
Available at
http://pvamu.edu/aam

Appl. Appl. Math.

ISSN: 1932-9466

Vol. 10,  Issue 1  (June 2015),  pp. 349 – 367

Applications and Applied

Mathematics:

An International Journal

(AAM)

On Some Optimal Multiple Root-Finding
Methods and their Dynamics

Munish Kansal, V. Kanwar∗, and Saurabh Bhatia

∗Corresponding Author

University Institute of Engineering and Technology

Panjab University, Chandigarh-160 014, India

mkmaths@gmail.com, vmithil@yahoo.co.in, and s bhatia@pu.ac.in

Received: September 2, 2014; Accepted: March 24, 2015

Abstract

Finding multiple zeros of nonlinear functions pose many difficulties for many of the iterative

methods. In this paper, we present an improved optimal class of higher-order methods for multiple

roots having quartic convergence. The present approach of deriving an optimal class is based on

weight function approach. In terms of computational cost, all the proposed methods require three

functional evaluations per full iteration, so that their efficiency indices are 1.587 and, are optimal

in the sense of Kung-Traub conjecture. It is found by way of illustrations that they are useful in

high precision computing enviroments. Moreover, basins of attraction of some of the higher-order

methods in the complex plane are also given.

Keywords: Basins of attraction; efficiency index; Kung-Traub conjecture; multiple roots; New-

ton’s method
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1. Introduction

Finding the multiple roots of nonlinear equations efficiently and accurately, is a very interesting
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and challenging problem in computational mathematics. We consider an equation of the form

f(x) = 0, (1)

where f : D ⊂ R → R be a nonlinear continuous function on D. Analytical methods for solving

such equations are almost non-existent and therefore, it is only possible to obtain approximate so-

lutions by relying on numerical methods based on iterative procedures (Gutiérrez and Hernández,

1997; Petković et al., 2012). So, in this paper, we concern ourselves with iterative methods to

find the multiple root rm with multiplicity m > 1 of a nonlinear equation (1) , i.e. f i(rm) = 0,

i = 0, 1, 2, 3, . . . , m−1 and fm(rm) 6= 0 . These multiple roots pose difficulties for root-finding

methods as function does not change sign at even multiple roots, precluding the use of bracketing

methods, limiting one to open methods.

Modified Newton’s method (Rall, 1966) is an important and basic method for finding multiple

roots of nonlinear equation (1), and is given by

xn+1 = xn − m
f(xn)

f ′(xn)
.

It converges quadratically for multiple roots and requires the prior knowledge of multiplicity m.

If an initial guess xn is sufficiently close to the required root rm, then the following expressions:

xn+1 = xn − m f(xn)
f ′(xn)

, xn+1 = xn − (m − 1) f ′(xn)
f ′′(xn)

, xn+1 = xn − (m − 2) f ′′(xn)
f ′′′(xn)

, . . . , will have

the same value. Another important modification of Newton’s method for multiple roots appears

in the work of (Schröder, 1870) which is given as

xn+1 = xn −
f(xn)f

′(xn)

f ′2(xn) − f(xn)f ′′(xn)
.

This method has quadratic convergence and does not require the prior knowledge of multiplicity

m. It may be obtained by applying Newton’s method to the function u(x) = f(xn)
f ′(xn)

, which has a

simple roots in each multiple root of f(x).

As the order of an iterative method increases, so does the number of functional evaluations

per step. The efficiency index (Ostrowski, 1973) gives a measure of the balance between those

quantities, according to the formula p
1
d , where p is the order of convergence of the method

and d the number of functional evaluations per step. According to the Kung-Traub conjecture

(Ostrowski, 1973; King, 1973), the order of convergence of any multipoint method consuming

n functional evaluations cannot exceed the bound 2n−1, called the optimal order.

In the recent years, some optimal modifications of Newton’s method for multiple roots have

been proposed and analyzed by (Li et al., 2009; Li et al., 2010; Sharma and Sharma, 2012; Zhou

et al., 2011; Kanwar et al., 2013) and the references cited therein. All these methods require

one-function and two first order-derivative evaluations per iteration. (Osada, 1994) proposed a

cubically convergent method for multiple roots. There are, however, not yet so many fourth or

higher-order methods known in literature that can handle the case of multiple roots.

With this aim, we intend to propose two optimal schemes of fourth-order iterative methods dedi-

cated only for multiple roots consuming three functional evaluations viz., f(xn), f ′(xn), f ′(yn)
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per full iteration. The present approach of deriving this optimal class of higher-order methods is

based on weight function approach. All the proposed methods considered here are found to be

more effective and comparable to the existing robust methods available in literature.

2. Construction of one-point methods and convergence analysis

In this section, we intend to develop one-point cubically convergent methods for multiple roots

involving second-order derivative. In terms of computational cost, each method requires only

three functional evaluations viz., f(xn), f ′(xn), and f ′′(xn) per full iteration.

Case I

Let us consider the following iterative schemes

xn+1 = xn − m
f(xn)

f ′(xn)
, (2)

and

xn+1 = xn − (m − 1)
f ′(xn)

f ′′(xn)
, (3)

which converge quadratically for multiple roots of nonlinear equation (1). Now, taking arithmetic

mean of (2) and (3), we get

xn+1 = xn −
1

2

(

m
f(xn)

f ′(xn)
+ (m − 1)

f ′(xn)

f ′′(xn)

)

. (4)

This method has quadratic convergence and satisfies the following error equation:

en+1 =
c1e

2
n

m − 1
+ O(e3

n).

In order to increase its order of convergence further, we insert the parameters a and b in (4) to

obtain

xn+1 = xn −
1

2

(

m
af(xn)

f ′(xn)
+ (m − 1)

bf ′(xn)

f ′′(xn)

)

. (5)

For finding the suitable values of free disposable parameters a and b in (5), we shall discuss the

following Theorem (2.1).

Theorem 1: Let f : D ⊆ R → R be a sufficiently smooth function defined on an open interval

D, enclosing a multiple zero of f(x), say x = rm with multiplicity m > 1. Then the family of

iterative methods defined by (5) has third-order convergence when a = 1 + m and b = 1 −m.

Proof: Let x = rm be a multiple zero of f(x). Expanding f(xn), f ′(xn) and f ′′(xn) about

x = rm by the Taylor’s series expansion, we have

f(xn) =
f (m)(rm)em

n

m!

(

1 + A1en + A2e
2
n + A3e

3
n + O(e4

n)
)

, (6)

f ′(xn) =
f (m)(rm)e

(m−1)
n

(m − 1)!

(

1 + B1en + B2e
2
n + B3e

3
n + O(e4

n)
)

, (7)
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and

f ′′(xn) =
f (m)(rm)e

(m−2)
n

(m − 2)!

(

1 + C1en + C2e
2
n + C3e

3
n + O(e4

n)
)

, (8)

where

Ai =
m!f (m+i)(rm)

(m + i)!f (m)(rm)
, Bi =

(m− 1)!f (m+i)(rm)

(m + i− 1)!f (m)(rm)
, Ci =

(m − 2)!f (m+i)(rm)

(m + i− 2)!f (m)(rm)
, i = 1, 2, . . ..

Using (6), (7) and (8) in (5) we get

en+1 =en −
1

2

(

m
af(xn)

f ′(xn)
+ (m − 1)

bf ′(xn)

f ′′(xn)

)

=
1

2
(2 − a − b)en +

(a(m− 1) + b(m + 1))c1e
2
n

2m(m − 1)
+ O(e3

n
)

= B1en + B2e
2
n

+ O(e3
n
).

(9)

In order to acheive the third order convergence, the coefficients B1 and B2 must vanish. Solving

B1 = 0 and B2 = 0, we obtain

a = 1 + m and b = 1 − m. (10)

Therefore, inserting the values of a and b from equation (10) in formula (5), we get

xn+1 = xn −
1

2

(

m(m + 1)
f(xn)

f ′(xn)
− (m − 1)2 f ′(xn)

f ′′(xn)

)

. (11)

This is a cubically convergent method for multiple roots . It satisfies the following error equation

en+1 =
((1 + m)2c2

1 − 2m(m− 1)c2)e
3
n

2m2(m− 1)
+ O(e4

n).

This completes the proof of the Theorem (2.1).

Case II

Now, we consider a quadratically convergent scheme

xn+1 = xn − (m − 1)
f ′(xn)

f ′′(xn)
, (12)

and well-known Schröder method for multiple roots

xn+1 = xn −
f(xn)f

′(xn)

f ′2(xn) − f(xn)f ′′(xn)
, (13)

respectively. From equations (12) and (13), we get

xn+1 = xn −
1

2

(

(m − 1)
f ′(xn)

f ′′(xn)
+

f(xn)f
′(xn)

f ′2(xn) − f(xn)f ′′(xn)

)

, (14)

which can be viewed as an arithmetic mean of two factors namely: (m−1) f ′(xn)
f ′′(xn)

and
f(xn)f ′(xn)

f ′2(xn)−f(xn)f ′′(xn)
.

It satisfies the following error equation

en+1 =
c1e

2
n

m(m− 1)
+ O(e3

n).
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Now, to increase the order of (14) from two to three, we introduce two free disposable parameters

k1 and k2 in (14) and get

xn+1 = xn −
1

2

(

(m − 1)
k1f

′(xn)

f ′′(xn)
+

k2f(xn)f ′(xn)

f ′2(xn) − f(xn)f ′′(xn)

)

, (15)

which satisfies the following error equation

en+1 =
2 − k1 − k2

2
en +

(a + b + am + bm)c1e
2
n

2m(m− 1)
+ O(e3

n) = B3en + B4e
4
n + O(e3

n). (16)

Therefore, to get a cubically convergent method, B3 and B4 must be equal to zero. Solving

B3 = 0 and B4 = 0, we get

k1 =
m − 1

m
and k2 =

m + 1

m
.

Hence, inserting the above values of k1 and k2 in formula in (15), we obtain

xn+1 = xn −
1

2m

(

(m − 1)2f ′(xn)

f ′′(xn)
+

(m + 1)f(xn)f ′(xn)

(f ′2(xn) − f(xn)f ′′(xn))

)

. (17)

It satisfies the following error equation

en+1 =
((−3 − 2m + m2)c2

1 − 2m(m − 1)c2)e
3
n

2m2(m− 1)
+ O(e4

n).

This is a new third order method for multiple roots which requires three functional evaluations

viz., f(xn), f ′(xn) and f ′′(xn).

3. Construction of multipoint methods and convergence analysis

In this section, we intend to develop multipoint optimal fourth-order methods from schemes (4)

and (14), respectively. Each family require three functional evaluations viz., f(xn), f ′(xn), f ′(yn)

per full iteration, and are optimal in the sense of Kung-Traub conjecture.

A. First family

Now, our main objective is to construct new multipoint optimal methods free from second-order

derivative. For this, let yn = xn− θ f(xn)
f ′(xn)

, be the Newton-like iterate with non-zero parameter ‘θ’

(i.e. θ 6= 0). Moreover, we consider the Taylor series expansion of f ′(yn) about a point x = xn

as follows:

f ′(yn) ≈ f ′(xn) + f ′′(xn)(yn − xn),

which further yields

f ′′(xn) ≈
f ′(xn)

(

f ′(xn) − f ′(yn)
)

θf(xn)
. (18)

Using this approximate value of f ′′(xn) in our starting iterative scheme (4) and θ = 2m
m+2

, we get

a modified method free from second-order derivative as

xn+1 = xn −
1

2

(

mf(xn)

f ′(xn)
+

2m(m − 1)f(xn)

(m + 2)(f ′(xn) − f ′(yn))

)

, (19)
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satisfying the error equation given by

en+1 =
1

2

(

1 +
2(−1 + m)m

(2 + m)
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m))

)

en + O(e2
n). (20)

Further, to increase the order of convergence, we substitute two free disposable parameters a1

and a2 in (19)to obtain

xn+1 = xn −
1

2

(

ma1f(xn)

f ′(xn)
+

2a2m(m− 1)f(xn)

(m + 2)(f ′(xn) − f ′(yn))

)

. (21)

It satisfies the following error equation:

en+1 =
1

2

(

2 − a1 +
2a2(−1 + m)m

(2 + m)
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m))

)

en + O(e2
n)

=B5en + B6e
2
n + O(e3

n).

(22)

Using computer algebra system Mathematica 9, solving B5 = 0 and B6 = 0, we can see that
for the choice of,

8

>

>

>

>

>

<

>

>

>

>

>

:

a1 =
1

2

 

4− 2m + m
2

 

−1 +

„

m

2 + m

«

−m
!!

,

a2 = −

“

m
2+m

”

−m

(2 + m)
“

2
“

m
2+m

”m

+ m
“

−1 +
“

m
2+m

”m””2

4(−1 + m)
,

(23)

method (21) is cubically convergent and satisfies the following error equation:

en+1 =
2
(

−1 +
(

m
2+m

)m)

c2
1e

3

m2
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m)) + O(e4
n).

According to the Kung-Traub conjecture (Kung and Traub, 1974) the order of convergence of

any multipoint method using n functional evaluations cannot exceed the bound 2n−1, called the

optimal order. For the choice of a1 and a2 given by the equation (23), method defined by (21) is

not an optimal method because it has third-order convergence and requires three evaluations of

function, viz. f(xn), f ′(xn), f ′(yn) per full iteration. Therefore to build an optimal fourth-order

method consuming three function evaluations, we suggest the following iterative scheme by using

weight function approach














yn = xn −
2m

m + 2

f(xn)

f ′(xn)
,

xn+1 = xn −
1

2

[

a1mf(xn)

f ′(xn)
+

2a2m(m − 1)f(xn)

(m + 2)(f ′(xn) − f ′(yn))

]

Q

(

f ′(yn)

f ′(xn)

)

,

(24)

where a1 and a2 are defined as follows:























a1 =
1

2

(

4 − 2m + m2

(

−1 +

(

m

2 + m

)

−m
))

,

a2 = −

(

m
2+m

)

−m
(2 + m)

(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m))2

4(−1 + m)
,
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and Q(.) ∈ C2(R) is any real-valued weight function such that the order of convergence reaches

at the optimal level without consuming any more functional evaluations. Theorem (3.1) indicates

that under what conditions on the weight function in (24), the order of convergence will reach

the optimal level four.

Convergence Analysis

Theorem 3.1 Let f : D ⊆ R → R be a sufficiently smooth function defined on an open interval

D, enclosing a multiple zero of f(x), say x = rm with multiplicity m > 1. Then the family of

iterative methods defined by (24) has fourth-order convergence when


































Q(µ) = 1,

Q′(µ) = 0,

Q′′(µ) =
m4
(

m
2+m

)

−2m (

−1 +
(

m
2+m

)m)

4
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m)) ,

|Q′′′(µ)| < ∞,

(25)

where µ =
(

m
m+2

)m−1
and it satisfies the following error equation

en+1 =
(p1c

3
1 − p2c3)e

4

3m9(2 + m)2 (2pm + m (−1 + pm))2 + O(e5), (26)

where

p =
m

m + 2
,

p1 =(2 + m)2
(

128Q′′′(µ)p5m − 4m6 (−3 + pm) + 128Q′′′(µ)mp4m (−1 + pm) + m10 (−1 + pm)2

+32Q′′′(µ)m2p3m (−1 + pm)2 + 8m5pm (−6 + 5pm) + 8m7
(

−1 + pm + p2m
)

+ m9 (2 − 8pm

+6p2m
)

+ 2m8
(

1 − 6pm + 7p2m
))

,

p2 =3m8(2 + m)2 (2pm + m (−1 + pm))2 c1c2 + 3m10 (2pm + m (−1 + pm))2 .

Proof: Let x = rm be a multiple zero of f(x). Expanding f(xn) and f ′(xn) about x = rm by

the Taylor’s series expansion, we have

f(xn) =
f (m)(rm)

m!
em

n

(

1 + c1en + c2e
2
n + c3e

3
n + c4e

4
n

)

+ O(e5
n), (27)

and

f ′(xn) =
f (m−1)(rm)

(m − 1)!
em−1

n

(

1 +
m + 1

m
c1en +

m + 2

m
c2e

2
n +

m + 3

m
c3e

3
n +

(m + 4)

m
c4e

4
n

)

+O(e5
n),

(28)

respectively.

Using computer algebra system Mathematica 9, we get

1

2

{

a1mf(xn)

f ′(xn)
+

2a2m(m − 1)f(xn)

(m + 2)(f ′(xn) − f ′(yn))

}

=
1

2

(

a1 −
2a2m(m− 1)

(m + 2)(−m + m
m+2

(m + 2))

)

en + O(e2
n).

(29)
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Furthermore, we have

f ′(yn)

f ′(xn)
=

(

m

2 + m

)

m−1

−
4
((

m

2+m

)

m

c1

)

en

m3
+

4
(

m

2+m

)

m
((

2 + m2
)

c2
1 − 2m2c2

)

e2
n

m5

−

(

8

((

m

2 + m

)

m
(

(2 + m)2
(

6 + m + 5m2 − m3 + m4
)

c3
1 − 3m2(2 + m)2

(

4 + m2
)

c1c2

+3m4
(

6 + 6m + m2
)

c3

))

e3
n

)

/
(

3
(

m7(2 + m)2
))

+ O(en)4.

(30)

Let
f ′(yn)
f ′(xn)

= µ + v, where µ =
(

m
2+m

)m−1
. Then from (30), the remainder v = f ′(yn)

f ′(xn)
− µ is

with the same order of en. Thus we can consider the Taylor’s expansion of the weight function

Q
(

f ′(yn)
f ′(xn)

)

= Q(µ + v) in the neighborhood of µ and obtain

Q

(

f ′(yn)

f ′(xn)

)

=Q(µ) + Q′(µ)v +
Q′′(µ)v2

2!
+

Q′′′(µ)v3

3!
+ O(e4

n). (31)

Using (29) and (31) in the scheme (24) , we obtain the following error equation

en+1 =en −
1

2

[

a1mf(xn)

f ′(xn)
+

2a2m(m− 1)f(xn)

(m + 2)(f ′(xn) − f ′(yn))

]

Q

(

f ′(yn)

f ′(xn)

)

=K1en + K2e
2
n +

1

2
(K3 + K4 + K5 + K6)e

3
n + e4

n + O(e5
n),

(32)

where

K1 = 1 −
a1Q(µ)

2
+

a2m(m− 1)Q(µ)

(m + 2)(2pm + m(−1 + pm))
,

K2 =
1

2m3

[

4Q′(µ)

(

m

2 + m

)m
(

a1 −
2a2(−1 + m)m

(2 + m)
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m))

)

− Q(µ)m2

(

−a1 +
2a2(−1 + m)

(

−4
(

m
2+m

)m
+ 2m

(

m
2+m

)m
+ m2

(

−1 +
(

m
2+m

)m))

(2 + m)
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m))2

)]

,

K3 =

4Q′(µ)
“

m
2+m

”m
„

−a1 +
2a2(−1+m)(−4( m

2+m
)m

+2m( m

2+m
)m

+m2(−1+( m

2+m
)m))

(2+m)(2( m

2+m
)m

+m(−1+( m

2+m
)m))2

«

c2
1

m4
,

K4 = −

4
“

m
2+m

”m
„

a1 −

2a2(−1+m)m

(2+m)(2( m

2+m
)m

+m(−1+( m

2+m
)m))

«

““

2Q′′(µ)
“

m
2+m

”m

+ Q′(µ)m
`

2 + m2
´

”

c2
1 − 2Q′(µ)m3c2

”

m6
,

K5 = −Q(µ)

0

B

B

@

2a2(−1 + m)m

„

1 + m −

( m

2+m
)m(−4+2m+3m2+m3)

m2

«

c2
1

(2 + m)
“

m −

“

m
2+m

”m

(2 + m)
”2 −

2a2(−1 + m)mc2

(2 + m)
“

2
“

m
2+m

”m

+ m
“

−1 +
“

m
2+m

”m””

1

C

C

A

+ Q(µ)
a1((1 + m)c2

1 − 2mc2)

m2
,

and

K6 = −

Q(µ)

(2+m)
`

m−

`

m

2+m

´

m

(2+m)
´

2
`

2
`

m

2+m

´

m

+m

`

−1+
`

m

2+m

´

m
´´

„

2a2m(m − 1)
``

1 + m −

`

m

2+m

´

m
`

−4+2m+3m2+m3
´

m2

´2
c2
1

−

`

m −

`

m
2+m

´m
(2 + m)

´`

2c2 + mc2 +

`

m

2+m

´

m
`

4(−2+m)c21−m2
`

−8+4m+4m2+m3
´

c2

´

m4

´´

«

.

For obtaining an optimal general class of fourth-order iterative methods, the coefficients of en,

e2
n, and e3

n in the error equation (32) must be zero simultaneously. After simplifying the equation



AAM: Intern. J., Vol. 10, Issue 1 (June 2015) 357

(32), we have the following equations involving of Q(µ), Q′(µ), and Q′′(µ).

Solving K1 = 0, K2 = 0, K3 = 0, K4 = 0, K5 = 0 and K6 = 0, we get






















Q(µ) = 1,

Q′(µ) = 0,

Q′′(µ) =
m4
(

m
2+m

)

−2m (

−1 +
(

m
2+m

)m)

4
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m)) ,

(33)

where µ =
(

m
m+2

)m−1
.

Using the above conditions, the scheme (24) satisfy the error equation (26). This reveals that the

general two-step class of higher-order methods (24) reaches the optimal order of convergence

four by using only three functional evaluations per full iteration. This completes the proof. �

Finally, under the conditions of Theorem (3.1), we get

xn+1 =xn −
m

4
f(xn)






1 +

1

6
Q′′′(µ)

(

f ′(yn)

f ′(xn)
− p−1+m

)3

+
m4p−2m

(

− f ′(yn)
f ′(xn)

+ p−1+m
)2

(−1 + pm)

8 (2pm + m (−1 + pm))







×

(

4 − 2m + m2 (−1 + p−m)

f ′(xn)
−

p−m (2pm + m (−1 + pm))2

f ′(xn) − f ′(yn)

)

,

(34)

where |Q′′′(µ)| < ∞ and p = m
m+2

.

This is a new optimal family of fourth-order methods for multiple roots.

B. Second family

Similarly, in order to develop multipoint methods from formula (14), which requires the compu-

tation of second-order derivative, we shall make use of the following approximation

f ′′(xn) ≈
f ′(xn)

(

f ′(xn) − f ′(yn)
)

θf(xn)
. (35)

Using this approximate value of f ′′(xn) in formula (14) and θ = 2m
m+2

, we get a modified method

free from second-order derivative as

xn+1 = xn −
1

2





2mf(xn)
(

(−1+m)
f ′(xn)−f ′(yn)

+ (2+m)
f ′(xn)(−2+m)+f ′(yn)(2+m)

)

m + 2



 . (36)

It satisfies the following error equation

en+1 =









1 −

m

(

(−1+m)

m−( m
2+m )

m
(2+m)

+ (2+m)

(−2+m)m+( m
2+m)

m
(2+m)2

)

2 + m









en + O(e2
n).
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On inserting parameters α1 and α2 in (36), we get

xn+1 = xn −
1

2





2mf(xn)
(

α1(−1+m)
f ′(xn)−f ′(yn)

+ α2(2+m)
f ′(xn)(−2+m)+f ′(yn)(2+m)

)

m + 2



 . (37)

It satisfies the following error equation

en+1 =









1 −

m

(

(−1+m)α1

m−( m
2+m )

m
(2+m)

+ (2+m)α2

(−2+m)m+( m
2+m)

m
(2+m)2

)

2 + m









en + O(e2
n). (38)

From error equation (38), we can see that for the following choices of α1 and α2

α1 = −
( m

2+m )
−m

(2+m)(2( m
2+m )

m
+m(−1+( m

2+m )
m
))

2
(−8( m

2+m)
m

+m3(1+( m
2+m)

m
)+m2(−2+4( m

2+m)
m
))

8(−1+m)m3 ,

α2 = −
( m

2+m )
−m

(−4( m
2+m )

m
+2m( m

2+m )
m

+m2(−1+( m
2+m)

m
))(4( m

2+m )
m

+m2(1+( m
2+m )

m
)+m(−2+4( m

2+m )
m
))

2

8m3 ,

the method (37) attains the third order convergence and satisfies the following error equation:

en+1 =

2

„

16
“

m
2+m

”2m

− 4m2
“

m
2+m

”2m

+ 2m3
“

−1 +
“

m
2+m

”m”2

+ m4

„

−1 +
“

m
2+m

”2m
««

c2
1e

3
n

m4
“

2
“

m
2+m

”m

+ m
“

−1 +
“

m
2+m

”m””“

4
“

m
2+m

”m

+ m2
“

1 +
“

m
2+m

”m”

+ m
“

−2 + 4
“

m
2+m

”m”” + O(e4
n).

It can be easily seen that the method (37) under the above mentioned choices of α1 and α2 is not

optimal in the sense of Kung-Traub conjecture. For this purpose, let us consider the following

class of methods by the use of weight function:






















yn = xn −
2m

m + 2

f(xn)

f ′(xn)
,

xn+1 = xn −
1

2





2mf(xn)
(

α1(−1+m)
f ′(xn)−f ′(yn)

+ α2(2+m)
f ′(xn)(−2+m)+f ′(yn)(2+m)

)

m + 2



Q

(

f ′(yn)

f ′(xn)

)

,

(39)

where, α1 and α2 are defined as above and Q(.) ∈ C2(R) is any real-valued weight function such

that the order of convergence reaches at the optimal level without consuming any more functional

evaluations. Theorem (3.2) indicates that under what conditions on the weight function in (39),

the order of convergence will reach the optimal level four.

Theorem 2: Let f : D ⊆ R → R be a sufficiently smooth function defined on an open interval

D, enclosing a multiple zero of f(x), say x = rm with multiplicity m > 1. Then the family of

iterative methods defined by (39) has fourth-order convergence when






























Q(µ) = 1,

Q′(µ) = 0,

Q′′(µ) =
p−2m

(

16m2p2m − 4m4p2m + 2m5 (−1 + pm)
2
+ m6 (−1 + p2m)

)

4 (2pm + m (−1 + pm)) (4pm + m2 (1 + pm) + m (−2 + 4pm))
,

|Q′′′(µ)| < ∞,

(40)
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where µ =
(

m
m+2

)m−1
and p = m

m+2
. It satisfies the following error equation

en+1 =
((2 + m)2β1c

3
1 − β2)e

4
n

3m9(2 + m)2 (2pm + m (−1 + pm))2 (4pm + m2 (1 + pm) + m (−2 + 4pm))2 + O(e5
n),

(41)

where

β1 = 2048Q′′′(µ)p7m + 2048Q′′′(µ)mp6m (−2 + 3pm) + m14
(

−1 + p2m
)2

+ 512Q′′′(µ)m2p5m
(

6 − 16pm + 15p2m
)

+ 64m7pm
(

−6 + 15pm − 23p2m + 14p3m
)

+ 2m13
(

−1 + 4pm − 6p2m − 4p3m + 7p4m
)

+ 8m11
(

−1 − 2pm + 16p2m

−42p3m + 37p4m
)

+ 2m12
(

−1 + 8pm − 2p2m − 40p3m + 43p4m
)

+ 16m9
(

−5 + 5pm + 7p2m − 47p3m + 56p4m
)

+ 16m8
(

3 + 10pm − 6p2m − 54p3m + 71p4m
)

+ 4m10
(

13 − 32pm + 84p2m − 176p3m + 155p4m
)

+ 128m4p3m
(

−12 + Q′′′(µ) + 18pm + 4Q′′′(µ)p2m − 16Q′′′(µ)p3m + 15Q′′′(µ)p4m
)

+ 32m6p2m
(

12 − 4pm − 26p2m +Q′′′(µ)pm
(

−1 + p2m
)2
)

+ 1024m3p4m
(

3 + Q′′′(µ)
(

−1 + 3pm − 6p2m + 5p3m
))

+ 128m5p3m (6 − 10pmQ′′′(µ)

+
(

−1 + 2pm − 2p2m − 2p3m + 3p4m
))

,

β2 = 3m8(2 + m)2
(

8p2m + 4mpm (−2 + 3pm) + m3
(

−1 + p2m
)

+ m2
(

2 − 4pm + 6p2m
))2

c1c2

+ 3m10
(

8p2m + 4mpm (−2 + 3pm) + m3
(

−1 + p2m
)

+ m2
(

2 − 4pm + 6p2m
))2

c3.

Proof: The proof is similar to the Theorem (3.1). Hence ommited here.

Therefore, using the conditions of Theorem (3.2) in (39), we get a new class of fourth-order

methods given by

xn+1 = xn−
f(xn)p

−m

8m2
(A1 + A2)

(

1 +
1

6
Q′′′(µ)

(

f ′(yn)

f ′(xn)
− p−1+m

)3

+ A3

)

, (42)







































A1 = −
(−4pm + 2mpm + m2 (−1 + pm)) (4pm + m2 (1 + pm) + m (−2 + 4pm))

2

f ′(xn)(−2 + m) + f ′(yn)(2 + m)
,

A2 = −
(2pm + m (−1 + pm))2 (−8pm + m3 (1 + pm) + m2 (−2 + 4pm))

f ′(xn) − f ′(yn)
,

A3 =
p−2m (f ′(yn)m − f ′(xn)(2 + m)pm)2 (16p2m − 4m2p2m + 2m3 (−1 + pm)2 + m4 (−1 + p2m)

)

8f ′(xn)2 (2pm + m (−1 + pm)) (4pm + m2 (1 + pm) + m (−2 + 4pm))
,

where µ =
(

m
m+2

)m−1
and p = m

m+2
.
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4. Some special cases

C. Special cases of formula (34)

We can deduce many optimal fourth-order methods from (34) for multiple roots of a nonlinear

equation. For simplicity, we discuss some interesting cases as follows: (i)

(1) Let us consider the following weight function

Q(x) = Ax2 + Bx + C.

Then Q′(x) = 2Ax + B, Q′′(x) = 2A.

According to the theorem (3.1), we should solve the following equations:






















Aµ2 + Bµ + C = 1,

2Aµ + B = 0,

2A =
m4
(

m
2+m

)

−2m (

−1 +
(

m
2+m

)m)

4
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m)) .

(43)

The solutions to the above equations are

A =
m4
(

m
2+m

)

−2m (

−1 +
(

m
2+m

)m)

8
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m)) ,

B = −
m4
(

m
2+m

)

−1−m (

−1 +
(

m
2+m

)m)

4
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m)) ,

C = 1 +
m2(2 + m)2

(

−1 +
(

m
2+m

)m)

8
(

2
(

m
2+m

)m
+ m

(

−1 +
(

m
2+m

)m)) ,

and thus we obtain the following iterative scheme of order four

xn+1 = xn −

m

32
f(xn)

„

8 +
m2(2 + m)2 (−1 + pm)

2pm + m (−1 + pm)
+

f ′(yn)2m4p−2m (−1 + pm)

f ′(xn)2 (2pm + m (−1 + pm))

−

2f ′(yn)m3(2 + m)p−m (−1 + pm)

f ′(xn) (2pm + m (−1 + pm))

«

 

4 − 2m + m2
`

−1 + p−m
´

f ′(xn)
−

p−m (2pm + m (−1 + pm))2

f ′(xn) − f ′(yn)

!

,

(44)

where p = m
m+2

.

This is a new fourth-order optimal method for multiple roots.

(2) Taking Q′′′(µ) = 0 in (34), we get

xn+1 =xn −
m

4
f(xn)






1 +

m4p−2m
(

− f ′(yn)
f ′(xn)

+ p−1+m
)2

(−1 + pm)

8 (2pm + m (−1 + pm))







×

(

4 − 2m + m2 (−1 + p−m)

f ′(xn)
−

p−m (2pm + m (−1 + pm))2

f ′(xn) − f ′(yn)

)

.

(45)

This is again a new fourth-order optimal method for multiple roots.
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(3) Taking Q′′′(µ) = 1
2

in (34), we get

xn+1 =xn −
m

4
f(xn)






1 +

1

12

(

f ′(yn)

f ′(xn)
− p−1+m

)3

+
m4p−2m

(

− f ′(yn)
f ′(xn)

+ p−1+m
)2

(−1 + pm)

8 (2pm + m (−1 + pm))







×

(

4 − 2m + m2 (−1 + p−m)

f ′(xn)
−

p−m (2pm + m (−1 + pm))2

f ′(xn) − f ′(yn)

)

.

(46)

This is a new fourth-order optimal method for multiple roots.

(4) Taking Q′′′(µ) = −1
2

in (34), we get

xn+1 =xn −
m

4
f(xn)






1 −

1

12

(

f ′(yn)

f ′(xn)
− p−1+m

)3

+
m4p−2m

(

− f ′(yn)
f ′(xn)

+ p−1+m
)2

(−1 + pm)

8 (2pm + m (−1 + pm))







×

(

4 − 2m + m2 (−1 + p−m)

f ′(xn)
−

p−m (2pm + m (−1 + pm))2

f ′(xn) − f ′(yn)

)

.

(47)

This is a new fourth-order optimal method for multiple roots.

Some particular cases of formula (42)

For different specific values of Q′′′(µ) various optimal multipoint methods can be derived from

formula (42) as follows: (i)

(1) Taking Q′′′(µ) = 0 in (42) , we get

xn+1 = xn−
f(xn)p−m

8m2
(A1 + A2) (1 + A3) , (48)

where A1, A2, A3 are defined by (42).

This is a new fourth-order optimal method for multiple roots.

(2) Taking Q′′′(µ) = 1
2

in (42), we get

xn+1 = xn−
f(xn)p−m

8m2
(A1 + A2)

(

1 +
1

12

(

f ′(yn)

f ′(xn)
− p−1+m

)3

+ A3

)

, (49)

where A1, A2, A3 are defined by (42).

This is again a new fourth-order optimal method for multiple roots. Therefore, by choosing

different values of Q′′′(µ), we can derive several new fourth-order optimal methods for

multiple roots.

5. Numerical results

In this section, we shall check the effectiveness of newly proposed multi-point methods. We

employ the present family of methods namely, method (45), (48) denoted by (MM1
4 ) and (MM2

4 )

respectively, to solve the following nonlinear equations. We compare them with the Rall’s method
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(Rall, 1966), method of (Zhou et al., 2011) namely method (11) (ZM4), (Li et al., 2010) methods

namely, method (69) and method(75) denoted by (LM1
4 ) and (LM2

4 ), (Sharma and Sharma,

2010) method denoted by (SM4) respectively. For better comparisons of our proposed methods,

we have given two comparison tables in each example: one is corresponding to the absolute

error value of given nonlinear functions (with the same total number of functional evaluations

=12) and other is with respect to number of iterations taken by each method to obtain the root

correct up to 35 significant digits. All computations have been performed using the programming

package Mathematica 9 with multiple precision arithmetic. We use ε = 10−34 as a tolerance

error. The following stopping criteria are used for computer programs: (i) |xn+1 − xn| < ε ,

(ii) |f(xn+1)| < ε.

Example 1: Consider the following 5 × 5 matrix

B =













29 14 2 6 −9

−47 −22 −1 −11 13

19 10 5 4 −8

−19 −10 −3 −2 8

7 4 3 1 −3













.

The corresponding characteristic polynomial of this matrix is as follows:

f1(x) = (x − 2)4(x + 1).

It’s characteristic equation has one multiple root at x = 2.0000000000000000000000000000000000

of multiplicity four.

f(x) x0 RM2 ZM4 LM1
4 LM2

4 SM4 MM1
4 MM2

4

Comparison of different iterative methods with the same total number of functional evaluations (TNFE=12)

f1(x) 1.0 7.4−244 1.2e−61 3.7e−616 1.6e−616 2.8e−615 1.29e−620 1.50e−619

1.5 1.4e−336 5.6e−1017 4.0e−1019 1.2e−1019 7.1e−1018 2.87e−1025 8.30e−1024

2.5 5.5e−360 1.1e−1150 6.1e−1153 1.6e−1153 1.3e−1151 4.97e−1159 1.33e−1157

2.9 3.5e−302 7.3e−931 4.7e−933 1.3e−933 9.2e−932 7.17e−939 1.65e−937

Comparison of different iterative methods with respect to number of iteration

f1(x) 1.0 7 4 4 4 4 4 4

1.5 6 4 4 4 4 4 4

2.5 6 4 4 4 4 4 4

2.9 6 4 4 4 4 4 4

Example 2: Consider the following 6 × 6 matrix

A =



















5 8 0 2 6 −6

0 1 0 0 0 0

6 18 −1 1 13 −9

3 6 0 4 6 −6

4 14 −2 0 11 −6

6 18 −2 1 13 −8



















.
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The corresponding characteristic polynomial of this matrix is as follows:

f2(x) = (x − 1)3(x− 2)(x − 3)(x − 4).

It’s characteristic equation has one multiple root at x = 1.0000000000000000000000000000000000

of multiplicity three.

f(x) x0 RM2 ZM4 LM1
4 LM2

4 SM4 MM1
4 MM2

4

Comparison of different iterative methods with the same total number of functional evaluations (TNFE=12)

f2(x) 0.4 1.5e−110 4.1e−358 2.6e−365 3.7e−367 2.0e−361 6.82e−378 3.39e−372

0.6 2.8e−136 1.0e−451 2.2e−459 2.6e−461 2.8e−455 1.61e−473 4.04e−467

1.3 6.1e−121 8.9e−310 2.8e−313 4.7e−314 1.7e−311 5.60e−322 4.68e−318

1.4 2.4e−88 2.5e−144 2.6e−146 8.6e−147 3.0e−145 3.61e−150 2.04e−148

Comparison of different iterative methods with respect to number of iteration

f2(x) 0.4 7 5 5 5 5 5 5

0.6 7 4 4 4 4 4 4

1.3 7 5 5 5 5 5 5

1.4 8 5 5 5 5 5 5

Example 3: f3(x) = (5 tan−1 x − 4x)
8
.

This equation has finite number of roots with multiplicity eight but our desired root is

rm = 0.94913461128828951372581521479848875.

f(x) x0 RM2 ZM4 LM1
4 LM2

4 SM4 MM1
4 MM2

4

Comparison of different iterative methods with the same total number of functional evaluations (TNFE=12)

f3(x) 0.7 2.6e−238 1.6e−248 1.8e−248 1.7e−248 1.6e−248 1.16e−248 1.22e−248

1.0 3.6e−685 2.2e−2297 5.5e−2300 5.5e−2300 5.4e−2298 3.94e−2313 2.72e−2312

1.2 1.4−379 2.0e−1136 1.1e−1138 1.1e−1138 6.0e−1137 8.09e−1150 4.04e−1149

Comparison of different iterative methods with respect to number of iteration

f3(x) 0.7 8 6 6 6 6 5 5

1.0 6 4 4 4 4 4 4

1.2 7 4 4 4 4 4 4

Example 4: f4(x) =
(

(x − 1)3 − 1
)50

.

This equation has finite number of roots with multiplicity fifty but our desired root is

rm = 2.0000000000000000000000000000000000.

Example 5: f5(x) = (x2 − ex − 3x + 2)3.

This equation has finite number of roots with multiplicity three but our desired root is

rm = 0.25753028543986076045536730493724178.
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f(x) x0 RM2 ZM4 LM1
4 LM2

4 SM4 MM1
4 MM2

4

Comparison of different iterative methods with the same total number of functional evaluations (TNFE=12)

f4(x) 1.7 1.72e− 2282 4.7e−2269 2.6e−2269 2.6e−2269 4.6e−2269 16.90e−2276 7.49e−2276

2.5 5.76e− 2024 2.4e−4261 2.6e−4262 2.4e−4262 2.2e−4261 1.76e−4287 2.41e−4287

Comparison of different iterative methods with respect to number of iteration

f4(x) 1.7 8 5 5 5 5 5 5

2.5 8 5 5 5 5 5 5

f(x) x0 RM2 ZM4 LM1
4 LM2

4 SM4 MM1
4 MM2

4

Comparison of different iterative methods with the same total number of functional evaluations (TNFE=12)

f5(x) −0.5 2.06e-179 3.6e−662 2.1e−651 5.1e−649 6.8e−657 1.60e−635 4.26e−642

1.0 8.60e− 149 6.0e−726 1.1e−725 1.2e−725 8.0e−726 3.58e−725 2.14e−725

Comparison of different iterative methods with respect to number of iteration

f5(x) −0.5 7 4 4 4 4 4 4

1.0 64 4 4 4 5 4 4

6. Attractor basins in the complex plane

We here investigate the comparison of the attained multiple root finders in the complex plane

using basins of attraction. It is known that the corresponding fractal of an iterative root-finding

method is a boundary set in the complex plane, which is characterized by the iterative method

applied to a fixed polynomial p(z) ∈ C, see e.g. (Scott et al., 2011; Neta et al., 2012). The aim

herein is to use basin of attraction as another way for comparing the iteration algorithms.

From the dynamical point of view, we consider a rectangle D = [−3, 3] × [−3, 3] ∈ C and we

assign a color to each point z0 ∈ D according to the multiple root at which the corresponding

iterative method starting from z0 converges, and we mark the point as black if the method does

not converge. In this section, we consider the stopping criterion for convergence to be less than

10−4 wherein the maximum number of full cycles for each method is considered to be 100. In

this way, we distinguish the attraction basins by their colors for different methods.

We have compared our methods (11), (45) (MM1
4 ), (48) (MM2

4 ) with (LM1
4 ), (SM2

4 ), (ZM3
4 ),

for some complex polynomials having multiple zeros with known multiplicity.

For the first test, we have taken the cubic polynomial:

Test Problem 1. p(z) = (z2 − 1)3.

Its roots are: 1.0,−1.0 with multiplicity three. Based on Fig. 1 and Fig.2 , we can see that the

following methods performed better: (45), (11) , (48), SM1
4 , ZM1

4 while the method namely,

LM4
1 did not perform well.

The second test problem is a non polynomial function as follows:

Test Problem 2. p(z) = (z3 + 1/z)8.



AAM: Intern. J., Vol. 10, Issue 1 (June 2015) 365

Its roots are: −0.707107+0.707107I,−0.707107−0.707107I, 0.707107+0.707107I, 0.707107−

0.707107I with multiplicity eight. The results are shown in Fig. 3 and Fig.4. The following

methods performed well:, (11), LM1
4 while the methods namely, (48),(45), SM1

4 , and ZM1
4 are

little sensitive to the initial guess.

Test Problem 3. p(z) = (z3 + 2z − I)2.

Its roots are: 0.−1.61803I, 0.+1.I, 0.+0.618034I with multiplicity 2. The results are presented

in Fig. 5 and Fig. 6. The methods (11) , SM1
4 performed better as compared to the other methods

namely, (45), LM1
4 and ZM1

4 , (48) .

Fig. 1: The chaotic behaviour of the methods (11)(left), (45)(center), (48)(right) for test

problem 1.

Fig. 2: The chaotic behaviour of the methods (LM1
4 ), (SM2

4 ), (ZM3
4 ), respectively for test

problem 1.

Fig. 3: The chaotic behaviour of the methods (11)(left), (45)(center), (48)(right), for test

problem 2.
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Fig. 4: The chaotic behaviour of the methods (LM1
4 ), (SM2

4 ), (ZM3
4 ), respectively for test

problem 2.

Fig. 5: The chaotic behaviour of the methods (11)(left), (45)(center), (48)(right), for test

problem 3.

Fig. 6: The chaotic behaviour of the methods (LM1
4 ), (SM2

4 ), (ZM3
4 ), respectively for test

problem 3.

7. Conclusions

Using quadratically convergent schemes, we present two one-point iterative methods of order

three for finding multiple zeros of a nonlinear equation. Based on one-point iterative schemes,

we developed two optimal families of multipoint methods having quartic convergence. Each

family requires three functional evaluations viz., f(xn), f ′(xn), f ′(yn) per full iteration, and are

optimal in the sense of Kung-Traub conjecture. Some numerical experiments have been carried

out to confirm the theoretical order of convergence of multipoint methods. Furthermore, we have

also discussed the complex basins of attractions of the proposed fourth-order methods.
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