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Abstract 
 
The analysis for continuity of limit curves generated by m-point n-ary subdivision schemes is 
presented for m, n ≥ 2. The analysis is based on the study of corresponding differences and 
divided difference schemes. A numerical algorithm is introduced which computes the continuity 
and higher order divided differences of schemes in an efficient way. It is also free from 
polynomial factorization and division unlike the well-known Laurent polynomial algorithm for 
analysis of schemes which depends on polynomial algebraic operations. It only depends on the 
arithmetic operations. 
 
Keywords:  Subdivision scheme; divided difference; continuity; analysis; Laurent polynomial; 

numerical algorithm 
  
AMS-MSC 2010 No.: 65D17, 65D07, 65D05. 
 
 
 
1.  Introduction 
 
Computer aided geometric design is the branch of computational geometry which deals with the 
algorithms for designing smooth curves, surfaces and volumes. There is a very close relationship 
between computer aided geometric design and geometric modeling. The most common thing in 
computer aided design is the construction and representation of free form curves and surfaces by 
the set of points using polynomials. 
 
Subdivision defines a curve or surface from an initial control mesh by recursive refinement. Thus 
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subdivision schemes are widely used in computer graphics and computer aided geometric design 
for generating smooth curves and surfaces from discrete set of data points as they provide an 
efficient and flexible way for this purpose. The continuity of limit curve generated by a 
subdivision scheme is very important. So every scheme, when it is constructed, must be analyzed 
i.e. what is the order of continuity of the limit curve generated by this constructed scheme. 
 
Dyn (2002) presented the technique for analysis of binary schemes by the formalism of Laurent 
polynomials. Later on this method was extended for ternary and quaternary schemes [Hassan and 
Dodgson (2001), Mustafa and Khan (2009)]. By algebraic operations on such a polynomial, 
sufficient conditions for convergence of the subdivision scheme, and for the smoothness of the 
limit curve generated by the subdivision scheme, can be checked rather automatically. Given the 
Laurent polynomial  za  of an n-ary subdivision scheme aS , extended form of Laurent 

Polynomial Algorithm (LPA) for higher arity schemes can be restated as: 
 
 

Step-1:   If either ,1,...,, )1(1 






 Zj

nnj
Zj

nj
Zj

nj aaa  the scheme does not converge.      

Stop! 

Step-2:   Compute 
12 ...1

)(
)( 


nzzz

za
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Step-3:   Set )()( ]1[
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 (b)  If  aL SN ,1  is convergent. Stop! 

 
(c)  If  ,1LN  compute  

 
i
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iLL zqzqzqzq ]1[2

1 )()()( . 

 
Step-5:  qS  is not contractive after M iterations. Stop! 

 
Another but very old method for analysis of schemes is Divided Difference Algorithm (DDA) 
which was introduced for 4-point binary scheme by Dyn et al. (1987) and then its generalized 
version for m-point binary schemes by Dyn et al. (1991). Currently, DDA is not commonly used 
for analysis of the schemes. LPA involves polynomial factorization and division. Therefore in 
the analysis of m-point schemes with higher arity [Lian (2009), Mustafa and Rehman (2010), 
Zheng et al. (2009)] by LPA the need to handle higher order polynomials and their factorization 
and division, has motivated us to introduce an algorithm for analysis which should be free from 
polynomial algebraic operations. 
 
According to Dyn et al. (1991) “If the nth order divided difference of the original binary scheme 
is 0C -continuous then the original binary scheme will be nC -continuous”. Moreover, according 
to Sabin (2010), “Higher order divided differences are just divided differences of divided 
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differences”. In this article, we have generalized these ideas into numerical algorithms for 
divided differences and the analysis of the m-point n-ary subdivision schemes. 
 
Contributions: The main contributions of the paper are 
 

 Numerical algorithm for divided differences of m-point n-ary schemes. 

 Numerical algorithm for continuity of m-point n-ary subdivision schemes. In this 
algorithm, we have replaced Step-2 and Step-3 of LPA by simple arithmetic operations. 

 A demonstration by numerical examples that Proposed Numerical Algorithm (PNA) and 
LPA give the same results. 

 
The rest of the paper is organized as follows: In Section 2, we discuss n-ary schemes, their 
divided differences and convergence. We also present numerical algorithm for divided 
differences in this section. Section 3 is dedicated to the smoothness analysis of the schemes. We 
present numerical algorithm for continuity of the schemes, numerical examples and comparison 
of PNA and LPA in this section. 
 
 
2.  n-ary and its Divided Difference Schemes 
 
In this section, we present an n-ary scheme and compute the maximal difference between its two 
consecutive control polygons at different subdivision levels. Convergence of the n-ary scheme is 
also proved in this section. Its first order divided difference scheme is presented at the end of this 
section. 
 
2.1. n-ary Univariate Schemes 
 
Let ,, Zipk

i   denote a sequence of points in ,2, NR N  where k is a non-negative integer. An 

n-ary subdivision process defined by Aspert (2003) is 
 

.1,...,2,1,0,
1

0
,

1  






 nqpap

m

j

k
jiqj

k
qni , 

 

where m, n ≥ 2 and coefficients }{ ,qja  are called subdivision mask. If )(za  is the Laurent 

polynomial of the above scheme then entries in )(za  and coefficients }{ ,qja  are related as 

}{}{ , qnjqj aa  . The necessary condition for uniform convergence of scheme (2.1) is 

 

.1,...,2,1,0,1
1

0
, 
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m

j
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(2.1) 

(2.2) 
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2.2.  Maximal Differences between Control Polygons 
 
In this section, we compute the maximal difference between the )1( k st level control polygon 

}{ 11   k
i

k pp  and kth level control polygon kp  n-ary subdivision scheme (2.1). 
 
Lemma 2.1.  
 
Given an initial control polygon ,,0 Zipp ii   let the values 1, kpk

i  be defined recursively by 

subdivision process (2.1) together with (2.2) then 
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where n is the arity of the scheme and 0,1a  is zero throughout the paper. 
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and 
 

0, 1, 2, 1, 0, 1 1, 1 2, 1 1, 1 1( . . . . . . ) .k
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,max 1
11

)1(
k
i

k
i

i
r

k
rni

k
rni pppp  





   

 
where 
  

.2,...,2,1,0,)(
2

0 0
1,,  



 
 nraa

m

l

l

j
rjrjr  

 

Similarly, 
 

.)()(
1

0 0
10,11,

1
)1(

1  


 

















m

l

l

j

k
li

k
lijnj

k
nni

k
nni ppaapp  

 
This implies 

 

,max 11
1

)1(
1 k

i
k
i

i
n

k
nni

k
nni pppp  





   

 
where  

 

.)(
1

0 0
0,11,1 



 
 

m

l

l

j
jnjn aa  

 
Now by (2.6) and (2.7), we get (2.3). This completes the proof.             □ 

(2.6) 

(2.7) 
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By extending the technique given in Lemma 3.1 of Dyn et al. (1991), we get the following 
lemma. 
 
Lemma 2.2.  
 
Given an initial control polygon ,,0 Zipp ii   let the values 1, kpk

i  be defined recursively by 

subdivision process (2.1). Suppose kp  is the piecewise linear interpolant to the values k
ip . Then, 

the maximal difference between 1kp  and kp  is 
 

,max 1
*1 k

i
k
i

i

kk pppp  

   

 
where *  is some real number. 
 
Theorem 2.1.  
 
Given ,,0 Zipp ii   let the values 1, kpk

i  be defined recursively by subdivision process (2.1) 

together with the necessary condition (2.2) and kp  be the piecewise linear interpolant on  1,0 n  

to the values k
ip . Then, for 1 , where   is defined by (2.4), there exists 

 1,0lim nCppk

k



 which means scheme (2.1) is 0C -continuous. 

 
Proof:  
 
Consider the piecewise linear interpolant kp  on  1,0 n  to the values k

ip  and let 


  denote the 

uniform norm on  1,0 nC . We will show that 
0}{ k

kp  defines a Cauchy sequence on  1,0 nC . 

Since the maximal difference between 1kp  and kp  is attained at a point on the )1( k st mesh, 
then by (2.8), we get 
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where *  is some real number. Utilizing (2.3), we get 
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This completes the proof.                  □ 
 
Remark 2.1.  
 
Here we note that, 1  is a sufficient condition for 0C -continuity of the n-ary scheme where 
  is defined by (2.4) and (2.5). 
 
2.3. First order divided difference scheme 
 
Lemma 2.3.  
 
The first order divided difference process of scheme defined by (2.1) is defined as 
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Proof:  
 
If kp  is the piecewise linear interpolant to the values k

jp  then the first order divided difference is 

given by 
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We want to make an equation of the form 
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Simplifying, we get 
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Comparing the coefficients of spk

i ' in (2.11) and (2.13) and solving simultaneously, we get 
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By replacing j  by  1 nni  and k  by 1k  in (2.10), we get 
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Using (2.1) and similar procedure as above, we get 
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This completes the proof.                   □ 
 
Note:  
 
Without loss of generality, we can vary 1...0  ml  instead of 2...0  ml  in the 

equations representing )5.2(:r  and )9.2(:1


k
rnid  as the entry for 1 mj  is zero. This is just 

to avoid extra computation in algorithm. 
 
 
2.4.  Numerical Algorithm for Divided Differences 
                
Since higher order divided differences are just divided differences of divided differences by 
Sabin (2010) utilizing (2.9) recursively, we get a numerical algorithm for computing higher order 
divided differences of m-point n-ary subdivision schemes for m, n ≥ 2. This algorithm is fast and 
efficient because simple algebraic operations in Steps 1-2 are performed on the right hand sides 
of equations and results assigned to the left hand side of the equations without using extra 
computer memory to save newly computed values. 
 

Input: Enter the mask of the scheme 0,, ja qj  to 1m , 0q  to 1n , where m and n 

stand for the complexity (i.e., number of points involved to insert a new point in the 
control polygon) and arity of the scheme respectively. 

 

Step 1: Compute (Fragment of (2.5) and (2.9)) 
 

,1...0,0,,  mjaa jnj  

,1...0,2...0,1,,,1,   mjnraaaa rjrjrjrj  

,1...0,,11,1,11,   mjaaaa njnjnjnj  

 
 where 0,1  qa  for nq ...0 . 

 

Step 2: Compute (Fragment of (2.9)) 
 

,1...0,2...0,,,  mjnrana rjrj  

.1...0,1,1,   mjana njnj  

 
Goto Step-1, for next higher order divided difference otherwise exit. 

 

 
Output: sth order divided difference can be obtained by cycling s-times Steps 1-2. 
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3.  Numerical Algorithm for Continuity of Scheme 
 
Here we first summarize the above results and then present the numerical algorithm for 
continuity of m-point n-ary scheme. The necessary and sufficient conditions for 0C -continuity 
are given in (2.2) and Theorem 2.3 (i.e.,   < 1) respectively. For higher order continuities we 
need higher order divided differences which can be computed by using the above proposed 
numerical algorithm. By Dyn et al. (1991) a given scheme will be 0C -continuous if its nth 
divided difference scheme is 0C -continuous. These results lead to establish following numerical 
algorithm for computing the order of continuity of the m-point n-ary subdivision scheme: 
 

Input:  Enter the mask of the scheme 0,, ja qj  to 1m , 0q  to 1n , where m and n 

stand for the complexity and arity of the scheme respectively. 
 

Step 1:  Utilization of (2.2): If ,1
1

0
, 





m

j
qja  for 0q  to 1n , then goto Step 2,  otherwise 

exit. 
 

Step 2:  Fragment of (2.5) and (2.9), which is common in both equations: 
Do computations on the right hand sides of the following equations and assign the 
results to the left hand sides of equations: 

,1...0,0,,  mjaa jnj  

,1...0,2...0,1,,,1,   mjnraaaa rjrjrjrj  

,1...0,,11,1,11,   mjaaaa njnjnjnj  

where 0,1  qa  for nq ...0 . 
 

Step 3:  Fragment of (2.5) and sufficient condition: By using updated values rja ,  and 

1, nja  by Step 2, compute, 







1

0
,

m

j
rjr a   for  ,2...0  nr  and 




 

1

0
1,1

m

j
njn a . 

If   1,max 1  nr   then goto Step 4, otherwise exit. 
 

Step 4:  Fragment of (2.9): By using updated values rja ,  and 1, nja  by Step 2 in right hand 

sides of the following equations and assigning the results to the left hand sides of 
the equations, compute, 

,1...0,2...0,,,  mjnrana rjrj  

.1...0,1,1,   mjana njnj  

Go to Step 1. 
 

Output: The s-times successful completion of Steps 1-4 mean original scheme is sC -
continuous. 
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The validity of above algorithm has been checked by computing the continuity of some well-
known schemes. The following results obtained by the proposed numerical algorithm coincide 
with the results obtained by the generalized Laurent polynomial algorithm. 
 
Corollary 3.1.  
 
Given ,,0 Zipp ii   let the values 1, kpk

i  be defined recursively by following 4-point 

interpolating binary subdivision scheme introduced by Dyn et al. (1987) 
 

1
2 ,k k

i ip p                                                                                                                                           

   1 1 1
2 1 1 1 22 2 ,k k k k k

i i i i ip p p p p   
           

 
then scheme (3.1) is 1C -continuous over the parametric interval 810   . 
 
Proof:   
 
Here 2,4  nm  and the mask of the scheme is: 
 

0,0 1,0 2,0 3,00 , 1, 0, 0,a a a a     
1 1

0,1 1,1 2,1 3,12 2, , , .a a a a            

 
1st Round:  

Step 1:  Clearly 1,0,1
3

0
, 



qa
j

qj . 

Step 2: 
,0,0,1,0 0,32,30,22,20,12,10,02,0  aaaaaaaa  

,1,00,00,0  aaa  

,2
1

1,10,10,00,1  aaaa  

,1,20,20,10,2  aaaa  

,01,30,30,20,3  aaaa  

,1,01,0  aa  

,2
1

2,01,11,01,1  aaaa  

,2,11,21,11,2  aaaa  

.02,21,31,21,3  aaaa  

 
Step 3:   

,021
3

0
0,0  




j

ja  

(3.1) 



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                     625                             
          

   

.021
3

0
1,1 




j

ja
 

Since   1,max 10   , for  4
1

2
3 , , therefore scheme (3.1) is 0C . 

 
Step 4:  

0,0 1,0 2,0 3,02 , 1, 2 , 0,a a a a       

0,1 1,1 2,1 3,12 , 1, 2 , 0,a a a a       

 
2nd Round:  

Step 1:  Clearly 1,0,1
3

0
, 



qa
j

qj . 

Step 2:   
,0,2,1,2 0,32,30,22,20,12,10,02,0  aaaaaaaa   

,41,00,00,0  aaa  

,41,10,10,00,1  aaaa  

,01,20,20,10,2  aaaa  

,01,30,30,20,3  aaaa  

,21,01,0  aa  

,412,01,11,01,1  aaaa  

,22,11,21,11,2  aaaa  

.02,21,31,21,3  aaaa  

 
Step 3:   

,0044
3

0
0,0  




j

ja
 

.02412
3

0
1,1 




j

ja  

 
Since   1,max 10   , for  8

1,0 , therefore first order divided difference 

scheme  is 0C  while scheme (3.1) is 1C -continuous. 
 

Step 4:  

0,0 1,0 2,0 3,08 , 8 , 0, 0,a a a a      

0,1 1,1 2,1 3,14 , 2 8 , 4 , 0.a a a a          
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3rd Round:  

Step-1:  Clearly ,1,0,1
3

0
, 



qa
j

qj  exit. 

The scheme is 1C -continuous for  8
1,0 . 

 
Corollary 3.2.  
 
The scheme (3.1) is 1C -continuous by alternating approach LPA. 
 
Proof:  
 
The Laurent polynomial )(za  for the mask of the 4-point binary scheme can be written as 
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As we know aS  is convergent ( 0C -continuity) iff 1
qS  for some 0 ZL . So for 
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This leads to  
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Thus, for the range 2
1

8
131

8
3     and 2L , we have 1

qS . As for smoothness 

analysis ( 1C -continuity), consider bS  with z
zazb  1
)(2)( . Then, bS  is convergent iff rS  is 

contractive. Now, 
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1
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)( 2223 zzzz

z
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z
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But for the case 1L , 1

rS . Therefore, to see the contractivity, we consider 
rS . The 

condition 1
rS  gives the range 154.00 8

51   .                

 
Remark 3.1.  
 
From Corollary 3.1 and 3.2, one can see that PNA is free from polynomial operations and 
depend on only arithmetic operations while LPA depends on polynomial as well as on arithmetic 
operations. So it is obvious that the computational complexity of PNA is less than the complexity 
of LPA. 
 
Corollary 3.3.  
 
Given ,,0 Zipp ii   let the values 1, kpk

i  be defined recursively by the following 6-point 

interpolating ternary subdivision scheme introduced by Khan and Mustafa (2008) 
 

1
3 ,k k

i ip p                                            

           
1 1311 2

3 1 2 181 27 27

74 5
1 2 381 27

( 13 ) ( 51 ) ( 74 )
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k k k k
i i i i
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i i i

p p p p

p p p

  

  


  

  

       

            (3.2) 

1 5 74
3 2 2 127 81

132 11
1 2 327 27 81

( 9 ) ( 46 )

( 74 ) ( 51 ) ( 13 ) ,

k k k k
i i i i

k k k
i i i

p p p p

p p p

  

  


  

  

     

       
 

 
then scheme (3.2) is 2C -continuous over the interval ),( 1944

23
1215
14 . 

 
Corollary 3.4.  
 
Given ,,0 Zipp ii   let the values 1, kpk

i  be defined recursively by the following 4-point 

approximating quaternary subdivision scheme introduced by Hassan and Dodgson (2001) 
 

1 7 7 29 13 5 5 1 1
4 1 1 232 64 64 64 16 64 64 64( ) ( ) ( ) ( ) ,k k k k k

i i i i if f f f f   
                

 
1 15 5 57 7 49 7 31

4 1 1 1 2128 64 128 64 128 64 128 64( ) ( ) ( ) ( ) ,k k k k k
i i i i if f f f f   
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                (3.3) 
1 7 3 49 57 7 15 51

4 2 1 1 2128 64 128 64 128 64 128 64( ) ( ) ( ) ( ) ,k k k k k
i i i i if f f f f   
            

 
1 5 5 29 13 7 71 1

4 3 1 1 264 64 16 64 64 64 32 64( ) ( ) ( ) ( ) ,k k k k k
i i i i if f f f f   
            

 
then scheme (3.3) is 3C -continuous over the interval 230   . 
 
Corollary 3.5. Given ,,0 Zipp ii   let the values 1, kpk

i  be defined recursively by the 

following 7-point interpolating ternary subdivision scheme of Lian (2009) 
 

1 35 700 5600 350 80 28112
3 3 2 1 1 2 36561 2187 2187 6561 2187 2187 6561 ,k k k k k k k k

i i i i i i i if f f f f f f f
                   

 
1

3 1 ,k k
i if f
   

            (3.4) 
1 28 80 350 5600 700 35112

3 2 3 2 1 1 2 36561 2187 2187 6561 2187 2187 6561
k k k k k k k k
i i i i i i i if f f f f f f f
               

 

then scheme (3.4) is 1C -continuous. 
 
Corollary 3.6.  
 
Given ,,0 Zipp ii   let the values 1, kpk

i  be defined recursively by following 6-point 

approximating quinary subdivision scheme of Mustafa and Rehman (2010)  
 

1
5 2 1 1 2 3[18183 173565 3818430 424270 100485 13167 ] ,k k k k k k k

i i i i i i if f f f f f f
               

 
1

5 1 2 1 1 2 3[ 41769 369495 3202290 1372410 282555 35581 ] ,k k k k k k k
i i i i i i if f f f f f f
            

                (3.5) 
1

5 2 2 1 1 2 3[ 46875 390625 2343750 2343750 390625 46875 ],k k k k k k k
i i i i i i if f f f f f f
            

 
1

5 3 2 1 1 2 3[35581 282555 1372410 3202290 369495 41769 ] ,k k k k k k k
i i i i i i if f f f f f f
            

 
1

5 4 2 1 1 2 3[13167 100485 424270 3818430 173565 18183 ] ,k k k k k k k
i i i i i i if f f f f f f
            

 
where 40000001  then scheme (3.5) is 2C -continuous. 
 
 
3.4. Comparison 
 
Here is a comparison between the proposed numerical algorithm (PNA) for continuity and the 
Laurent polynomial algorithm (LPA). 
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 We see that Step 1 of LPA and Step-1 of PNA are same. 
 

 We also observe that Step 4(a & b) of LPA and Step 3 of PNA are same. 
 

 Step 2 and Step 3 of LPA are different from Step 2 and Step-4 of PNA. Here we observe 
that polynomial factorization, division and summation are involved in Step 2 and Step 3 
of LPA but simple arithmetic operations such as subtraction and multiplication are 
involved in Step 2 and Step 4 of PNA. 

 

 Obviously, for higher arity schemes (like ternary, quaternary, etc.), the polynomial 
factorization, division and summation involved in Step 2 and Step 3 of LPA require more 
computations than simple arithmetic operations involved in Step 2 and Step 4 of PNA. 

 

 However, for few schemes with negative masks without parameter, LPA gives sharp 
bounds for continuity than PNA. In this special case the PNA needs alternative of Step-
4(c) of LPA to get sharp bound. We leave this as an open question. 

 
4.  Conclusion 
 
In this paper, we have presented numerical algorithms for computing higher order divided 
differences and continuity of m-point n-ary subdivision schemes for m, n ≥ 2. Our numerical 
algorithm for computing divided differences is relatively new. Proposed numerical algorithm for 
continuity is free from polynomial algebraic operations, numerically stable, fast and efficient. 
We have demonstrated the validity of the numerical algorithm by numerical examples. The 
results obtained by our numerical algorithm coincide with those of the Laurent polynomial 
algorithm. 
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