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Abstract

The theory of Schwartz Distributions opened up a new area of mathematical research, which
in turn has provided an impetus in the development of a number of mathematical disciplines,
such as ordinary and partial differential equations, operational calculus, transformation theory
and functional analysis. The integral transforms and generalized functions have also shown
equivalent association of Boehmians and the integral transforms. The theory of Boehmians,
which is a generalization of Schwartz distributions are discussed in this paper. Further,
exchange property is defined to construct Mehler-Fock transform of tempered Boehmians.
We investigate exchange property for the Mehler-Fock transform by using the theory of
Mehler-Fock transform of distributions. Algebraic properties and convergence is also proved
for this relation on the tempered Boehmians which is a natural extension of tempered
distribution.

Keywords: Distribution spaces; tempered Boehmians; Fourier transform; Mehler-Fock
transform

MSC 2010 No.: 46F10, 46F99, 44A10

1. Introduction

The concept of Boehmians is motivated by the regular operator introduced by Boehme
(1973), which forms a subalgebra of the field of Mikusinski operators and thus they include
only such functions whose support is bounded from the left. The theory of Boehmians
(quotient of sequences), its properties and different classes of Boehmian spaces are studied by
Mikusinski et al. (1981), Mikusinski (1983, 1995).
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Tempered Boehmians is a natural extension of tempered distribution which, therefore, makes
it possible to define an extension of the Fourier transform for this class of Boehmians. The
Fourier transform of a tempered Boehmian is a distribution. An infinitely differentiable

function f :R" — Cis called rapidly decreasing if

sup sup(L+ X +...+ x2)" | D“f(x)| <o, (1)

lal<m xeRM

for every nonnegative integer m, where x = (X1, X2... Xn), @ = (aa,...an), an's are non-negative
integer, |a| = au+...+an, and

ol ol

D% = = :
OX* ox . OXN

)

The space of rapidly decreasing functions is denoted by S(R") or simply by S. If f € Jand ¢
€ S, then the convolution

(fp))= [ fu)p(x—u)du ©)

RN

is well defined and f * ¢ € J. A sequence ¢, € S'is called a delta sequence if it satisfies the
following conditions

Q) J' @, (x)dx =1, forall n e N,

RN
(i) f | @, (x)|dx <M, for some constant M and for all n € N,
RN

(i) lim j||x||k|(pn(x)|dx=o, forevery keN and &> 0.

o0
lIXl>&

If peS and J.go =1, then the sequence of functions ¢, is a delta sequence.

A continuous function f :R" —C is called slowly increasing if there is a polynomial p on

RN such that | f(x)| < p(x) forall xeRN. The space of slowly increasing function will be
denoted by J(R") or simply by J. Let f, € J. {p,} is a delta sequence under usual notation.

Then the space of equivalence classes of quotients of sequence will be denoted by f; and its
elements will be called tempered Boehmians. For F =[f, /¢, ] £, define

D*F =[(f, * D"¢,)(9, *¢,)].

If F is a Boehmian corresponding to differentiable function, then D“F € g, .
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If F=[f,/p,]ep, and f €S, for all neN, then F is called a rapidly decreasing
Boehmian, the space of which is denoted by g;. If F=[f /p,]1€f, and G=[g,/y7,]1€ b,
then we define the convolution

F *G = [(fn *gn)/(wn >kyn)] EﬁJ :

In what follows, we will denote by S' the space of tempered distributions; that is, the space of
continuous linear functional on S. The Mehler-Fock transform of a tempered distribution f,
denoted by Mf, is the functional defined by Mf (¢) = f (Mg), where Mg is the Mehler-Fock
transform of ¢ defined by Banerji et al. (2008). The Mehler-Fock transform on generalized
functions is studied by Pathak (1997). The Mehler-Fock transform of Boehmian spaces are
investigated by Loonker and Banerji (2008, 2009, 2009).

In Section 2 we study Mehler-Fock transform and its properties and investigate the exchange
property for the Mehler-Fock transform. In Section 3, algebraic properties and convergence is
proved for this relation on the tempered Boehmians.

2. The Mehler-Fock Transform and the Exchange Property

The Mehler-Fock transformation is defined as [cf. Yakubovich and Luchko (1994, p. 149)]:
M[f(x)]=F(r)= Ilm P_%w(x) f(x)dx, r>0, 4)
and its inversion is given by
fo0=] : rtanh(z )P, (OF(rdr, x>1. (5)
The generalization of the Mehler-Fock transformation is given by [cf. Pathak (1997, p. 343)]
F(r) = j 0°° f (P17, (cosh x)sinh xdx (6)

where P (coshx) is the generalized Legendre function, defined for complex values of the

parameters k,m and n by

n/2 _ _ _
P™(2) = (z+1) A ke m+1;—k+n m;1—m;—1 . )
ra-myz-y- 2 2 2

for complex z not lying on the cross-cut along the real x-axis from 1 t0 — .

The inversion formula of (6) is

f(0 =] " 2(r)P7" (coshx)F (r)dr 8)
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Where
() = r(l‘ mn, irjl“(l_ mn_ irjl“(l_ m-n, irjl“(l_ mon_ irj
2 2 2 2
«[r@iryr(-2irz2m2] " 9)
Whenm =n, (6) and (8) can be written as
F) =] : P, . (cosha)sinha f(a)da, (10)
and
f(a) =I:rtanh(7zr )P ... (cosha)F(r)dr, (11)

whereas for m=n=0, (6) and (8) reduce to (4) and (5), respectively.

The Parseval relation for the Mehler-Fock transformation is defined as [cf. Sneddon (1974,
pp. 393-94)]

| :rtanh(nr)F(r)G(r)dr = l°° f (x)g(x)dx, (12)
whose convolution is
M[f *g]=M[f]-M[g]. (13)

The asymptotic behavior for (7) is defined by Pathak (1997, p. 345) as

o(x "), x—0+,
PTr  (coshx) = 14
_ZIJZ+|r( ) { O(e_(llz)x), X o0, ( )
and
0@, r— 0+,
pP™” . (cosh x) = : . 15
1/ 2+ir ( ) {Zﬂz(n—m—l) 72_—1/2 (Sinh X)—1/2 (l I,)m—]JZ{elrx + ie—l(m;z+xt) + O(r‘l)}, r 0. ( )

Similarly, the function y(r), defined by (9), possesses the following asymptotic behavior [cf.
Pathak 1997, p. 345)]

o(r?), r—0+ |Ren|<1-Rem,

= Tr\l-2m 16
#(0) ('rn)_m_+2 [1+0(r 1], r— o, 10)
2
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The distributional generalized Mehler-Fock transform f € M'/(R, ), where R, denotes the set

of positive real numbers and « > Re(m), f <1/2, is defined as [cf. Pathak (1997, p. 346)]
F(r) = < f (x),P™ (cosh x)>, r>0, (17)

where the space M'J(R,) is the dual of the space M%(R,), which is the collection of all

infinitely differentiable complex valued function ¢ defined on open interval (0, «) denoted
by R, such that for every non-negative integer q,

7a(0) = Wl GOV ip()| <0, (18)
where
m? n’
vV, =| D? +(cothx)D, + + : (19)
2(l—coshx) 2(1+coshx)
and

O(x%), X — 0,

o(x"), x—>oo. (20)

s(X)=¢,,(x) ={

o0

The topology over M'(R, ) is generated by separating collection of seminorms {y,},,, and

is a sequentially complete locally convex topological vector space. D(R,), the space of
infinitely differentiable functions of compact support with the usual topology, is a linear

subspace of M'; (R,) .

From the properties of the hypergeometric functions, the generalized Legendre function [cf.
Pathak (1997, p. 346)], satisfies the following differential equation

2 2
D?y + (cothx)Dy + m + n +(r2+lj y=0. (21)
2(1—coshx) 2(1+coshx) 4
Therefore,
Vx P—T}g+ir (COSh X) = _(rZ + %J P—Tl‘gﬂr (COSh X) :
(22)

Relations (14) and (15) prove the boundedness for the Legendre function [cf. Pathak (1997,
pp. 346-347, Lemma 11.3.1, Equation (11.3.2))]

q 1/2
g(x)[g) PT;"M(coshx)scax)xq@ r[%—mrjPT;f(coshx), 23

where C is a constant independent of x and r and, m, is Re(m).
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The differentiability of the Mehler-Fock transform is defined by [cf. Pathak (1997, p. 347)]
! . a m,n
F'(r):= < f(x), (ng_;m (cosh x)> : (24)

where f e M’/ (R,), > Re(m),Re(m) <1/2, p<1/2,r>0.

When q is a non-negative integer depending on f, the asymptotic behavior of the Mehler-Fock
transform is

[o@, r-o
I:(r)_{O(rzq), r— o, (25)
where
IF(r)| < C’mg\x(r2 +%jq . (26)

For the operator V. : M7 (R,) — M’J(R,) under already stated symbols and for f € M'/(R,),

@ € M%(R,), we define the operator transformation formula by

(V)T £(0,000) = (f (%), Vip()), 27)

and for f being the generalized Mehler-Fock transformation,
q
M|[(V})® f(x)]:(-l)qGHZj M[f(x)].
If f eM’S(R,) and ¢ € M (R,) we have by transposition by Banerji et al. (2008)
(M(),¢)=(F.M(9)) , (28)
where function f is absolutely integrable and ¢ is a testing function of rapid descent.

For a family {¢;};c; = {¢;};, where | is an index set and ¢; € M%(R,) c S,Vi €1, we
define [Atanasiu and Mikusinski (2005)]:

Y({pd) ={x €RY :Mp;(x)=0, Viell (29)

A family of pairs {(fi, @)}, where fi e M'f(R,) < S" and ¢; € M%(R,) < S, Vi € I, is said
to have the exchange property if
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fixg = f*g, Vikel. (30)

We will denote by A the collection of all families of pairs {(fi, ¢ )}, where 1 is an index set,
fie Mf(R,) cS"and ¢; € M%(R,) < S, Vi € I, satisfying the exchange property such that
Y({p.})=D. If (¢) is a delta sequence, then Y({p,},)=D.

Definition 1.

If {(fi, @)} € A, then the unique F € D' (R) such that Mfi = Mg F for all i € | will be
denoted by M{(fi, @)} .

Let {(f, @)} {(9 v )} €A If fixy, =g *pforall i € | and k € K, then we write
{(f, o)} ~{@9,,v )}« - This relation is clearly symmetric and reflexive. We will show that
it is also transitive.

Let
{(fe)h Ao vidho At 7))} e A
If
Ufe)h ~ 190wk and {(9k *widhe ~ L0 #7103,
then

fi*yi =0 *0,  gc*y =h=*y, (31)
foralli e I,k € K, | € L. Therefore,
fixwxr=9cxa*n, O *n* g =h*y *q, (32)
foralli e |,k € K, | € L. Since * is commutative, we have
fixy *y =h*g =y, . (33)

Now fix i e land | € L. Since Y({w, }) =® and (32) holds for every k € K, we conclude
that f;*y; =h =g foralli e land| e L, which means that {(f;,¢)} ~{(h. n)} .

Theorem 1.

If a family of pair{(f;, ¢;)}, has the exchange property and Q =¥Y{(¢.), }* (the complement
of Y{(¢,),} in R,), then there exists a unique F e D' (©2) such that

M[f;] = FM[p;],Vi € I (34)
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Proof:

For every x € Q there exists i € | and &> 0 such that | Mg, (x) |> £ in an open neighborhood
of X. Then we can define F = Mf, /Mg, in that neighborhood. Let for some &> 0, we have
M@, (x)| >efor all x € U and |Mg,(x)|>¢ for all x eV, where U and V are open sets.
Since f, *¢p, = f, *¢@,, we have

Mf, M,

Mf M@, = Mf Mo, and = :
i (Dk k (Dl M(D, Mgﬂk

(35)

on U NV . This shows that F is a unique function.
Theorem 2.

There exists {(f;,@)}, €A, forevery F € D'(R) and such that F =M ({(f;,2)},)-

Proof:

Since D (R) denotes the space of smooth function with compact support, there exists a total
sequence {¢;}y such that Mg, € D (R) for all I eN. Then for every | € N, there is f;

M’f(R,) = S such that Mfi = Mg F. Clearly {(f;,»)}\ €A andF =M{(f;,9)}). This
completes the proof of the theorem.

Definition 2. [Atanasiu and Mikusinski (2005)]

Let {Ui}s be an open covering of R, and let {¢p;}, be such that |[M¢g.(x)|>0 for x € Ui. A
family {¢;}, such that y({p.},) =@ will be called total.

Lemma 1. [Atanasiu and Mikusinski (2005)]
If {¢}, and {y, }« aretotal, then {@, *y, }, « IS total.

Theorem 3.

Let

{(fi,o)h . Q. wi )k €A,

Then,

{(fi@)h ~{(9k. w3k ifand only if M({(f;, 2)} ) = M{(9. vi) k) -

Proof:
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Here,
F=M{(f,»)}) andG=M{(g,,w)})-
If
{(fi,@)h ~ 9wk s
then

F Mo My, = MMy,
= Mg, Mg,

FMoMy, =GMy, M@, Viel,keK. (37)
Hence, F = G, by Lemma 1. Now assume F = G. Then,
MfMy, =F MpMy, =GMy, Mp. = Mg, Mg, Viel,kekK. (38)
Hence,

{(fi.o)h ~ {9k wi )k -
This completes the proof of the theorem.
Theorem 4.

There exists a delta sequence (¢n) such that forevery T € £, T =[{(f,,¢,)}n] for some
f, e J.

Proof:

Let () be a delta sequence such that Myn € D(R). Then for any T f;, we have TMy,, €
M/ (R,) c §’, since MTe D'(R). Consequently, MTMy, =Mg, for some gre M’/ (R,)
c S’ It is easy to check that T =[{(9, *v,,v, *wv,)},]. Since f,=g,*y,eJand

(¢4) = (v, *y,) is a delta sequence, where (¢n) does not depend on T, hence the theorem is
proved.

3. Algebraic Properties and Convergence

/3, becomes a vector space with the addition operation, defined by

(i e)h 1+ (g wioh D =i *wi + 9k o1, @ *wiohxk]- (39)

Moreover, multiplication by a scalar and the operation * are defined by
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A{(fi. o)k 1=H{“fi. @)h]l, 2eC. (40)

H(fedhl H@wwdlleByandgee M(R,) forallk e K,
then for the operation * we can define

(i 23 1 {9k wid k= (i * 9k o *vwid ik 1 (41)
Definition 3. [Atanasiu and Mikusinski (2005)]

Let To, T1, T2, ... € B Then the sequence (Ty,) is said to converge to T which is written as
Tn— Ty if there exists a total family {¢; } such that

(a) there exists tempered distribution f;,, where i € I and n € N such that

To={fin.ohl foralln=0,1,2,...,
(b) fin— fioin MY(R)) asn—ooforeveryiel.

Theorem 5.

The Mehler-Fock transform is an isomorphism from £, to D'(R).

Proof:

Since Th—>To in g, ifand only if T, —To— 0, it suffices to prove the continuity at 0. Let
Ta—0is in B, . Then there exists tempered distribution fi, where i € I and n € N such that
To=[{finoh] foralln=12.. andfi,—> 0in M/(R,)c S"asn— o foreveryi e I. If y
€ D(R), then there are iy,...,Ix such that

k
suppy < leuppMcoim :
Then,

k Mo
imMT,yp =lim> (MT, Mg, )’
m z | M(”im §
m=1

=% (im Mt Y, (42)

—>00

m Z:;, | M¢im |2
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because limMf; =0 for V i e I, due to the continuity of the Mehler-Fock transform in
M'7(R,) . This proves the continuity of M : 8, — D’(R) , because !m MTyw =0 in M/ (R,)
for every y € D(R), implies lim MT, =0 in D' (R).

Now, assume lim MT, =0in D’(R). By Theorem 4, there exists a delta sequence (¢;), ieN

N—o0

such that for every n € N, we have T, =[{(f;,¢)}n] for some f; , € J. Let (,),keN be
a delta sequence such that My, € D(R) for every k € N. Then,

lim MT, Mg, = My, =0 in M'/(R,) foreveryi,k e N.

n—oo

Since
MT, Mg, = f,, Vi, keN,

lim Mf, My, =0in M’¢(R,) < S',

which implies

lim fi,n *Wy =0, in M;(R+) cS'.
N—o0

But,
To =H{(fi,n. @) h I=H{(fi n * v o *vid bk 1 (43)

foralln=0,1,2,.... Thus, we have T, — 0 in £, . This proves the theorem.

3. Conclusions

The present paper focused on the exchange property for the Mehler-Fock transform via
tempered Boehmians which is the natural extension of tempered distributions. Algebraic
properties and convergence proved for this relation are useful in this area for development of
the convolution properties and other operations of Mehler-Fock transform of distributions
and Boehmians [Pathak et al. (2016)]. The formula and the property established in this paper
may also be suitable for an ultraBoehmians. The aforesaid analysis can be used to develop the
Calderon’s formula for Mehler-Fock transform [Pathak et al. (2016)].
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