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Abstract 
 

In this paper, we develop a numerical solution based on cubic B-spline collocation method. By 

applying Von-Neumann stability analysis, the proposed technique is shown to be unconditionally 

stable. The accuracy of the presented method is demonstrated by a test problem. The numerical 

results are found to be in good agreement with the exact solution. 
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1.  Introduction 
 

A large variety of phenomena are governed by nonlinear partial differential equations. The 

analytical study on nonlinear partial differential equations was a great interest during the last 

century. This theory plays a major role in the field of physics including plasma physics, fluid 
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dynamics and quantum field theory. The PHI- four equation is considered to be a special form of 

the famous Klein-Gordon equation that models phenomenon in particle physics where kink and 

anti-kink solitary wave interacts Benjamin et al. (1972).  

The general PHI-four equation has the following form   

𝜕2𝑢

𝜕𝑡2
− 𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝛿𝑢𝑞 + 𝜂𝑢 = 𝜓(𝑥, 𝑡),     𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 ≥ 0,                          (1.1) 

subject to initial conditions  

𝑢(𝑥, 0) = 𝑓(𝑥),        𝑢𝑡(𝑥, 0) = 𝑔(𝑥) ,                                           (1.2) 

                                    

and appropriate boundary conditions as follows  

𝑢(𝑎, 𝑡) = 𝛼1(𝑡),              𝑢(𝑏, 𝑡) = 𝛼2(𝑡),        𝑡 ≥ 0  (𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠),         (1.3) 

or 

𝑢𝑥(𝑎, 𝑡) = 𝛼3(𝑡),              𝑢𝑥(𝑏, 𝑡) = 𝛼4(𝑡),        𝑡 ≥ 0  (𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠),       (1.4) 

 

where 𝑢 = 𝑢(𝑥, 𝑡) represents the wave displacement at position 𝑥 and time 𝑡 with 𝜇, 𝛿, 𝜂,𝑞 are 

known constants and 𝜓(𝑥, 𝑡) are the source term. Changing the values of the constants in 

Equation 1.1 gives various types of equations. For example, setting the value of 𝜇 = 1, 𝜂 =
0, 𝛿 = 1,  𝑞 = 2 and 𝜓(𝑥, 𝑡) = −𝑥 cos(𝑡) + 𝑥2 cos2(𝑡) gives a form of the well-known 

nonlinear Klein -Gordon equation. Another form of the Klein-Gordon equation is obtained by 

assigning 𝜇 = −
5

2
, 𝜂 = 1, 𝛿 =

3

2
, 𝑞 = 3 and  𝜓(𝑥, 𝑡) = 0 which was discussed in Bulut (2012). 

If we set the value of 𝜇 = 1, 𝜂 = −1, 𝛿 = 1, 𝑞 = 3 and 𝜓(𝑥, 𝑡) = 0 gives the equation under 

consideration which is called the PHI-four equation Wazwaz (2005).  

This equation arises in many branches of mathematical physics. Special solutions known as kink 

and anti-kink solitons have the following form   

𝑢(𝑥, 𝑡) = ± tanh(
1

√2(1−𝑐2)
 (𝑥 − 𝑐𝑡)) ,                                        (1.5) 

which have been discussed and found in Triki and Wazwaz (2009).  Here, in Equation (1.5), 𝑐 is 

the wave speed and the coefficient 𝜇 satisfies the condition 𝜇 = 1 for the solution in Equation 

(1.3) to exist. In the same manner, they have investigated two other general forms of the PHI-

Four equation as  

(𝑢𝑛)𝑡𝑡 − 𝜇 (𝑢
𝑛)𝑥𝑥 − 𝑢

𝑚 + 𝑢𝑛 = 0,                                          (1.6) 

(𝑢−𝑛)𝑡𝑡 − 𝜇(𝑢
−𝑛)𝑥𝑥 − 𝑢

𝑚 + 𝑢−𝑛 = 0,                                        (1.7)   

where the effect of the positive and negative exponents and the coefficient 𝜇 of the second 

derivative 𝑢𝑥𝑥 in the obtained solution has been studied.  
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Recently a large number of papers dealing with the solution of this kind of equations have been 

presented. Assas et al. (2013) presented an orthogonal spectral collocation scheme for solving 

the PHI-four equation based on Jacobi family. Ethanes et al. (2013) succeeded in finding the 

analytical solution of the equation using HPM (Homotopy perturbation method) in different 

forms of the equation. Wazwaz and Triki (2013) adapted the Anstaz method for finding the 

solitary wave solution of the equation at hand. Neyrami et al. (2013) applied the 𝑡𝑎𝑛ℎ method to 

find the exact and explicit traveling wave solutions of the equation along with other system 

equations. Soliman and Abdo (2009) use the modified extended direct algebraic method to find a 

new exact solution of both RWL and PHI-four equations. Sassaman and Biswas (2009) solved 

the non-linear Klein-Gordon equation using the soliton perturbation theory to find the analytical 

solution of these equations. Also, Biswas and Cao (2012) presented the phase portrait using the 

bifurcation analysis and the Anstaz method revealing several solutions of the equation.  Lastly, 

Najafi (2012) found the soliton solution of this equation using the HPM method for solving this 

type of nonlinear equations which will be solved later.  

In this paper, we aim to adapt cubic B-spline collocation method for solving the PHI-four type 

equations with initial and boundary conditions. The paper is arranged as in Section 2; we apply 

the temporal discretization to solve the PHI-four type equations where we use cubic B-spline as a 

basis at the collocation points. In Section 3, we implement the method for the equation producing 

a system of linear equations to be solved.  In Section 4, we propose a stability analysis using 

Von-Neumann stability analysis to the equation under study proving it to be unconditionally 

stable. Finally, Section 6 is the closing stage where we present the numerical results of our 

method and prove that the method is capable of providing accurate results. 

 

2. Temporal discretization 

Consider a uniform mesh ∆ with the grid points 𝜆𝑖𝑗 to discretize the region Ω = [𝑎, 𝑏] × [0, 𝑇]. 

Each 𝜆𝑗𝑖 is the vertex of the grid points (𝑥𝑗 , 𝑡𝑖) where 𝑥𝑗 = 𝑎 + 𝑗ℎ, 𝑗 = 0,1,2, … ,𝑁 and 𝑡𝑖 =

𝑖𝑘, 𝑖 = 0,1,2, … ,𝑀. The quantities ℎ and 𝑘 are the mesh size in space and time directions, 

respectively.   

Approximating the time derivative by a usual finite difference formula  

𝜕2𝑢𝑛

𝜕𝑡2
=

𝑢𝑛+1−2𝑢𝑛+𝑢𝑛−1

𝑘2
+ 𝑂(𝑘2),                                          (2.1) 

and then substituting the above approximation into Equation (1.1) and discretize in time variable 

the equation becomes  

𝑢𝑛+1−2𝑢𝑛+𝑢𝑛−1

𝑘2
= 𝜇

𝜕2𝑢

𝜕𝑥2
− 𝛿𝑢𝑞 − 𝜂𝑢 + 𝜓(𝑥, 𝑡),                             (2.2) 

applying the 𝜃-weighted scheme to the space derivatives to Equation (2.2) where (0 ≤ 𝜃 ≤ 1) 

𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1

𝑘2
= 𝜃 [𝜇

𝜕2𝑢𝑛+1

𝜕𝑥2
− 𝛿(𝑢𝑛+1)𝑞 − 𝜂𝑢𝑛+1 + 𝜓(𝑥, 𝑡)] 
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+(1 − 𝜃) [𝜇
𝜕2𝑢𝑛

𝜕𝑥2
− 𝛿(𝑢𝑛)𝑞 − 𝜂𝑢𝑛 + 𝜓(𝑥, 𝑡)],                                  (2.3) 

where the subscription 𝑛 − 1, 𝑛, 𝑛 + 1  denote the adjacent time levels. Taking 𝜃 to be  
1

2
 , which 

corresponds to Crank -Nicholson technique, the above equation becomes  

𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1

𝑘2
=
1

2
[𝜇
𝜕2𝑢𝑛+1

𝜕𝑥2
− 𝛿(𝑢𝑛+1)𝑞 − 𝜂𝑢𝑛+1 + 𝜓(𝑥, 𝑡)] 

+
1

2
[𝜇

𝜕2𝑢𝑛

𝜕𝑥2
− 𝛿(𝑢𝑛)𝑞 − 𝜂𝑢𝑛 + 𝜓(𝑥, 𝑡)].                                        (2.4) 

By rearranging the terms in Equation (2.4), we get the final form of the discretized equation  

(1 −
𝜂𝑘2

2
)𝑢𝑛+1 +

𝜇𝑘2

2
𝑢𝑥𝑥
𝑛+1 −

𝛿𝑘2

2
(𝑢𝑛+1)𝑞 

    = (2 −
𝜂𝑘2

2
) 𝑢𝑛 − 𝑢𝑛−1 +

𝜇𝑘2

2
𝑢𝑥𝑥
𝑛 −

𝛿𝑘2

2
(𝑢𝑛)𝑞 + 𝑘2𝜓(𝑥, 𝑡).                         (2.5) 

The space derivatives are approximated by cubic B-splines which are presented in the next 

section. 

 

3.  Cubic B-splines collocation method 
 

In cubic B-spline collocation method, the approximate solution can be written as a combination 

of cubic B-splines basis functions for the approximation of space variables under consideration. 

We consider a mesh 𝑎 = 𝑥0 < 𝑥1, … , 𝑥𝑁−1, 𝑥𝑁 = 𝑏 as a uniform partition of the solution domain 

𝑎 ≤ 𝑥 ≤ 𝑏 by the knots 𝑥𝑗 with ℎ = 𝑥𝑗+1 − 𝑥𝑗 =
𝑏−𝑎

𝑁
,   𝑗 = 0,… ,𝑁 − 1. Our numerical treatment 

for solving Equation (2.1) using the collocation method with cubic B-splines is to find an 

approximate solution  𝑈𝑁(𝑥, 𝑡) to the exact 𝑢(𝑥, 𝑡) in the form  

𝑈𝑁(𝑥, 𝑡) = ∑ 𝑐𝑗(𝑡) 𝐵𝑗(𝑥)
𝑛+1
𝑗=−1 ,                                             (3.1) 

where 𝑐𝑗(𝑡) are unknown time-dependent quantities to be determined from the boundary 

conditions and collocation for the differential equation.  

The cubic B-splines 𝐵𝑗(𝑥) at the knots is given as follows from Bhatta and Munguia (2015) 

𝐵𝑗(𝑥) =
1

ℎ3

{
  
 

  
 (𝑥 − 𝑥𝑗−2)

3
 ,                                                     𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1),

(𝑥 − 𝑥𝑗−2)
3
− 4(𝑥 − 𝑥𝑗−1)

3
 ,                    𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗),

(𝑥𝑗+2 − 𝑥)
3
− 4(𝑥𝑗+1 − 𝑥)

3
,                    𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1),

(𝑥𝑗+2 − 𝑥)
3
 ,                                                     𝑥 ∈ [𝑥𝑗+1, 𝑥𝑗+2),

0  ,                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

                 (3.2) 
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where {𝐵−1, 𝐵0, 𝐵1, … , 𝐵𝑁−1, 𝐵𝑁 , 𝐵𝑁+1} form a basis of 𝑎 ≤ 𝑥 ≤ 𝑏. The concept is that each 

cubic B-spline covers four elements so that each element is covered by four cubic B-splines. The 

values of 𝐵𝑗(𝑥) and its derivative may be tabulated as in Table 1. 

Table 1. Coefficients of cubic B-splines and its derivatives at 𝑥𝑗 

𝑥 𝑥𝑗−2 𝑥𝑗−1 𝑥𝑗 𝑥𝑗+1 𝑥𝑗+2 

𝐵𝑗(𝑥) 0 1 4 1 0 

𝐵𝑗
′(𝑥) 0 3/ℎ 0 −3/ℎ 0 

𝐵𝑗
′′(𝑥) 0 6/ℎ2 −12/ℎ2 6/ℎ2 0 

 

Using approximate function in Equation (3.1) and cubic B-splines functions from Equation (3.2), 

the approximate values of 𝑈𝑁(𝑥𝑗) and its two derivatives at the knots are determined in terms of 

the time parameters 𝑐𝑗 as follows 

𝑈𝑗
′′  =

6

ℎ2
(𝑐𝑗−1 − 2 𝑐𝑗 + 𝑐𝑗+1).                                           (3.3) 

Substituting Equation (3.1) into Equation (2.5) yields the following equation  

(1 −
𝜂𝑘2

2
) ∑ 𝑐𝑗

𝑛+1(𝑡) 𝐵𝑗(𝑥)

𝑛+1

𝑗=−1

+
𝜇𝑘2

2
∑ 𝑐𝑗

𝑛+1(𝑡) 𝐵𝑗
′′(𝑥)

𝑛+1

𝑗=−1

−
𝛿𝑘2

2
(∑ 𝑐𝑗

𝑛+1(𝑡) 𝐵𝑗(𝑥)

𝑛+1

𝑗=−1

)

𝑞

 

= (2 −
𝜂𝑘2

2
) ∑ 𝑐𝑗

𝑛(𝑡) 𝐵𝑗(𝑥)

𝑛+1

𝑗=−1

− ∑ 𝑐𝑗
𝑛−1(𝑡) 𝐵𝑗(𝑥)

𝑛+1

𝑗=−1

+
𝜇𝑘2

2
∑ 𝑐𝑗

𝑛(𝑡) 𝐵𝑗
′′(𝑥)

𝑛+1

𝑗=−1

 

−
𝛿𝑘2

2
(∑ 𝑐𝑗

𝑛(𝑡) 𝐵𝑗(𝑥)
𝑛+1
𝑗=−1 )

𝑞
+ 𝑘2𝜓(𝑥, 𝑡).                                        (3.4) 

Then simplifying the above equation leads to the following system of linear equations:  

𝑎′ 𝑐𝑗+1
𝑛+1 + 𝑏′ 𝑐𝑗

𝑛+1 + 𝑎′ 𝑐𝑗−1
𝑛+1 = 𝑐′ 𝑐𝑗+1

𝑛 + 𝑑′ 𝑐𝑗
𝑛 + 𝑐′ 𝑐𝑗−1

𝑛 − 2(𝑐𝑗−1
𝑛−1 + 4𝑐𝑗

𝑛−1 + 𝑐𝑗+1
𝑛−1),     (3.5) 

 where 𝑗 = 0,1,2,… , 𝑁 and   

𝑈𝑗 = 𝑐𝑗−1 + 4𝑐𝑗 + 𝑐𝑗+1, 

𝑈𝑗
′ =

3

ℎ
(𝑐𝑗−1 + 𝑐𝑗+1),                               
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In order to obtain a unique solution of the above system, two additional constraints are required. 

These constraints are obtained from the boundary conditions from Equation (1.3) or (1.4) 

depending on the type of conditions. Imposing the boundary conditions enables us to add the 

parameters 𝑐−1  and 𝑐𝑁+1 in the system and the system of Equations (3.5) can be reduced to 

(𝑁 + 1) linear equation in (𝑁 + 1) unknowns. Solving the resulting system gives the unknown 

coefficients 𝑐𝑗 and the approximate solution then can be calculated from Equation (3.1) as well. 

 

4. Stability analysis  

The stability of the proposed scheme is investigated by using Von -Neumann stability. The 

proposed scheme takes the following form  

𝑎′ 𝑐𝑗+1
𝑛+1 + 𝑏′ 𝑐𝑗

𝑛+1 + 𝑎′ 𝑐𝑗−1
𝑛+1 = 𝑐′ 𝑐𝑗+1

𝑛 + 𝑑′ 𝑐𝑗
𝑛 + 𝑐′ 𝑐𝑗−1

𝑛 − 2(𝑐𝑗−1
𝑛−1 + 4𝑐𝑗

𝑛−1 + 𝑐𝑗+1
𝑛−1),        (4.1) 

setting 𝑐𝑗
𝑛 = 𝜉𝑛𝑒𝑖𝛽𝑗ℎ, 𝑖 = √−1 in Equation (4.1) after simplifying it can be written as   

𝜉2[2𝑎′ cos(𝛽ℎ) + 𝑏′ + cos(𝛽ℎ)] − 𝜉[2𝑐′ cos(𝛽ℎ) + 𝑑′] + [4 cos(𝛽ℎ) + 8] = 0.          (4.2) 

Then, by letting 

𝑄 = 2𝑎′ cos(𝛽ℎ) + 𝑏′ + cos(𝛽ℎ) ,   𝐷 = 2𝑐′ cos(𝛽ℎ) + 𝑑′,   𝑍 = 4 cos(𝛽ℎ) + 8,         (4.3) 

Equation (4.2) becomes  

𝑄𝜉2 − 𝐷𝜉 + 𝑍 = 0,                                                               (4.4) 

by applying the Routh-Hurwitz criterion on Equation (4.4). By using the transformation 𝜉 =
1+𝜈

1−𝜈
  

and simplifying the above equation, it produces  

(𝑄 + 𝐷 + 𝑍) 𝜈2 + 2(𝑄 − 𝑍)𝜈 + (𝑄 − 𝐷 + 𝑍) = 0.                                  (4.5) 

The necessary and sufficient condition for |𝜉| ≤ 1 is that  

𝑄 + 𝐷 + 𝑍 ≥ 0,        𝑄 − 𝑍 ≥ 0,       𝑄 − 𝐷 + 𝑍 ≥ 0,                                  (4.6) 

and after substituting, we get the values as  

𝑄 + 𝐷 + 𝑍 = (2𝑎′ + 2𝑐′ + 4) cos(𝛽ℎ) + (𝑏′ + 𝑑′ + 8),   

𝑄 − 𝑍 = (2𝑎′ − 4) cos(𝛽ℎ) + (𝑏′ − 8), 

 𝑄 − 𝐷 + 𝑍 = (2𝑎′ − 2𝑐′ + 4) cos(𝛽ℎ) + (𝑏′ − 𝑑′ + 8).                           (4.7) 

𝑎′ = 1 − 𝑘2( 
𝜂+𝛿

2
−
3𝜇

ℎ2
 )   

𝑏′ = 4 − 𝑘2(2𝜂 +
6𝜇

ℎ2
+
𝛿 (4)𝑞

2
 )  

𝑐′ = 2 − 𝑘2( 
𝜂+𝛿

2
−
3𝜇

ℎ2
 )  

𝑑′ = 8 − 𝑘2 (2𝜂 +
6𝜇

ℎ2
+
𝛿 (4)𝑞

2
 ).  
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By letting 𝜑 =
1

2
𝛽ℎ and the relation cos(2𝜑) = 2 cos2(𝜑) − 1 and substituting into Equation 

(4.7) with the values of  𝑎′, 𝑏′, 𝑐′, and then calculating the terms, we get  

𝑄 + 𝐷 + 𝑍 = (4𝑎′ + 4𝑐′ + 8) cos2(𝜑) − 2𝑎′ − 2𝑐′ + 𝑏′ + 𝑑′ + 4 ≥ 0, 

𝑄 − 𝑍 = (4𝑎′ − 8) cos2(𝜑) − 2𝑎′ + 𝑏′ − 4 ≥ 0 ,  

 𝑄 − 𝐷 + 𝑍 = (4𝑎′ − 4𝑐′ + 8) cos2(𝜑) − 2𝑎′ + 2𝑐′ + 𝑏′ − 𝑑′ + 4 ≥ 0 .                  (4.8) 

The conclusion is that all the values are greater than 0 which is evidence that the scheme is 

unconditionally stable. It means that there is no restriction on the grid size but the grid size 

should be chosen in such a way that the accuracy of the scheme is not degraded.  

 

7. Numerical experiments and discussion  

To illustrate the performance of the presented method, a numerical example is given in this 

section. We use 𝐿∞ norm described by the following relation for finding the maximum error of 

the solution   

𝐿∞ = max𝑗≥0|𝑢𝑗
𝑒𝑥𝑎𝑐𝑡 − 𝑈𝑗

𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒|.  

We consider Equation (1.1) under the initial and boundary conditions given in Equation (1.2) 

with the values of the constants as 𝜇 = 1, 𝜂 = −1, 𝛿 = 1, 𝑞 = 3 and 𝜓(𝑥, 𝑡) = 0 which gives the 

PHI-four equation as  

𝑢𝑡𝑡 − 𝑢𝑥𝑥 − 𝑢 + 𝑢
3 = 0.                                                  (7.1) 

Since there is no exact solution, we will compare our method with the analytical solution which 

is given in Eshani et al. (2013) as follows.   

𝑢(𝑥, 𝑡) = 𝑥𝑡 +
𝑥𝑡3

6
−
𝑥3𝑡5

20
+

𝑥𝑡5

120
−

𝑥𝑡7

140
−
𝑥3𝑡7

840
−

𝑥3𝑡11

23760
+  

+
𝑥5𝑡13

37440
−

𝑥7𝑡15

168000
+

𝑥9𝑡17

2176000
.                                          (7.2) 

The results are computed for different time levels. Comparisons of approximate and exact 

solutions at different nodes 𝑥 and different time levels are reported in Table 4 and  𝐿∞ error norm 

is reported in Table 2 and Table 3. The graphs of exact and approximate solutions for different 

time levels are depicted in Figure 3 and Figure 4. A comparison between the errors is presented 

in Figure 1 and Figure 2. It is evident from these tables and figures that the presented method 

gives numerical results in good agreement with the exact solutions. To calculate the point wise 

rate of convergence, the algorithm has been run for various space steps on the tables with each 

equal interval, respectively. Also, the order of the convergence for the numerical method is 

illustrated in Table 5 for different time levels and different space levels, and is computed  by the 

formula   
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order of convergance =

𝑙𝑜𝑔10(
|𝑢−𝑈ℎ𝑖

|

|𝑢−𝑈ℎ𝑖+1
|
)

log10(|
ℎ𝑖
ℎ𝑖+1

|)
.  

 

Table 2.  Maximum error with 0 < 𝑥 < 1 and 0 ≤ 𝑡 ≤ 0.01 

𝒙/𝒕 0.001 0.003 0.005 0.007 0.009 0.01 

0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.1 1.67E-11 1.30E-10 6.79E-10 1.63E-09 3.00E-09 3.83E-09 

0.2 3.33E-11 9.35E-10 2.69E-09 5.23E-09 8.55E-09 1.05E-08 

0.3 5.00E-11 6.81E-10 8.07E-11 1.77E-09 4.90E-09 6.94E-09 

0.4 6.67E-11 5.59E-09 1.28E-08 2.14E-08 3.14E-08 3.69E-08 

0.5 8.33E-11 1.30E-08 2.37E-08 3.21E-08 3.79E-08 3.98E-08 

0.6 1.00E-10 4.42E-08 9.03E-08 1.38E-07 1.87E-07 2.11E-07 

0.7 1.17E-10 1.18E-07 2.31E-07 3.40E-07 4.44E-07 4.93E-07 

0.8 1.33E-10 3.00E-07 6.00E-07 9.01E-07 1.20E-06 1.35E-06 

0.9 1.50E-10 5.53E-07 1.10E-06 1.64E-06 2.17E-06 2.43E-06 

1.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Table 3. Maximum error with 0 < 𝑥 < 1 and 0 ≤ 𝑡 ≤ 0.1 

𝒙/𝒕 0.01 0.03 0.05 0.07 0.09 0.1 

0.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.1 1.67E-08 2.01E-07 9.26E-07 2.05E-06 3.48E-06 4.30E-06 

0.2 3.33E-08 6.92E-07 1.83E-06 3.71E-06 6.73E-06 8.71E-06 

0.3 5.00E-08 5.05E-08 2.62E-06 6.81E-06 1.13E-05 1.35E-05 

0.4 6.67E-08 3.48E-06 4.68E-06 5.47E-06 9.64E-06 1.39E-05 

0.5 8.33E-08 7.32E-06 9.19E-07 1.55E-05 3.21E-05 3.75E-05 

0.6 1.00E-07 2.99E-05 3.08E-05 6.87E-06 2.12E-05 2.87E-05 

0.7 1.17E-07 8.65E-05 9.56E-05 2.41E-05 9.58E-05 1.58E-04 

0.8 1.33E-07 2.46E-04 3.57E-04 3.05E-04 1.14E-04 1.56E-05 

0.9 1.50E-07 5.02E-04 8.63E-04 1.04E-03 1.04E-03 9.86E-04 

1.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Table 4. Comparison of the Approximate and exact solution at  𝑡 ≤ 1.0 

x 
t = 0.5 t = 0.7 t = 1.0 

Exact presented Exact presented Exact presented 

0.1 0.05210 0.05188 0.07579 0.07322 0.11673 0.11274 

0.2 0.10420 0.10324 0.15153 0.14597 0.23316 0.22595 

0.3 0.15627 0.15352 0.22716 0.21819 0.34897 0.33964 

0.4 0.20831 0.20214 0.30265 0.29048 0.46386 0.45297 

0.5 0.26032 0.24894 0.37793 0.36421 0.57753 0.56406 

0.6 0.31228 0.29500 0.45295 0.44063 0.68965 0.67045 

0.7 0.36419 0.34382 0.52767 0.51910 0.79993 0.76996 

0.8 0.41603 0.40026 0.60203 0.59591 0.90806 0.86128 

0.9 0.46779 0.46225 0.67598 0.66705 1.01374 0.94335 

1.0 0.51947 0.51632 0.74948 0.73247 1.11665 1.01426 
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Figure 1.  Maximum error comparison at 𝑡 =
0.01 𝑎𝑛𝑑 𝑡 = 0.001 

Figure 2. Maximum error comparison at 𝑡 =
0.01 𝑎𝑛𝑑 𝑡 = 0.1 

 

 

 

 

 

Table 5. The order of convergence, 𝑘 = 0.01 

𝒉𝒊 |𝒖𝒋 − 𝑼𝒋|𝑳∞
 Order(t=0.08) |𝒖𝒋 − 𝑼𝒋|𝑳∞

 Order(t=0.1) 

0.01 0.00304401  0.0077414  

0.02 0.00669762 1.137674552 0.0158813 1.036662335 

0.03 0.01150527 1.334400618 0.0246507 1.08433985 

0.04 0.01783823 1.524387417 0.0340141 1.119178568 

0.05 0.02574425 1.644087369 0.0436986 1.122780344 

0.06 0.03484264 1.659871346 0.0533605 1.09562413 

0.07 0.04443221 1.577176487 0.0627918 1.05580443 

0.08 0.05388875 1.445031546 0.0719981 1.024589251 

0.09 0.06304699 1.332608206 0.0810903 1.009686001 
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(a) (b) 

Figure 3. Approximate and Exact solution at (a) 𝑡 = 0.005, (b) 𝑡 = 0.01 

 

 
 

 

 

 

(a) (b) 

 

Figure 4. (a) Approximate solution (b) Exact solution  at 0 ≤ 𝑡 ≤ 0.01 
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(a) (b) 

Figure 5. (a) Approximate solution (b) Exact solution at 0 ≤ 𝑡 ≤ 0.1. 
 

 

8.  Conclusion 
 

In this paper, we developed a robust collocation method based on cubic B-spline as a basis for 

the calculation of an approximate solution for the famous PHI-four equation. The numerical 

solution is obtained using a three -time level implicit scheme based on a cubic B-spline for space 

derivatives and Crank-Nicholson finite difference discretization for time derivatives. During the 

computations, we found that the scheme is unconditionally stable using Von-Neumann stability 

analysis. To examine the accuracy and efficiency of the proposed algorithm we gave an example. 

These computational results show that our proposed algorithm is effective and accurate.   
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