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Abstract

In this paper first we define a new functional which is a weighted version of the functional defined by
Dragomir and Fedotov. Then, some inequalities involving this functional are obtained. Finally, we
apply this result to establish new bounds for weighted Chebysev functional.
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1. Introduction

The following definitions will be frequently used to prove our results.

Definition 1.1.

Let P : a=x,<x <..<X =b be any partition of [a,b] and let Af(x)= f(x.,)— f(x), then
f is said to be of bounded variation if the sum
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S°Af (x)

i=1

Is bounded for all such partitions.

Definition 1.2.

Let f be of bounded variation on [a,b], and 3 Af(P) denotes the sum i|Af (x;)| corresponding
i=l
to the partition P of [a,b]. The number

V, (a,b):= sup{ZAf (P) : PeP(a,b])

is called the total variation of f on [a,b] Here, P([a,b]) denotes the family of partitions of

[a.b}

Dragomir and Fedotov (1998) have established the following functional
0 u(b)—u(a) ¢
D(f,u) = j f(t)du(t) - ————~ j f (t)dt.
a b - a a

In the same paper, the authors proved the following inequality.
Theorem 1.

Let f,u : [a,b] >R be such that u is of bounded variation on [a,b] and f is Lipschitzian with
the constant L >0. Then we have

ID(f,u)| < % L(b—a)V, (a,b)

The constant 4 is sharp in the sense that it cannot be replaced by a smaller one.

Alomari (2012) gave the following inequality.
Theorem 2.

Let xe[a,b]. Let f,u:[a,b] >R be a continuous mappings on [a,b]. Assume thatuis
monotonic non-decreasing mapping on [a,b] and f : [a,b]—> R is monotonic nondecreasing on
both intervals [a, x] and [x,b]. Then we have the inequality
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ID(f,u) < 2u(b)[ f (b) —i f (t)dt}.

Dragomir (2014) gave some new bounds for the function D(f,u). One of them is following
inequality.

Theorem 3.

Assume that f,u : [a, b]—>R are of bounded variation and such that the Riemann-Stieltjes
integral [0 f (t)du(t) exist. Then,

ID(f,u)|

b

<o fa [l2t—a—b, (a,1)d(V, (at)

a

- in (a,t)dtv, (a,b)+2 ivf (a,tV, (at)dt

a—b]V, (a,t)d(v, ( Lj‘ (atV, (a,t))dt

b-a

b ) a-bV, (a,t)d(v, (a,t))+V, (a,b), (a,b)

Lemma 1.

Let f,u : [a,b]>C. If f iscontinuous on [a,b] and u is of bounded variation on [a,b], then

b
the Riemann-Stieltjes integral [ f (t)du(t) exist and

T f (6)du(t)

< i| f[dv, (at)< m%| f [V, (ab)

A great many authors worked on inequalities for Riemann-Stieltjes integral via functions of
bounded variation (or derivatives of bounded variation). For some of them, please see in Alomari
(2012)-Liu (2004).

The main purpose of this paper is to obtain some weighted inequalities for Riemann-Stieltjes
integral. First of all, we define a weighted version of the functional D(f,u). Then, we establish

some bounds for this functional according to cases of the functions f and u. Finally, some new
bounds for the weighted Chebysev functional are also given.
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This paper is divided into the following six sections. In Section 2, we establish some identities
that will be used to prove our results. In Section 3 and Section 4, some weighted integral
inequalities for the case when the function u is bounded variation and when the function f is

bounded variation are given, respectively. In the next section, we give an inequality for the case
when u is (I,L)—Lipschitzan. Finally, in Section 6, we present some applications for weighted

Chebysev functional using the results given in previous sections.
2. Some ldentities

Let w : [a,b]— R be nonnegative and continuous on [a,b]. We define
b t
m(a,b) :Iw(s)ds and m,(a,t) = _[W(s)ds, so that m(a,t) =0 for t <a.

Now we give some representations.

Weighted version of the functional defined by Dragomir and Fedotov:
b b
D(w, ,u) =m(a,b)[f (t)du(t) —[u(b) —u(a)] [w(t) f (t)dt.

Weighted Chebysev functional:

1
m(a,b)

b 1 b 1 b
T(w, f,g)= j w(t) f (t)g(t)dt —(m(a, 5 j w(t) f (t)dt][m(a, 5 j W(t)g(t)dt}

Weighted Ostrowski transform:
b
O, ,(t)=m(a,b) f(t) —Iw(s) f(s)ds.

Weighted generalized trapezoid transform:
@, ., (t) =m(t,b)g(a) +m(a,t)g(b) —m(a,b)g(t).
Before we start our main results, we state and prove following lemmas:

Lemma 2.

b
If f,u:[ab]— R arebounded functions such that the Riemann-Stieltjes integral J. f (t)du(t)
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b
and the Riemann integral Iw(t) f (t)dt exist, then we have

D(w, f,u)= i@)f w(8)du(s) = TU Q, (t,s)df (t)j du(s),

1)

where

t

fw(s)ds, ass<t<x,

b

Q,(t,s)=

t

jw(s)ds, x<t<s<b.
Proof:

Using the integration by parts in Riemann-Stieltjes integral, we have

| ( [Qu(ts)df (t)Jdu(s)

S

[ Uw(f)dé‘)df ®)+] Uw(g)dgjdf (t):ldu(s)

L a

I
D ey T

Il
D C——y T

( _[W(ﬁ)df} f(t) — [w(t) f ()t

a

+Uw(§)d§} f(t)° —.Tw(t) f (t)dt}du(s)
- I H fw(g)dgl f(s)+ jw(t) f (t)dt}du(s)
= i®f,W(S)dU(S)-

This completes the proof of the second equality. The first identity is obvious.
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Corollary 1.

Let g : [a,b] >R a function such that g is Riemann integrable on [a,b] If we choose

t
u(t) = w(s)g(s) in Lemma 2, then we have

1

T(w,f,g)= D)

[0 . (s)W(s)g(s)ds = | ( [Qu(ts)df (t)]w(s)g(s)ds.

1
m?(a, b)
Lemma 3.

With the assumptions in Lemma 2, we have
D(w, f,u) = @, (Odf () =] ( Jaut s)du(s)]df (®), @)

where the mapping Q,,(t,s) is defined by as in Lemma 2.

Proof:

By the Fubini type theorem for the Riemann-Stieltjes integral, we get
b /b b /b
| ( Lo s)du(s)] df (t) = | [ [Qu(t.s)df (t)j dugs).

This completes the proof of the first and the last terms in (2).

Integrating by parts, we obtain
[Qut.s)du(s) = | ( | W(é)déde(S) + ( | w@)dg]du(s)

= [ | w(«:)d«:} u® - u(a)]+[ | w(«:)d«:} [u(b) - u(a)]

= m(t,b)u(a) + m(a,t)u(b) — m(a,b)u(t)
=o,,(t).

This completes the proof.

Corollary 2.
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Assume that g : [a,b] > R Riemann integrable on [a,b], then we have

(Dg,w(t) =0

Ivng(t) =m(a,t) [w(s)g(s)ds —m(a, b) [w(s)g(s)ds.

Remark 1.

If we choose w(t) =t in Lemma 1 and Lemma 2, then our results reduce Lemma 1 and Lemma 2
proved by Dragomir (2014), respectively.

3. Inequalities in the Case when u is of bounded variation

Now using the above identities, we state and prove the following inequalities in the case when u
is of bounded variation.

Theorem 4.

Let w : [a,b]— R be nonnegative and continuous on [a,b} If f,u : [a,b]— R are of bounded
variation on [a,b], then we have the inequalities

ID(w, f,u)|

< fim@-meb)V, @dw, @)

_ﬁw(t)vf (a,t)(f)dtJVu (@b)+2[wV, (a.t), (a tit

Proof:

Taking the modulus in Lemma 2 and using the Lemma 1, we have

ID(w, f,u)|

TUQW(L s)df (t)]du(s)
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IA

Q,(t,s)df ®)|d(V, (a,s))

(v, (a)) “

[ R E——

Uw(«:)d §de 0+ ][ jweere §de 0

i[}w(é)dé]df (0

Since f is of bounded variation, using Lemma | again, we obtain

IA

Il
D ) T D ey T D ey T

+ ij(g)dgjdf (t) }d (V, (as)).

| ( w(&)dz:] df (t)

< ij@)d&]d(\/f (@)

- @w(g)dgf}vf (a,t)—j:w(t)Vf (a,t)dt ()
~m(@ sV, (a,5)- [woV, (a.t)t

and

v, (a.t)

IA

Il
O — T D —T O —T
(S S—C

w(g)de

| Uw(é)dé] df (t)

[ ——

w(f)d&)d(vf (at))

w(t)V, (a,t)dt —m(s,b)V, (a,s).

—~
(o))
~

If we substitute the inequalities (5) and (6) in (4), we establish
ID(w, f,u)|

<

[[m(a,s)-m(s,b)]V; (as)

D ey T
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_jw(t)vf (a,t)dt+}w(t)Vf (ai)dt}d (V. ()
:H[m(a, s)—m(S,b)]\:/(f)}d (V. (a:9))
+iﬁw(t)vf (a,t)dt—zjw(t)vf (a,t)dt}d (V. (a9))

:j[[m(a, s)-m(s,b) ]V, (a,s)]d(V, (as))
+j‘W(t)\t/(f)dtVf (a,b)—zmw(t)vf (a,t)dtjd(vu (as)). ()
In last line of (7), we have

i(jw(t)vf (a,t)dt]d (V, (a.s))

a\a
b

—j'w(s)vf (a,s)V, (a,s)ds

:[iw(t)vf (a,t)dt]Vu («’JLS)a

- [jl\/\/(t)vf (a,t)dt}vu (a,b)—ffw(s)vf (a,s)V, (as)ds. 8

If we put the equality (8) in (7), we obtain the first inequality in (3).

The other inequalities are obvious from the fact that

jlw(s)vf (a,sV, (a,s)ds<V, (a,b)j'w(s)vf (a,s)ds < m(a,b)V, (a,b), (a,b).

Remark 2.

If we choose w(t) =t in Theorem 4, then we obtain Theorem 1 in Dragomir (2014).

Theorem 5.
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Let w : [a,b] >R be nonnegative and continuous on [a,b} If u : [a,b] >R is of bounded
variation on [a,b] and f : [a,b]— R is monotonic nondecreasing, then we have the inequality

ID(w, f,u)|

< [[m(a,t)-m(t.b)] f ®)d (V, (a,t))

a

+2jw(t)f(t)v (at)d Uw(t)f(t)dt} (ab)

b

j m(a,t) - m(t,b)] f (t)d (V, ( (jw(t)f(t)dtj (a,b). (9)

a

Proof:

It is well known that if the Stieltjes integrals ff p(t)dv(t) and jf|p(t)|dv(t) existand v is
monotonic non-decreasing on [a, B], then

B B
[ p®)dv() < [|p®)]dv(t).
10) a

Using the inequality (10), we have

S U W(§)d§] df (t)| < j(t w(g)dg} df (t) = m(a, s) f (s) - j.w(t) f (t)dt (11)

and
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[ UW(é)déJ df (t)

IA

W(é)dé‘ df (t)

o — ~

W(f)df] df (t) (12)

Il
O C—T O ——T O ey T
~——

w(t) f (t)dt —m(s,b) f (s).

If we substitute the inequalities (11) and (12) in (4), we obtain

ID(w, f,u)|

< j‘[m(a,s)—m(s,b)] f(s)d(V, (a.s))

+j‘ﬁw(t) f (t)dt —iw(t) f (t)dt}d (v, (as)) (13)

- T[m(a, s)—m(s,b)] f(s)d(V, (a:s))
J[fw(t) f (t)dt}d (v, (a9)- UW“) f (00“]0' (V. (2:9)).

Using the integration by parts in Riemann-Stieltjes integral, we have

iUW(t) f (t)dt]d(vu (a,s))= TW(S) f(s)V, (a,s)ds (14)
and
TU w(t) f (t)dtjd Vv, (as))= Tw(t) f (t)dtv, (a,b)- Tw(s) f(s)V, (a,s)ds. (15)

Putting the equalities (14) and (15) in (13), we complete the proof the first inequality in (9).
The second inequality is obvious.

Remark 3.
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If we choose w(t) =t in Theorem 5, then the first inequality in (9) reduces to the inequality (3.7)
in Dragomir (2014).

4. Inequalities in the Case when f is of bounded variation

In this section, we give same inequality in the case when f is of bounded variation using the
identities presented in Section 2.

Theorem 6.

Let w : [a,b]— R be nonnegative and continuous on [a,b] and f : [a,b]—> R be a function of
bounded variation on [a,b} If u : [a,b] >R is continuous such that there exist constant
a,p>0and L,,L, >0 with

u@® -u@) < L,(t-a)f (16)
and
u() ~u®)|<L,b-t), (17)
for all t e[a,b], then we have
ID(w, f,u)|

<L, ﬁw(t)(t—a)“vf (a,t)dt—aim(t,b)(t —a)* 7V, (a,t)dt}
+Lb[ﬁfm(a,t)(b—t)“vf (a,t)dt—iw(t)(b—t)ﬁvf (a,t)dt}. (18)

Proof:

Taking the modulus in Lemma 3 and using Lemma 1, we have

ID(w, f,u)|

d(Vf (a,t))

IA
D ey T

JQ.(t.s)dus)

+

IA
D e, T
1

IUW(é)dchdU(S) jUw(«f)dg]du(s)

a

fov, e
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< j [ m(t.,b)|u(t) - u(a@)|+m(a,t)u) —u()|Jd (V, (a.t)). (19)

Using properties (16) and (17) in (19), we obtain
ID(w, f,u)|

< T[Lam(t,b)(t ~a)" +Lym@t)(b-t) [d(V, (at))

a

- ij(t,b)(t—a)“ d(V, (at))+ ij(a,t)(b—t)ﬂ d(V, (at)).  (20)

Integrating by parts, we have

im(t,b)(t—a)“d(vf (at))

b

=m(t,b)(t-a)" (V, (at))

a

—i[—w(t) (t-a)" +am(t,b)(t-a)" "V, (a,t)} dt

= iw(t)(t —a)“V, (at)dt —aim(t,b)(t —a)*V, (at)dt

and

im(a,t)(b—t)ﬂd(vf (at))

b

a

_i[w(t)(b—t)ﬂ +Am(a,t)(b-t)"V, (a,t)}dt

- ﬂj.m(a,t)(b—t)ﬂlvf (a,t)dt —iw(t)(b—t)ﬁvf (a,t)dt

These equalities complete the proof.

Remark 4.

If we choose w(t) =t in Theorem 6, then we obtain Theorem 4 in (Dragomir 2014).
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Corollary 3.

Let f and w be as in Theorem 6. If u is of r —H —H®older type, i.e.,
u) —u(s)|< Hft -5 foranyt,s e[a,b]
where H >0 and r €(0,1) are given, then
ID(w, f,u)|

<H Uw(t)[(t—a)r ~(b-t)" [V, (a,t)a

+rj[m(a,t)(b—t)f‘1—m(t,b)(t—a)'-l}vf (a,t)dt}. (1)

a

Corollary 4. If u is Lipschitzian with the constant L >0, then we have

ID(w, f,u)|

b

0 b H-m(t,b
SZLL[W(t)(t—a%ij (a,t)dt+I[m(a t)zm(t )}Vf (a,t)dt}.

a

5. Inequalities for (I,L)-Lipschitzan Fuctions

The following lemma was given by Dragomir (2014).
Lemma 4.

Let u : [a, b]—> R and I,L e R with L > 1. The following statements are equivalent:

(i) The function u—'t.e, where e(t) =t, te[a,b] is 1(L-1)-Lipschitzan;
(if) We have the inequalities

| < u®)-u(s)
- t-s

< Lforeacht,se[a,b] t#s;

(ii1) We have the inequalities

I(t—s)<u(t)—u(s)< L(t—s) foreach t,s[a,b] t >s.
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Definition 3.

The function u : [a,b] > R which satisfies one of the equivalent conditions (i) - (iii) from
Lemma 13 is said to be (I,L)-Lipschitzan on [a,b] If L>0 and I=-L, then (-L,L)-
Lipschitzan means L -Lipschitzan in the classical sense.

Theorem 7.

Let w : [a,b] > R be nonnegative and continuous on [a,b] and f : [a,b] > R be a function of

bounded variation on [a,b} If u : [a,b] >R isan (I,L)-Lipschitzan function, then we have the
inequality

‘D(W i u)—I+—L j jw(s) £(t)— f(s)]dscl

<(L—I){J.W(t)(t—a—m) : (a,t)dt+T[m(a’t);m(t’b)}Vf (a,t)dt}.

a

Proof:

From Lemma 2, we have

( I +1 )
w,f,u———.=e
2

Uw(s)ds] f(t)+ iw(s) f (s)ds} {u(t) —%t}

I
D ey T
f 1

Il
D e T
[ 1

Uw(s)ds] f(t) +'b[w(s) f (S)ds}du(t)

kil K jw(s)dsj f(t)+ jw(s) f (s)ds}

= D(w, f u)—— j j w(s)[ f (t) - f (s)]dsdt.

Applying Corollary 4 for the function u—%.e, which is 1 (L —I) -Lipschitzian, we have
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‘D[W,f,u—ﬂ.e]
2

s(L—l)Uw(t)(t_a_”’jvf (a,t)dt+i[m(a’t);m(t’b)}Vf (a,t)dt]

2

a

which completes the proof.
Remark 5.

If we choose w(t) =t in Theorem 7, then we obtain Theorem 5 in Dragomir (2014).

6. Bounds For Weighted Chebysev Functional

In this section, we apply the our results for the weighted Chebysev functional. From Section 2,
we know that

1
m?(a, b)

T(w, f,g)= D(w, f,u) (22)

t
by choosing the u(t) =Jw(s)g(s) in Lemma 2.

Moreover, u is of bounded variation on any subinterval [a,s], s<[a,b] and g is continuous on
[a,b], then we have

V, (a,s)= jw(t)|g (t)|dt, sefa,b] (23)

Proposition 1.

If f isof bounded variation on [a,b], then we have the inequality

T(w, f,0)|

<

{I [m(a,)-m(&B)WOg @V, (at)dt

—L IW(t)Vf (a,t)dtj( jw(t)|g(t)|dt]

1
m?(a,b)
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+2TW(t)Vf (a,t)(ffw(s)|g(s)|ds)dt}

1
sm{ j [m(a,t) - m(t,b) w(t)|g )|V, (at)dt

JrTW(t)Vf (a,t)[jw(s)|g(s)|dstt}

1 D[m(a,t) —m(t,b)Jw)[g )|V, (at)dt

< -
m?(a,b)

a

+m(a,b)[jiw(t)|g(t)|dtjvf (a,b)}.

Proof:

t
If choose u(t) =/ w(s)g(s) in Theorem 4 and use the identity (21) and (22), we can prove the

required result easily.
Proposition 2.

If f is monotonic non-decreasing on [a,b], then we have the inequality

T(w, f,0)|
< mh[m(a,t) —m(t,b)] f (t)w(t)|g(t)|dt
+2 jw(t) f (t)[ jw(s)|g(s)|dstt —( jw(t) f (t)dtJ( jw(t)|g(t)|dtﬂ
1 b
< iy { j [m(a,t) -m(t,b)] f (t)w(t)|g(t)|dt

{ fwityf (t)dt][ jw(t)|g(t)|dtﬂ.

Proof:
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The proof is obvious from Theorem 5.

7. Conclusions

Some explicit error bounds are known for Chebysev functional. In this paper, by using the ideas
of Dragomir (2014), we establish some weighted versions of integral inequalities obtained in
Dragomir (2014), The methods used in this paper might find some potential applications in the
generalizations of some other integral inequalities. To do so, one should define some new
functional as we defined in Section 2.
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