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Abstract 
 
This paper presents an existence and nonexistence of positive solutions for the nonlinear 
boundary value problems. We prove that the nth order nonlinear differential equation has at least 
one positive solution by using appropriate fixed point theorems. 
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1.   Introduction 

  
We are concerned, in this paper, with the existence of positive solutions for the following 
boundary value problem for nth order differential equations 
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( ) ( ) ( , ( )),              0 t 1 ,     nu t f t u t                                                                               (1.1)            

       
   ,0)1()0()0()0()0( )1()2(   nn uuuuu                                                           (1.2)          

 
     0   0,,     where, 0)1()1(   uu                                                          (1.3)                        

 
Problems of the above type occur frequently in science, engineering, mathematical physics, 
economics and biology [Zhang (2006)].        
 
The nonlinear nth order differential equations studied in this paper are an existence and 
nonexistence of positive solutions by using object of mathematical investigations [El-shahed 
(2009), El-Shahed and Hassan (2010), Guo and Lakshmikantham (1988), Sun and Wen (2006), 
Agarwal and O'Regan (1999) and Agarwal et al. (1999)]. However, there are few papers 
investigating the existence of positive solutions of nth impulsive differential equations by using 
the fixed point theorem of cone expansion and compression. The objective of the present paper is 
to fill this gap and the results presented are new and original. Also, several results obtained in 
Agarwal et al. (1999) are generalized.  
 
 
2.   Notation, Definition and Auxiliary Results  
 
 
Theorem 2.1 [Agarwal et al. (2001), Agarwal and O'Regan (1999)]: 
 
Assume that U is a relatively open subset of convex set K  in Banach space E . Let 
 

KUN : be a compact map with U0 . Then, either  
 
(i) N  has a fixed point in U ; or 
 
(ii) There is Uu  and )1,0( such that uNu    . 
 
 
At first, we find the solution ( )u t , for the problem 

 
( ) ( ) ( ),              0< t <1 ,     nu t y t                                                                                      (2.1)            

 
   ,0)1()0()0()0()0( )1()2(   nn uuuuu                                                           (2.2)            

 
   0   0,,     where, 0)1()1(   uu  .                                                         (2.3) 

 
Applying Laplace transforms to equation (2.1), we have:  
 

)()0()0()0()0()0()( )1()2(321 syuusususussus nnnnnn    ,                       (2.4)                       
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where (s)y and )(su is the Laplace transform of y(t) and )(tu  respectively. So, 
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Therefore, by the inverse Laplace transform and using the boundary condition (2.2) and (2.3), we 
obtain the final form of ( ) u t as: 
 

1 12 2 2

0 0

( 2) (1 )
( ) ( ) ( )

[ ]( 2)! 2! [ ]( 2)! 2!

nn t t s
u t y s ds y s ds

n n

  
   

  
  

                      

 
1 12 3 1 1

0 0 0

(1 ) ( )
( )  ( ) ( ) .

[ ]( 3)! 2! ( 1)! ( 1)!

tn n nt s t t s
y s ds y s ds y s ds

n n n


 

   
 

                            (2.5) 

  
 
Definition 2.1.  
 
An operator is called completely continuous if it is continuous and maps bounded sets into 
precompacts. 
 
Definition 2.2.  
 
Let E  be a real Banach space. A nonempty closed convex set EK  is called cone of E  if it 
satisfies the following conditions: 
 
(i) Kx , 0 implies Kx ; and 
 
(ii) Kx  , Kx implies 0x . 
 
 
3. Main Result  
 
Consider the family of problems: 
 

     , 1t0             )),(,()()(  tutftu n                                                                              (3.1)  
 

   ,0)1()0()0()0()0( )1()2(   nn uuuuu                                                          (3.2)            
 

(1) (1) 0 ,  where  , 0,   0.u u                                                                      (3.3) 
 
Hence, (3.1), (3.2) and (3.3) are equivalent to the integral equation          
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Defining XXT : as:  
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[ ]( 2) ! 2 ! [ ]( 2) ! 2 !
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[ ]( 3)! 2! ( 1)! ( 1)!

tn n nt s t t s
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        (3.5) 

 
where X=C[0,1] is the Banach space endowed with the supper norm.  
 
We have the following result for operator T. 
 
Lemma 3.1: 
 
Assume that :[0,1]f R R  is continuous function, then T is completely continuous operator. 
 
Proof:  
 
It is easy to see that T is continuous. For  0 ,:  lluXuMu , we obtain, 
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where 1))(,(max
1,10




tutfL
ut

, so T(M) is bounded. Next we shall show the equi-continuity of 

)(MT , 1 2, 0, [0,1]u M t t      .  
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Then, we have 
  

1 12 2 2 2 2
2 1 2 1

0 0

1 12 2 3 1 1
2 1 2 1

2 1

0 0

1
2

( )(1 )( 2)
( , ( )) ( , ( ))

[ ]( 2)! 2! [ ]( 2)! 2!

)(1 )
( ) ( )         - ( ( , ( )) ( , ( ))

[ ]( 3)! 2! ( 1)!

( )

(

n

n n n

n

t t t t sn
f s u s ds f s u s ds

n n

t t s t t
Tu t Tu t f s u s ds f s u s ds

n n

t s

n

  
   


 



  



   


   

  
  

  




 

 
2 1 1

1

0 0

( )
( , ( )) ( , ( ))

1)! ( 1)!

t t nt s
f s u s ds f s u s ds

n




  

          

 

                       

2 2 2 2
2 1 2 1

2 2 1 1 n
2 1 2 1 1 1

( ) ( )( 2)

[ ]( 2)! 2! [ ]( 1)! 2!

( ) ( ) Lt
    
[ ]( 2)! 2! ( 1)! ! n!

n n n

L t t L t tn

n n

L t t L t t Lt

n n n

  
   


 

 

  
 

   

 
   

  

 

                               

                                 

.
5

 
55

 
55


  

Thus, )(MT  is equicontinuous. The Arzela-Ascoli theorem implies that the operator T is 
completely continuous. 
 
Theorem 3.1: 
 
Assume that :[0,1]f R R  is continuous function, and there exist constants  
 

1 22

2!( )( 1)! n!
        0<c ( ,    ),       c 0

( 1) n 1

n

n n

 
 

 
 

  
,  
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such that 21))(,( cuctutf  , for all ]1,0[t . Then, the boundary value problem (3.1)-(3.3) 

has a solution. 
 
Proof:  
 
Following [Yang (2005), Zhang (2006) and Odda (2010)], we will apply the nonlinear 
alternative theorem to prove that T has one fixed point. Let  RuXu  : , be open subset 

of X , where  
2 2

1 2
1 2

( 1) ( 1)( 1) ( 1)
4 , , ,

2!( 1)!( ) ! 2!( 1)!( ) !

n c n cn n n n
R u c u u c u

n n n n

   
   

      
         

.  

 
We suppose that there is a point u and )1,0(  such that Tuu  . For u , we have: 
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which implies that uRT  , that is a contradiction. Then, the nonlinear alternative theorem 

implies that T has a fixed point u , that is, problem (3.1)-(3.3), has a solution u . 
 
Finally, we give an example to illustrate the results obtained in this paper.  
 
Example.  
 
From the equation (3.1) –(3.3) we  solve the boundary value problem 
  

7

1
)(

2
)5(





u

u
tu  .                                                                                                              (3.6) 

Theorem 3.1 with  1 and 1   , we find )
6

!5
,

)4(5

!4)2(!2
min(0 21 

 c . So, we conclude that the 

problem (3.6) has a solution. 
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