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Abstract

In this paper, the extended (G'/G)-expansion method is used to seek more general exact
solutions of the improved Eckhaus equation and the (2+1)-dimensional improved Eckhaus
equation. As a result, hyperbolic function solutions, trigonometric function solutions and
rational function solutions with free parameters are obtained. When the parameters are taken
as special values the solitary wave solutions are also derived from the traveling wave
solutions. Moreover, it is shown that the proposed method is direct, effective and can be used
for many other nonlinear evolution equations in mathematical physics.

Keywords: Extended (G/G)-expansion method; Improved Eckhaus equation;
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1. Introduction
The investigation of the exact solutions to nonlinear partial differential equations (NLPDEs)

plays an important role in the study of nonlinear physical phenomena. With the help of exact
solutions, when they exist, the mechanism of complicated physical phenomena and
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dynamical processes modeled by these NLPDEs can be better understood. They can also help
to analyze the stability of these solutions and to check numerical analysis for these NLPDEs.
In recent years, reducing PDEs into ordinary differential equations (ODEs) has proved a
successful idea to generate exact solutions of nonlinear wave equations. Many approaches to
exact solutions in the literature follow such an idea, which contains the tanh and extended
tanh methods [Abdou (2007), Wazwaz (2007), Taghizadeh et al. (2010, 2011)], (G'/G)-
expansion method [Wang et al. (2008), Bekir (2008), Zhang et al. (2008, 2009), Zhu (2010),
Zuo (2010), Jabbari et al. (2011), Kabir et al. (2011), Ebadi and Biswas (2010, 2011)], the
homogeneous balance method [Wang (1995)], the Jacobi elliptic function method [Inc and
Ergut (2005)], the exp-function method [Li et al. (2008)], the first-integral method [Feng
(2002), Taghizadeh and Mirzazadeh (2011)], the sine-cosine method [Wazwaz (2004)] and so
on.

The (G"/G)-expansion method, was proposed by Wang et al.(2008) for the first time, to look
for traveling wave solutions of nonlinear evolution equations. This method is based on the
assumptions that the traveling wave solutions can be expressed as a polynomial in (G'/G) and
that G = G(¢&) satisfies a second order linear ordinary differential equation (LODE). Next,

Zhang et al. (2008, 2009) proposed a generalized (G'/G)-expansion method to improve and
extend Wang et al.’s work for solving variable coefficient equations and high dimensional
equations. Zhang et al. (2009) devised an algorithm for using the method to solve nonlinear
differential-difference equations. Also, Zhang (2009) solved the equations with the balance
numbers of which are not positive integers, by this method. More recently, Zhu (2010)
proposed the extended (G'/G)-expansion method to seek the traveling wave solutions of
nonlinear evolution equations.

In this paper, the extended (G'/G)-expansion method is investigated. For illustration, we
consider the improved Eckhaus equation, and the (2+ 1)-dimensional improved Eckhaus
equation.

2. The Extended (G'/G)-Expansion Method

We suppose that the given nonlinear partial differential equation for u (x ,#)to be in the form

Pu,u u,u_u,.u

o) =0, (1)

xx 27 xt 2

where P is a polynomial in its arguments. The essence of the (G"/G)-expansion method can be
presented in the following steps:

Step 1: Seek traveling wave solutions of equation (1) by taking u(x,t)=U (&),
& =k (x —ct), and transform equation (1) to the ordinary differential equation

Q(U,U ',U ",U"',...)ZO, (2)

where prime denotes the derivative with respect to & .
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Step 2:

Step 3:

Step 4:

Step 5:

If possible, integrate equation (2) term by term one or more times. This yields
constant(s) of integration. For simplicity, the integration constant(s) can be set to
Zero.

Introduce the solution U (&) of equation (2) in the finite series form

L (@) 8, (G
U©=a|—= dvary R 3
() ;a,[G@]*;’[G(ﬁ)j :

where a,, b, are real constants to be determined, M is a positive integer to be

determined, and the function G (&) is the general solution of the auxiliary linear
ordinary differential equation

G"(&)+AG (&) +uG (5) =0, 4
where A, i are real constants to be determined.
Remark:
Expansion (3) reduces to the (G'/G)-expansion method for b, =0, (i =1,...,M ).

Determine M .To determine the parameter M , we usually balance the linear terms
of highest order in the resulting equation with the highest order nonlinear terms.

Substituting (3) together with (4) into equation (2) yields an algebraic equation
involving powers of (G"/G). Equating the coefficients of each power of (G"/G) to

zero gives a system of algebraic equations for a;, b, , A, ¢ and ¢ . Then, we

solve the system with the aid of a computer algebra system, such as Maple, to
determine these constants. On the other hand, depending on the sign of the

discriminant A = A° —4 M, the solutions of equation (4) are well known to us. So,
we can obtain exact solutions of equation (1).

3. Improved Eckhaus equation

We first consider the improved Eckhaus equation [Taghizadeh and Mirzazadeh (2010)]

iu, +u_, +2(|u|2)xxu +|u|4u =0. 5

Using the wave variable

u(x,t)=e"U(&), O=ax +pt, E=x —2at, (6)

where U (&) is real function, the constants «, [ are to be determined. Substituting (6) into
equation (5), we have
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U"—(a’+ U +2(U"U+U’ =0.
Hence,

U"(a’ + U +4U Y’U +4U "U* +U" =0, (7)
where prime denotes differentiation with respect to & .

"Balancing U "U* with U’ in equation (7) gives M +2+2M =5M. Then, M =1."

Consequently, using (6), the extended (G'/G)-expansion method (3) admits the use of the
finite expansion

U()=a,+a, [%)"‘@ (%j_ . ®)

Substituting (8) into (7), setting coefficients of (%) to zero, we obtain the following

underdetermined system of algebraic equations for a,, b, , A, g and S:

NS
[%) :12a; +a’ =0,

1

:204a; +20a,a; +Saa; =0,

G 4
&
G 3
[EJ :2a, +8(A° +2u)a’ +32Aaal +8aja, +10aja;’ +12a’b, +5a'b, =0,
%)

o 3a, +12uda; +12(A° +2p)aga +12aa, +204a’b, +10a,a; +8aya,b,

+20a,a’b, =0,

!
%] (A +2p) — (@ + B)la, —4ual +16plagal + 4(A° +2u)ala, +5aja, +4ab]

VR

+8(A% +2u)alb, +10a’b} +16Aa,a,b, +30a;a’b, =0,
[%T : pAa, + Ab — (o’ + B)a, + ay +4ilaal +da b} +4udaja, +4alb +12ab]
+12udalb, +8(A° +2u)ayab, +30a,a. b +20a.ab, =0,
(%]_1 (A2 +2u)— (@ + B)Ib, — 4b] +16Aab] +4(A° +2u)ach, +5a,b, +4u’alb,

+8(A* +2p)ab! +10a;b] +16udajab, +30aa,b; =0,
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|
(S}

:3udb, +122b] +12(A° + 2 p)a b} +12 udalb, +20urab} +10a.b’ + 8’ a,ab,

QlQ

+20a,a,b) =0,

:24°b, +8(A +2u)b] +32pdah] +8ulaih, +10a;b; +12°ab; +Sab, =0,

|
N

:20uAb; + 204 ap] +5apb =0,

ERERE
;_);)‘ N

~
A

124°h] +b] =0.

VR

Solving this system using Maple gives

Case 1:

a, = +i34, a,=+2i\3, b =0, ﬁ=6—14—a2. 9)
Case 2:

a, = +i34, a,=0, b =%2i3u, ﬂ:é—az. (10)
Case 3:

a, =+i~34, a, =+2i3, b, =+2i\34, p’:i—az, (11)

64

where A and g are arbitrary constants. Substituting equation (9) into equation (8)
yields

U(g):ti\/?/liziﬁ(%j. (12)

Substituting general solutions of equation (4) into equation (12), we have three types of
traveling wave solutions of the Improved Eckhaus equation as follow:

When A° -4 1 >0, we obtain the hyperbolic function traveling wave solutions

A sinh[i“ﬂz_él'u E1+B cosh[i“/lz_éw &l 1

2 2 )
Acosh[\/724ﬂ§]+8sinh[\/724ﬂ§] (13)

.exp{i(ax +(l—§ja2 jt)}

2

uy (&) =| i3+ 203 Y2 2_4“
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When A° —4 1 <0, we obtain the trigonometric function traveling wave solutions

—Asin[v4’uz_/12 §]+BCOS[W§]
[a— 12 fau_22 | 2
[4”#’1 §]+Bsin[4ﬂf/1 £ (14)

. 1-64a’
-exp{l(ax + ( d JI)}.

When A° —4u =0, we obtain the rational function traveling wave solutions

u, (&)= J_ri\/§,1i2i\/§ W

Acos

u13(§):|:ii\/§li2i\/§( B iﬂxexp{i(ax —1{1_64(22})}, (15)

A+BE 2 64
where & =x —2at, for (13)-(15).

In solutions (13) — (15), A and B are left as free parameters.

In particular, if 4 #0, B =0 andweset A =0, u =% then u,, becomes

u, (&)= iﬁtanh[ﬁ(x —2at )]exp{i (ax + (1 _2:“2 ]z)}, (16)

which is the soliton solution of the improved Eckhaus equation.

Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)],
we can see that the results are the same.

Substituting equation (10) into equation (8) yields

U(§)=ﬂﬁuzi\@y(%j . (17)

Substituting general solutions of equation (4) into equation (17), we have three types of
traveling wave solutions of the improved Eckhaus equation as follow:

When 4> —4u >0, we obtain the hyperbolic function traveling wave solutions
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Asinh[\'ﬂzz_éw £+ Bcosh[w122_4’u £]

1&1(5) = ii\/g/liZi\/g’u @

“ &1+ Beos[Y—— ,u 12
“ &1+ Bsin[+—— ﬂ /12

—Asin[
Jau—-2
w0, (&) =| £i3A £ 2i\Bu| Y24 5

Acos[

{ (1—640:2
-exp|i(ax +

64

When 1> —4u =0, we obtain the rational function traveling wave solutions

u23(§)_{+1\/71+21x/7,u( Bz /21] }xexp{i(ax +(1_gja2]t)},

where & =x —2at, for (18)-(20).

In solutions (18) — (20), A and B are left as free parameters.

In particular, if 4 #0, B =0 andweset A =0, u :9_16 then u,, becomes

u, (&)= iﬁcoth[ﬁ(x —2at)]exp{i(ax +(1 —S:az ]t)},

which is the soliton solution of the improved Eckhaus equation.

A cosh[\/722_4’u E1+B sinh[\/rzz_‘w &l

1-64a’
-exp| i| ax+
64

When A° —4u <0, we obtain the trigonometric function traveling wave solutions

)

3

| |
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(18)

19)

(20)

21

Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)],

we can see that the results are the same.

Substituting equation (11) into equation (8) yields

U(E) =i ﬁli%x/g(%ji% ﬁy(%}

(22)

Substituting general solutions of equation (4) into equation (22), we have three types of

traveling wave solutions of the improved Eckhaus equation as follow:
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When 1> —4 1 >0, we obtain the hyperbolic function traveling wave solutions

Asinh[\'/lz2_4’u £+ Bcosh[w £l

2 _ 2_ - 2
Acosh[\/Tz‘w §]+Bsinh[\/724'u &l

Asinh[\'lzz_‘w £+ Bcosh[\'ﬂzz_‘w £]
Acosh[w_zz_‘”‘ £+ Bsinh[\'/lz2_4’u al °
) 1-64a*
-exp{z(ax +( 1 jt)}. (23)

1, (&) =| 232 £2i\3 Mzz_‘w

-1

2_
0203 V2 5 tu

When A% —4 4 <0, we obtain the trigonometric function traveling wave solutions

WETE —Asin[i\"w—ﬂf] 7\/4”_’1&
Uy (&) =| 2in3A £ 203 Y : 2 2 -

_ ]2 _ 32 2
[W§]+Bsin[\mz/1§]

+ Bcos|[ 1

Acos

-1

-2 NCYEPE
S —Asm[%fHBcos[”fg] ;
+2i3u > : — | (24)
Acos[\/4ﬂ_ §]+Bsin[\/4ﬂ_/qb &
2 2
-exp| i(ax+ 1-64a” t)
P 64 '
When 1> —4 1 =0, we obtain the rational function traveling wave solutions
-1
B A B A
=| i34 £2i/3 —— |+2iV3 -—
tss (&) {“f ZI(AJng 2) l\f”(AJng 2)] 25)

_ i( 1-64a’ )
64 ’
where é: =x —2at, for (23)-(25).

In solutions (23) — (25), A and B are left as free parameters.

In particular, if A #0, B =0 andweset 1 =0, u :ﬁ then u,, becomes
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uy (&) =+ 4\;5 (tanh[&l/g (x—2at)]- coth[ﬁ (x— 2at)]j

!

which is the soliton solution of the improved Eckhaus equation.

(26)

Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], we
can see that the results are the same.

These special results show that the extended (G'(G)-expansion method obtains general
solutions and it can be seen that the solutions obtained in [Taghizadeh and Mirzazadeh

(2010)], are special cases of our solutions. Also, the rational function solutions (15), (20) and
(25) have not been reported previously.

4. (2+1)-dimensional improved Eckhaus equation

In this section, we study the (2+1)-dimensional improved Eckhaus equation [Taghizadeh and
Mirzazadeh (2010)]

2)mu +|u|4u =0. (27)

i, +u, —u, +2(|u
Using the wave variable
ux,y,t)=eU(&), O=ax +py +6t, E=x +cy +dt, (28)

where U (&) is real function, the constants «, 3, 8, ¢, d are real constant. Substituting
(28) into equation (27), we find the relation d =—-2(a —c f), then (27) is following nonlinear
ordinary differential equation

(1-AU"+(f* -’ =5 U+2U)"U+U’ =0.
Hence,

(I-cHU "+ -’ =)U +4U YU +4U "U* +U’° =0, (29)
where prime denotes differentiation with respect to & .
"Balancing U "U* with U” in equation (29) gives M +2+2M =5M. Then,M =1.v

Consequently, the extended (G7/G)-expansion method (3) admits the use of the finite
expansion
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U(&)=a,+a, (%} +b, (%} . (30)

Substituting (30) into (29), setting coefficients of (%) to zero, we obtain the following

underdetermined system of algebraic equations for a,, b, , A, g and f:

R

5
j 124 +a’ =0,

~

Q

Q[ 22 9|
— —

:20a; +20a,a’ +5a,a; =0,

:2(1=c?)a, +8(A% +2u)a; +32a,a +8a,a, +10a;a; +12a’b, + 5a'b, = 0,

(S}

:3(1-c)Aa, +12pla’ +12(A° +2u)aal +124a;a, +202alb, +10a;a}
+8a,a,b, +20a,ab, =0,
j] (A=Y A +2u)+ B2 —a’ = Sla, +4p’a +16pdayal + 447 +2u)aga,
+5aja, +4ab’ +8(A +2u)alb, +10a’b} +16Aa,ab, +30aialb, =0,
jo c(1=cHpda +(1=c)Ab + (B —a’ = 8)a, +a, + 4’ a,al +4ab’ +4ulala,

+42ab, +122ab] +12puda’b, +8(A° +2u)a,ab, +30a,a’b’ +20a,a,b, =0,

[
[
(G le A=) +2u)+ B2 —a® = S1b, +4b] +16Aa,b’ +4(A* +2u)a’b,
+5a3b, +4ualb, +8(A7 +21)ab} +10alb] +16 ula,ab, +30a;ab’ =0,
( jz :3(1= )b, +12Ab +12(A° + 2 u)a b} +12udalb, +20ulab’ +10a,b}
+84 aya.b, +20a,a,b] =0,
( j3 :2(1=c*) b, +8(A% + 2 )b +32uda,b) + 84 alb, +10ab;
+124°a b} +5a,b =0,

N

(GEJ :20uAb] + 20 ap] +5aph =0,
G\’

(EJ 12457 +b7 =0,

Solving this system using Maple gives
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Case 1:
a,=+i34, a,=%2i/3, b =0, s=p-ar+t_Lo Lo (31)
64 32 64
Case 2:
a,=%i\34, a,=0, b =+2iBu, s=p-at+t-Loa Lo (32)
64 32 64
Case 3:
. . . 1 1 1
aozil\/gﬂ, a1=i21\/§, b1=i2lx/§,u, 5=ﬂ2—a2+a—3—202+ac4, (33)

where A and u are arbitrary constants. Substituting equation (31) into equation (30)
yields

U(&)=+i3A+2i3 [%) (34)

Substituting general solutions of equation (4) into equation (34), we have three types of
traveling wave solutions of the (2+1)-dimensional improved Eckhaus equation as follow:

When 1° —4 1> 0, we obtain the hyperbolic function traveling wave solutions

o JAr -4 JAi-4
Asmh[%f] [% £]

2 _ 2 _ 2
A cosh[\//l—zéw E1+B sinh[\/ﬂ_zéw &l (35)

+ Bcosh

u, (&) =| +i3A£2i\3 Mzz_‘“’

'exp[i(ax+,b’y+(,b’2 —a’+—-—c +—c4jt)}.

When A°—4 1 <0, we obtain the trigonometric function traveling wave solutions
+ Bcos|[ 1

an_a2| 4 sin[i\“w—’1 £] VA=A~ £]
u, (&) =| i3AL2i3| Y ”2 Jz—z \/% -
P s g (36)

Acos

1 1 1
expli(ax+| fr—a* +——-—c"+—c" 1) |.
xp{l( X (ﬂ ) 32c 640 j )}

When A° —4u =0, we obtain the rational function traveling wave solutions
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u13(§)_|:+l\/_ﬂ,+21\/_( T BE /;ﬂ exp[l(aer[,B —a2+61—4—£c2+éc4)t)} (37

where &=x +cy —2(a—cp), for (35)-(37).

In solutions (35) — (37), 4 and B are left as free parameters.

In particular, if A #0, B =0 andweset A =0, u :i(l—cz) then u,, becomes
96

ull(g) \/— \/— ( —ZCU)]
(3%)
.exp[i(ax+ﬂy+(ﬂ2—a2+é—%cz+éc4jt)},
and u,, becomes
(&) =+ 7 < fanp Y1 "G " (v~ 2a)]
(39)
.exp{i(ax+ﬂy+(ﬂ2—az+é—éc +ac jt)}

which are the solitary and periodic wave solutions of the (2+1)-dimensional improved
Eckhaus equation.

Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], we
can see that the results are the same.

Substituting equation (32) into equation (30) yields

-1

U(E)=+i31+2i ﬁy(%j : (40)

Substituting general solutions of equation (4) into (40), we have three types of traveling wave
solutions of the (2+1)-dimensional improved Eckhaus Equation as follow:

When A° —4 1 >0, we obtain the hyperbolic function traveling wave solutions

Asmh[“ &1+ Beosh[ VA Z4p 4ﬂ
Acosh[*——— VA &1+ Bsinh[ VA 4 4,u 2 (41)

-17]

u, (&) =| +iN3A % 2i\Bu “122_4“

~exp{i(ax+,6’y+(,6’2—a2 PR 2+—c4jt) .
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When A% —4 4 <0, we obtain the trigonometric function traveling wave solutions

C au-A? Jau—-A?
ap 22| A sinf Y7L 14 Beos] VAT g
(£ =| 2322 203 =5 S 2 |- 5
Acos[iﬁyz_/l El+ Bsin[i‘f”‘z_’l &l (42)

-1

1 1 1
. (ax+pBy+| f —a’ +———c"+—c* 1) |.
exp[l(ax By [,6’ a o 32c 640 j )}

When A% —4 1 =0, we obtain the rational function traveling wave solutions

u23(§)—|:+l\/_ 31213 u( A ]1]

A+BE 2
£ 43)
. 2 _ 2 L_L 2 L 4
exp{z(ax+ﬂy+(ﬂ a +64 3’Zc +64C jt)}
where &=x +cy —2(a—cp)t, for (41)-(43).
In solutions (41) — (43), A and B are left as free parameters.
In particular, if 4 #0, B =0 andweset 1 =0, u :9—16(1—02) then u,, becomes
_ e Ve
uy(§) = \/— th( \/— (x 2at)]
(44)
exp{i(ax+ﬂy+(ﬂz -a’ +6—14—3L20 614 )t)}
and u,, becomes
Uy (é:) \/— \/— (x_zat)]
(45)

xp{i(ax+ﬁy+(/32 -a’ +L—ic2 +ic4]t)},
which are the solitary and periodic wave solutions of the (2+1)-dimensional improved

Eckhaus equation.

Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], we
can see that the results are the same.

Substituting equation (33) into equation (30) yields
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U(E)=+i32 i2i\/§(%ji2i ﬁ;{%) : (46)

Substituting general solutions of equation (4) into equation (46), we have three types of
traveling wave solutions of the (2+1)-dimensional improved Eckhaus Equation as follow:

When 1° —4 1 >0, we obtain the hyperbolic function traveling wave solutions

y sinh[\'izz_‘w £+ B cosh[w122_4ﬂ £l
2 2 _ a 5
y cosh[i\'lzét’u £]+B sinh[i\'lz‘t’u £]
A

Asinh[\'ﬁz_‘w £+ Bcosh[w122_4'u £
_z (47)
[2 [22 _ 2
Acosh[% £+ Bsinh[% £]

w0, (&) =| +iBA 23 “’122_4”

2_
NP : au

-exp{i(axntﬂyn{ﬂz -a’ +i——c +—c4jt) .

When A* —4 1 <0, we obtain the trigonometric function traveling wave solutions

—Asin[Wg]mcos[Wg] 5
PRE a1 | 2
Acos[74’u2 4 gf]+Bsin[74'u2 4 &l

17

(&) =| i3+ 23| Y2 3 ~

(48)

When A° —4u =0, we obtain the rational function traveling wave solutions

TN (R A VR (O S AR
u%@){ﬂmizz@b%—Ejﬂzﬁu(“%—5] ] 9)

-exp{i(axntﬂyn{,b’z -a’ +L——c2 +—c4jt)},

where &=x +cy —2(a—cp), for (47)-(49).
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In solutions (47) — (49), A and B are left as free parameters.

In particular, if 4 #0, B =0 and weset 4 =0, y:ﬁ(l—cz), then u,, becomes

_IWc \/ Vel —1
u31(§)_iT[ \/* (X Z(Zt)] [ 8\/8 (x—2at)]J
(50)
.exp{i(ax+,b’y+(,b’2 —-a’ +6i4—3izc2 +éc4]t)},
and u,, becomes
Uy (E) =+ 415 {tan[“;\kc (x—2at)]—cot[—vé\7€c(x—2at)]] o

-exp{i(ax+ﬂy+(ﬁ2 -a’ +L—ic2 +ic4jt)},

which are the solitary and periodic wave solutions of the (2+1)-dimensional improved
Eckhaus Equation.

Comparing our result with the solutions obtained in [Taghizadeh and Mirzazadeh (2010)], we
can see that the results are the same.

These special results show that the extended (G'/G)-expansion method obtains general
solutions and it can be seen that the solutions obtained in [Taghizadeh and Mirzazadeh
(2010)], are special cases of our solutions. Also, the rational function solutions (37), (43) and
(49) have not been reported previously.

5. Conclusion

In this paper, the extended (G'/G)-expansion methods have been successfully applied to find
the more travelling wave solutions for the improved Eckhaus equation and (2+1)-dimensional
improved Eckhaus equation. The performance of this method is reliable and effective and
gives more solutions. This method has more advantages: It is direct and concise. It is
elementary that the general solutions of the second order LODE have been well known for
the researchers and effective that it can be used in many other nonlinear evolution equations.
The availability of computer systems like Mathematica or Maple facilitates the tedious
algebraic calculations. The method which we have proposed in this Letter is also a standard,
direct and computerizable method, which allows us to solve complicated and tedious
algebraic calculation.
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