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Abstract 
 
In this paper first we define a new functional which is a weighted version of the functional defined by 

Dragomir and Fedotov.  Then, some inequalities involving this functional are obtained. Finally, we 

apply this result to establish new bounds for weighted Chebysev functional. 
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1.  Introduction 
 

The following definitions will be frequently used to prove our results. 

 

 Definition 1.1.  

Let bxxxaP n  ...: 10  be any partition of  ba,  and let ),()()( 1 iii xfxfxf    then 

f  is said to be of bounded variation if the sum 
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is bounded for all such partitions. 

 

Definition 1.2. 

 Let f  be of bounded variation on  ba, , and  Pf  denotes the sum )(
1

i

n

i

xf


 corresponding 

to the partition P  of  ba, . The number 

       baPPPfbaV f ,:sup:,    

is called the total variation of f  on  .,ba   Here, P   ba,  denotes the family of partitions of 

 .,ba   

Dragomir and Fedotov (1998) have established the following functional 

.)(
)()(

)()(),( dttf
ab

aubu
tdutfufD

b

a

b

a

 




 

In the same paper, the authors proved the following inequality. 

 Theorem 1. 

Let   Rbauf ,:,  be such that u  is of bounded variation on  ba,  and f  is Lipschitzian with 

the constant 0L . Then we have 

   .,
2

1
),( baVabLufD u  

The constant 2
1  is sharp in the sense that it cannot be replaced by a smaller one. 

Alomari (2012) gave the following inequality. 

 Theorem 2.   

Let  bax , . Let   Rbauf ,:,  be a continuous mappings on  ba, . Assume thatu is 

monotonic non-decreasing mapping on  ba,  and   Rbaf ,:  is monotonic nondecreasing on 

both intervals  xa,  and  bx, . Then we have the inequality 



 
858  H. Budak et al. 

 

.)()()(2),( 







  dttfbfbuufD

b

a  

Dragomir (2014) gave some new bounds for the function ),( ufD . One of them is following 

inequality. 

 

 Theorem 3.  

Assume that   Rbauf ,:,  are of bounded variation and such that the Riemann-Stieltjes 

integral )()( tdutf
b

a  exist. Then, 
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 Lemma 1.  

Let   .C,:, bauf  If f  is continuous on  ba,  and u  is of bounded variation on  ,,ba  then 

the Riemann-Stieltjes integral )()( tdutf
b

a

  exist and 

 
 

 .,)(max,)()()(
,

baVtftadVtftdutf u
bat

u

b

a

b

a


   

A great many authors worked on inequalities for Riemann-Stieltjes integral via functions of 

bounded variation (or derivatives of bounded variation). For some of them, please see in Alomari 

(2012)-Liu (2004). 

The main purpose of this paper is to obtain some weighted inequalities for Riemann-Stieltjes 

integral. First of all, we define a weighted version of the functional ),( ufD . Then , we establish 

some bounds for this functional according to cases of the functions f  and .u  Finally, some new 

bounds for the weighted Chebysev functional are also given. 
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This paper is divided into the following six sections. In Section 2, we establish some identities 

that will be used to prove our results. In Section 3 and Section 4, some weighted integral 

inequalities for the case when the function u  is bounded variation and when the function f  is 

bounded variation are given, respectively. In the next section, we give an inequality for the case 

when  u   is ),( Ll Lipschitzan. Finally, in Section 6, we present some applications for weighted 

Chebysev functional using the results given in previous sections. 
 

2.  Some Identities 
 

Let   Rbaw ,:  be nonnegative and continuous on  ba, . We define  

 

dsswbam

b

a

)(),(   and ,)(),(1 dsswtam

t

a

  so that 0),( tam  for .at   

 

Now we give some representations. 

 

Weighted version of the functional defined by Dragomir and Fedotov: 

 

 ( , , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) .

b b

a a

D w f u m a b f t du t u b u a w t f t dt      

 

Weighted Chebysev functional: 

 

.)()(
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1
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  dttgtw

bam
dttftw

bam
dttgtftw

bam
gfwT

b

a

b

a

b
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Weighted Ostrowski transform: 

 

, ( ) ( , ) ( ) ( ) ( ) .

b

f w

a

t m a b f t w s f s ds      

 

Weighted generalized trapezoid transform: 

, ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ).g w t m t b g a m a t g b m a b g t      

Before we start our main results, we state and prove following lemmas: 

 

Lemma 2.   

If    Rbauf ,:,   are bounded functions such that the Riemann-Stieltjes integral )()( tdutf

b

a
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and the Riemann integral dttftw

b

a

)()(  exist, then we have 

                                  ),()(),()()(),,( , sdutdfstQsdusufwD w

b

a

b

a

wf

b

a













                               

(1) 

where  

( ) , ,

( , )

( ) , .

t

b

w

t

a

w s ds a s t x

Q t s

w s ds x t s b


  




 

   






 

 Proof:  

Using the integration by parts in Riemann-Stieltjes integral, we have 

 ( , ) ( ) ( )

b b

w

a a

Q t s df t du s
 
 
 
   

                  ( ) ( ) ( ) ( ) ( )

b s t b t

a a a s b

w d df t w d df t du s   
    

     
     
      

      ( ) ( ) ( ) ( )

s
b t s

a a aa

w d f t w t f t dt 
 

  
 
    

                   ( ) ( ) ( ) ( ) ( )

t b

b

s

b s

w d f t w t f t dt du s 
 

   
  

   

,

( ) ( ) ( ) ( ) ( )

( ) ( ).

b b b

a a a

b

f w

a

w d f s w t f t dt du s

s du s

 
  

   
   

 

  



 

This completes the proof of the second equality. The first identity is obvious. 
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Corollary 1.   

Let   Rbag ,:  a function such that g  is Riemann integrable on  .,ba  If we choose 

)()()( sgswtu
t

a

  in Lemma 2, then we have 
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1
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1
),,(
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Lemma 3.   

With the assumptions in Lemma 2, we have  

                              ),()(),()()(),,( , tdfsdustQtdftufwD w

b

a

b

a

wu

b

a













                                    (2) 

where the mapping  ),( stQw   is defined by as in Lemma 2. 

 Proof:  

By the Fubini type theorem for the Riemann-Stieltjes integral, we get 

).()(),()()(),( sdutdfstQtdfsdustQ w

b
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a

w

b

a

b
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This completes the proof of the first and the last terms in (2). 

 

Integrating  by parts, we obtain 
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This completes the proof. 

Corollary 2.  
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Assume that   Rbag ,:  Riemann integrable on  ,,ba  then we have  

.,
,

( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ) .
a

b t

g w
g w

a a

t t m a t w s g s ds m a b w s g s ds   


    

 Remark 1.  

If we choose ttw )(  in Lemma 1 and Lemma 2, then our results reduce Lemma 1 and Lemma 2 
proved by Dragomir (2014), respectively. 
 

3.  Inequalities in the Case when u  is of bounded variation 

Now using the above identities, we state and prove the following inequalities in the case when  u   

is of bounded variation. 

Theorem 4.  

Let   Rbaw ,:  be nonnegative and continuous on  .,ba  If   Rbauf ,:,  are of bounded 

variation on  ,,ba  then we have the inequalities 
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Proof:  

Taking the modulus in Lemma 2 and using the Lemma 1, we have 

 

 

( , , )D w f u  
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b b
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Q t s df t du s
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                           (4) 

Since f  is of bounded variation, using Lemma l again, we obtain 
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(6) 

If we substitute the inequalities (5) and (6) in (4), we establish 
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                               ( ) , ( ) , ,

s b

f f u

a s

w t V a t dt w t V a t dt d V a s


  


   

                ( , ) ( , ) ( ) ,

b s

u
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                                      ( ) , 2 ( ) , ,

b b s

f f u

a a a

w t V a t dt w t V a t dt d V a s
 

  
 
    

                   ( , ) ( , ) , ,

b
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                                       ( ) ( ) , 2 ( ) , , .

b b st

f f u
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w t f dtV a b w t V a t dt d V a s
 

   
 

          (7)                                                                 

In last line of (7), we have 

    ( ) , ,

b s

f u

a a

w t V a t dt d V a s
 
 
 
   

                           ( ) , , ( ) , ,

b
s b

f u f u

a aa

w t V a t dt V a s w s V a s V a s ds
 

  
 
   

                           ( ) , , ( ) , ,

b b

f u f u
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w t V a t dt V a b w s V a s V a s ds
 

  
 
  .     (8) 

If we put the equality (8) in (7), we obtain the first inequality in (3). 

The other inequalities are obvious from the fact that 

           .,,),(,)(,,,)( baVbaVbamdssaVswbaVdssaVsaVsw uff

b

a

uuf

b

a

   

 

Remark 2.  

If we choose ttw )(  in Theorem 4, then we obtain Theorem 1 in Dragomir (2014). 

 

Theorem 5.  
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Let   Rbaw ,:  be nonnegative and continuous on  .,ba  If   Rbau ,:   is of bounded 

variation on  ba,  and   Rbaf ,:  is monotonic nondecreasing, then we have the inequality 

 

 

( , , )D w f u  

    ( , ) ( , ) ( ) ,

b
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a

m a t m t b f t d V a t   

   2 ( ) ( ) , ( ) ( ) ,
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             (9) 

 Proof:  

It is well known that if the Stieltjes integrals )()( tdvtp
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 exist and v  is 

monotonic non-decreasing on  ,,  then 
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                                 (12) 

If we substitute the inequalities (11) and (12) in (4), we obtain 
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Using the integration by parts in Riemann-Stieltjes integral, we have 
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                   (15) 

Putting the equalities (14) and (15) in (13), we complete the proof the first inequality in (9). 

 

The second inequality is obvious. 

Remark 3.  
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If we choose ttw )(  in Theorem 5, then the first inequality in (9) reduces to the inequality (3.7) 

in Dragomir (2014). 

 

4. Inequalities in the Case when f  is of bounded variation 

 

In this section, we give same inequality in the case when f  is of bounded variation using the 

identities presented in Section 2. 

Theorem 6.  

Let   Rbaw ,:  be nonnegative and continuous on  ba,  and   Rbaf ,:  be a function of 

bounded variation on  .,ba  If   Rbau ,:  is continuous such that there exist constant 

0,   and 0, ba LL  with 

                                                         atLautu a  )()(                                                        (16) 

and 

                                                         tbLtubu b  )()( ,                                                       (17) 

for all  ,,bat  then we have 
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 Proof:  

Taking the modulus in Lemma 3 and using Lemma 1, we have 
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  ( , ) ( ) ( ) ( , ) ( ) ( ) , .

b

f

a

m t b u t u a m a t u b u t d V a t           (19) 

 

Using properties (16) and (17) in (19), we obtain 

 

( , , )D w f u  

      ( , ) ( , ) ,

b

a b f

a

L m t b t a L m a t b t d V a t
     

   

         ( , ) , ( , ) , .

b b

a f b f

a a

L m t b t a d V a t L m a t b t d V a t
 

        (20) 

                                

Integrating by parts, we have 
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w t t a V a t dt m t b t a V a t dt        

and  

 

    ( , ) ,

b

f

a

m a t b t d V a t


  

    ( , ) ,
b

f
a

m a t b t V a t
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1

( , ) , ( ) ,
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f f
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These equalities complete the proof. 

Remark 4.  

If we choose ttw )(  in Theorem 6, then we obtain Theorem 4 in (Dragomir 2014). 
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Corollary 3.   

Let f  and w  be as in Theorem 6. If u  is of Hr Hölder type, i.e.,  

 ,,,any for  )()( baststHsutu
r

  

where 0H  and  1,0r  are given, then 

 

( , , )D w f u  
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b
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       (21) 

Corollary 4.  If u  is Lipschitzian with the constant 0L , then we have 

 

( , , )D w f u  

   
( , ) ( , )

2 ( ) , , .
2 2

b b

f f
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L w t t V a t dt V a t dt
     

      
    

   

5. Inequalities for ),( Ll -Lipschitzan Fuctions 

 

The following lemma was given by Dragomir (2014). 

Lemma 4.   

Let   Rbau ,:  and RLl,  with .lL   The following statements are equivalent: 

 

(i) The function ,.
2

eu Ll  where ,)( tte    bat ,   is  )(2
1 lL -Lipschitzan; 

 

(ii) We have the inequalities 

  ; ,,,each for  
)()(

stbastL
st
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(iii) We have the inequalities 

      . ,,,each for  )()( stbaststLsutustl   
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Definition 3.  

The function   Rbau ,:  which satisfies one of the equivalent conditions (i) - (iii) from 

Lemma l3 is said to be ),( Ll -Lipschitzan on  .,ba  If 0L  and ,Ll   then ),( LL -

Lipschitzan means L -Lipschitzan in the classical sense. 

Theorem 7.   

Let   Rbaw ,:  be nonnegative and continuous on  ba,  and   Rbaf ,:  be a function of 

bounded variation on  .,ba  If   Rbau ,:  is an  ),( Ll -Lipschitzan function, then we have the 

inequality 

 ( , , ) ( ) ( ) ( )
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b b
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D w f u w s f t f s dsdt
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 Proof:  

From  Lemma 2, we have 
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Applying Corollary 4 for the function eu ll .2
 , which is )(

2
1 lL  -Lipschitzian, we have 
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, , .
2

l l
D w f u e

 
 

   

   
( , ) ( , )

( ) ( ) , ,
2 2

b b

f f

a a

a b m a t m t b
L l w t t V a t dt V a t dt

     
       

    
  , 

 

which completes the proof. 

Remark 5.  

If we choose  ttw )(   in Theorem 7, then we obtain Theorem 5 in Dragomir (2014). 

 

6. Bounds For Weighted Chebysev Functional 
 

In this section, we apply the our results for the weighted Chebysev functional. From Section 2, 

we know that  

                                             ),,(
),(

1
),,(

2
ufwD
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gfwT                                                      (22) 

by choosing the  )()()( sgswtu
t

a

   in Lemma 2. 

 

Moreover, u  is of bounded variation on any subinterval  ,, sa   ,,bas  and g  is continuous on 

 ,,ba  then we have 
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s

a
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Proposition 1.  

If f  is of bounded variation on  ,,ba  then we have the inequality 
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 Proof:   

If choose )()()( sgswtu
t

a

  in Theorem 4 and use the identity (21) and (22), we can prove the 

required result easily. 

Proposition 2.  

If f  is monotonic non-decreasing on  ,,ba  then we have the inequality 
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The proof is obvious from Theorem 5. 




7. Conclusions 

Some explicit error bounds are known for Chebysev functional. In this paper, by using the ideas 

of Dragomir (2014), we establish some weighted versions of integral inequalities obtained in 

Dragomir (2014), The methods used in this paper might find some potential applications in the 

generalizations of some other integral inequalities. To do so, one should define some new 

functional as we defined in Section 2. 
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