64

B B
u i i i

A B A B

i x y c c t

   
 

   

    
               

            

                              (49) 

 
where  2( ) ,x cy c t       for (47)-(49). 
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In solutions (47) − (49), A  and B  are left as free parameters. 
 

In particular, if 0,A   0B   and we set 0  ,  21
(1 ),

384
c     then  31u  becomes 

 

       

2 2 2

31

2 2 2 4

1 1 1
( ) tanh[ ( 2 )] coth[ ( 2 )]

4 2 8 6 8 6

1 1 1
exp ( ) ,

64 32 64

i c c c
u x t x t

i x y c c t

  

   

   
      

 
            

             (50) 

 
and  32u  becomes 

 

       

2 2 2

32

2 2 2 4

1 1 1
( ) tan[ ( 2 )] cot[ ( 2 )]

4 2 8 6 8 6

1 1 1
exp ( ) ,

64 32 64

i c c c
u x t x t

i x y c c t

  

   

   
      

 
            

                   (51) 

 
which are the solitary and periodic wave solutions of the (2+1)-dimensional improved 
Eckhaus Equation. 
 
Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], we 
can see that the results are the same. 
 
These special results show that the extended (G'/G)-expansion method obtains general 
solutions and it can be seen that the solutions obtained in [Taghizadeh and Mirzazadeh 
(2010)], are special cases of our solutions. Also, the rational function solutions (37), (43) and 
(49) have not been reported previously. 
 
 

5.  Conclusion 

In this paper, the extended (G'/G)-expansion methods have been successfully applied to find 
the more travelling wave solutions for the improved Eckhaus equation and (2+1)-dimensional 
improved Eckhaus equation. The performance of this method is reliable and effective and 
gives more solutions. This method has more advantages: It is direct and concise. It is 
elementary that the general solutions of the second order LODE have been well known for 
the researchers and effective that it can be used in many other nonlinear evolution equations. 
The availability of computer systems like Mathematica or Maple facilitates the tedious 
algebraic calculations. The method which we have proposed in this Letter is also a standard, 
direct and computerizable method, which allows us to solve complicated and tedious 
algebraic calculation. 
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