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Abstract  
 
The generalized differential transform method (GDTM) is a powerful tool for solving fractional 
equations. In this paper we solve the Mathieu fractional equation by this method. The 
approximate solutions obtained are compared with the exact solution. We also show that if both 
differential orders decrease, we can still have an approximate solution in the different interval of 
p. 
 
Keywords: Generalized differential transform method, Caputo derivative, Generalized 

Taylor’s formula, Mathieu equation 
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1.  Introduction 
 
In the last few years fractional differential equations have been used in various sciences, 
especially in physics and mechanics. Odibat et al. (2008b) present the method of generalized 
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differential transform (GDTM). This method is based on the Caputo fractional differential and 
the generalized Taylor’s formula, Caputo (1967). The Caputo differential operator first computes 
the standard differential of the function and then evaluate the fractional integral to determine a 
proper order of the fractional derivative. Hardy (1945) had already written a formal version of 
the generalized Taylor’s formula as 
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where m rI   is the Riemann–Liouville fractional integral of order m r . Later, under certain 
conditions for f and

  0, 1   , Trujillo et al. (1999) introduced the following generalized 

Taylor’s formula 
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D is the Riemann–Liouville fractional derivative of order .jk  This fractional derivative 
operator is defined for R     and x a as follows 
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Odibat et al. (2007) presented a new generalized Taylor’s formula as  
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where 0 1, a x      and iD  is the Caputo fractional derivative of order .i This 
derivative is given in Definition 2.2. For 1,   the generalized Taylor’s formula reduces to the 
classical Taylor’s formula. The radius of convergence, R, for the generalized Taylor’s series 
 
 
 

 (8) 
 
depends on   f x  and ,a  and is given by 

 
 
   

 (9) 
 
The concept of differential transform was first introduced by Zhou (1986) who solved linear and 
non-linear initial value problems in electric circuit analysis. The Mathieu differential equation is:  
 
 (10) 
                                                                                                         
where p and q are the characteristic number and parameter, respectively. It is a linear differential 
equation with variable coefficients, which commonly occurs in nonlinear vibration problems in 
two different ways: (I) in systems in which there is periodic forcing and (II) in stability studies of 
periodic motions in nonlinear autonomous systems. This equation can be written generally as 
  
 (11) 
 

where D
  and D  are Caputo derivative operators and 0 1, 0       . In the case when 

1, ,      Equation (11) represents the familiar damped Mathieu equation. We refer the 
interested reader to Rand (1996, 2007), Rand et al. (2010). Also the stability analysis of 
distributed order fractional differential equations has been recently investigated by Saberi Najafi 
et al. (2011). The structure of the paper is organized as follows: 
 
Some definitions and theorems are presented in section 2. In section 3 the Mathieu equation is 
introduced and solved by using the GDTM. Finally in section 4 concluding remarks are made. 
 

2.  Definitions and Theorems 
 
In this section we provide some important definitions and theorems.  
 
Definition 2.1. The Riemann-Liouville integral operator is defined by  
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where , 0R a     and .x a  
 
Definition 2.2. The Caputo fractional derivative of order ,  is defined by 
 

(13) 
                                                                                                                                                                    
 
where 1 , .m m m Z       For more information one may refer to Kilbas et al. (2006), 
Podlubny (1999), Oldham and Spanier (1974). 
 
Definition 2.3. The differential transform of function  f x  is defined by Arikoglu and Ozkol, 

(2006), Zhou (1986) is 
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where  f x  is the original function and  F k  is the transformed function. 

The differential inverse transform of  F k  is  
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If we substitute Equation (14) into Eq. (15), we get 
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The concept of differential transform arises in the Taylor series expansion. 
 
Definition 2.4. We define the generalized differential transform for the kth derivative of a 
function  f x  as follows 
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Substituting Equation (17) into Equation (19) and using the generalized Taylor’ formula, we 
obtain 
 
 

(20) 
 
 

Using theorem (4) in Odibat and Shawagfeh (2007), we will obtain an approximate function 
 f x  from the finite series as  
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The following theorems help us to solve fractional differential equations. 
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The proofs may be found in Odibat et al. (2008b). 
 
3.  Discussion 
 
In this section, we introduce the fractional Mathieu equation. Which we solve by the GDTM. We 
also compare different cases of approximate solutions with the exact solution. All results were 
obtained using MAPLE software. 
 
3.1. Fractional Mathieu equation 
 
The homogeneous second order form of the Mathieu equation is  
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(22) 
 

 
where p and q are the characteristic number and parameter, respectively. If we add the term 
cD y to the Eq. (22), we obtain the following equation 
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where  0  .  This equation can be written generally as 
 

(24) 
 
where  0 1, 1 2 ,        with initial conditions  

 (25) 
 
 
3.2. Particular Cases 

 
Case I. Here we suppose 1c    and 2  . The exact solution of Equation (24) with initial 
conditions (25) will be  
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where the functions Mathieu C(p, q, x) and Mathieu S(p, q, x) are the Mathieu equation solutions. 
They are even and odd functions, respectively and their alternation period order is 2π, see 
Frenkel and Portugal (2001) and McLachlan (1947). Using the GDTM and the above theorems, 
Eq. (24) is transformed as follows 
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is the generalized differential transform obtained from the cos(2 )x expansion. We can also write 
the generalized differential transform of the initial conditions (25) as  
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Considering 0,1, 2,...,k n in Eq. (28) other generalized differential transform components are 
as follows 

(31) 
 
 
Therefore, we have the solution ( )y x  up to  

3( )O x  as 
(32) 

 
 

Figure 1 (a) shows the exact solution and (b) shows the approximate solution of Equation (24) 
with initial conditions (25). The interval p in (a) is [0, 3] and in (b) is [0.75, 2.70]. As we see, the 
obtained approximate solution compares well with the exact solution. It should be noted that 
including more components of the series solution results in increased error and changes the 
solution. 
 

 
                     Figure 1. The surface shows the solution y(x) for Equation (24) and (25) in x-q-y(x) space.  
                                      (a) Exact solution and  0, 3 ,p     

                                      (b) Approximate solution when 1, 2  �  and  0.75, 2.70p   . 

 

Note that in the following we let  1.c   

Case II. Now, we suppose 0.5, 2    . Then the generalized differential transform of Equation (24) 
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Therefore, we have the solution ( )y x  up to 3.5( )O x  as 
 

(36) 
 
Figure 2 (b) shows the approximate solution of Equations (24) and (25). On the other hand, we 
obtain the approximate solution of the fractional Mathieu equation by setting 0.5   in the 
interval [1.70, 2.20]. 
 

 
                      Figure 2. The surface shows the solution y(x) for Equations (24) and (25) in x-q-y(x) space.  
                                      (a) Exact solution and   0, 3 ,p                  

                                       (b) Approximate solution when 0.5, 2  �  and   1.70, 2.20p   . 

 

Case III. In another case, we suppose 0.25, 2    . The generalized differential transform of 

Equation (24) is 
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Also, we can write the generalized differential transform of initial conditions (25) as  
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Therefore, we have the solution ( )y x  up to 3.75( )O x  as 
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Figure 3 (b) shows the approximate solution of Equations (24) and (25) in the interval [1.88, 2], 
which is more limited than the last two forms. In this case, also the approximate solution 
compares well with the exact solution.  
 

 
                 Figure 3. The surface shows the solution y(x) for Equations (24) and (25) in x-q-y(x) space.  
                                  (a) Exact solution and   0, 3 ,p      

                                  (b) Approximate solution when 0.25, 2  �  and   1.88, 2p   .  

 
 
Case IV. Finally, in the last case, we suppose 0.5, 1.5    . The generalized differential 
transform of Equation (24) is  
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The above case is a test of the two fractional order equations in Odibat et al. (2008a), that had 
one of order zero and the other was of fractional order.  In our work we changed both orders of 
the equation. We decreased the order of the equation; then we placed the interval p at a greater 
distance than the previous two distances that is, [1.55, 2.80]. 
 

 
                 Figure 4.  The surface shows the solution y(x) for Equations (24) and (25) in x-q-y(x) space.  
                                  (a) Exact solution and   0, 3 ,p     

                                  (b) Approximate solution when 0.5, 1.5  �  and   1.55, 2.80p   .  

 
4.  Conclusion 
 
We have solved the fractional Mathieu equation by the GDTM in four different cases of 
differential orders. In the first three cases, decreasing   and fixing   was executed. Also by 
limiting the interval p, the approximate solution was obtained. In the last case, when we 
decreased both orders of the equation and extended the interval p, we determined the 
approximate solution of the equation. Finally we mention that by the GDTM not only were we 
able to obtain the approximate solution with integer orders, but in the different cases of fractional 
orders we also obtain the approximate solution close to the exact solution.  
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