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Abstract:  

 

The problem of steady two dimensional laminar boundary layer flow of non-Newtonian fluid 

is analyzed in the present paper. Sisko fluid model, one of the various fluid models of non-

Newtonian fluid, is considered for stress-strain relationship. Similarity and numerical 

solutions obtained for the defined flow problem. 
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Nomenclature: 
 

u , v - Velocity components in X and Y directions, respectively 

U - Main stream velocities in X direction 

 - Stress component  

 - Strain rate component 

a,b - Sisko fluid parameters 

n- Flow behaviour indices 

  - Similarity  variable 

,gf - Similarity functions 

1 5, ,...,A   - Real constants 
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1. Introduction: 
 

The complex rehology of biological fluids has motivated investigations involving different 

non-Newtonian fluids. In recent years, non-Newtonian fluids have become more and more 

important industrially. Academic curiosity and practical applications have generated 

considerable interest in finding the solutions of differential equations governing the motion of 

non-Newtonian fluids. The property of these fluids is that the stress tensor is related to the 

rate of deformation tensor by some non-linear relationship. These fluids flow problems 

present some interesting challenges to researchers in engineering, applied mathematics and 

computer science. Many materials such as drilling mud, clay coating and other suspensions, 

certain oils and greases, polymer melts, blood, paints and certain oils, elastomers and many 

emulsions and some other thin and thick oils have been treated as non-Newtonian fluids.  

 

Because of the difficulty to suggest a single model, which exhibits all properties of non-

Newtonian fluids, they cannot be described as Newtonian fluids, and there has been much 

confusion in the constitutive classification of non-Newtonian fluids. Non-Newtonian fluids 

are usually classified as: (i) fluids for which shear stress depends only on the rate of shear; 

(ii) fluids for which relation between shear stress and rate of strain depends on time; (iii) the 

viscoinelastic fluids which possess both elastic and viscous properties. Thus, for any non-

Newtonian fluid the mathematical structure of the shearing stress and the rate of shear is 

always important. But derivation of such mathematical formulation is indeed a difficult task. 

 

In the past few decades, several researchers have analyzed the problems of boundary layer 

flow of non-Newtonian fluids past different geometries (Bird et al. (1960), Hansen et al. 

(1968), Kapur et al. (1982), Lee et al. (1966), Manisha et al. (2005, 2008, 2009, 2010), Timol 

et al. (1986, 2004), Wells (1964)). Many fluids in the real world are non-Newtonian by 

nature. The study of such fluids is very important due to their vast applications in the field of 

engineering sciences and industries. Several fluid models of non-Newtonian fluid have been 

investigated. A brief instruction and classification on various fluid models of non-Newtonian 

fluid is discussed in detail by Manisha et al. (2010, 2013). Similarity analysis of three-

dimensional boundary layer equations of a class of non-Newtonian fluids in which the stress 

is an arbitrary function of rates of strain is made have been discussed by Pakdemirli (1994). 

Kapur et al. (1963) have developed the theory for similar solutions of the boundary layer 

equations for non-Newtonian fluids.  They have also discussed briefly important particular 

cases like the boundary layer flow along a wedge, along a flat plate, in a convergent channel 

and two dimensional stagnation point flow. Bognar (2011) has derived the similarity 

solutions of the Prandtl boundary layer equations describing a non-Newtonian power law 

fluid past an impermeable flat plate, driven by a power law velocity profile. Further, 

analytical solutions are obtained for the steady laminar boundary layer of Power-Law non-

Newtonian flow with non-linear viscosity over a flat moving plate by Nagler (2014). Also, 

lots of work have been carried out by many other scientist for Power-Law fluid model such as 

(Bizzell et al. (1962), Djukic (1973, 1974), Na et al.(1967), Patel et al. (2011,2012,2014). The 

self-modeling flow regime in a laminar boundary layer of non-Newtonian fluid is studied in 

the general case, without the restriction to a certain region of positive values of ‘n’ was 

discussed by Zhizhin (1987). Many investigators have worked on Powell-Eyring fluid model 

such as Patel et al. (2009), Sirohi et al. (1984)).  

 

Very little information is available in the literature about the fluid model proposed by Sisko 

(1958). Na and Hansen (1967) have examined the laminar flow of Sisko fluid between two 
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circular parallel disks. Bhrami et al. (1996) analyzed the isothermal and axial laminar flow of 

Power-law fluid and Sisko fluid in an annuli. The thin film flow problem of Sisko fluid and 

Oldroyd fluid on a moving vertical belt was discussed by Nemati et al. (2009). They have 

applied Homotopy analysis method (HAM) to solve the equations of flow problem. The 

problem of Sisko fluid passing through an axisymmetric uniform tube was solved analytically 

using the perturbation method and HAM by Nadeem et al. (2010). Moallemi et al. (2011) 

have applied the Homotopy perturbation method to solve the flow of a Sisko fluid in pipes.  

Sari et al. (2012) have applied Lie group analysis to obtain similarity solutions of the 

boundary layer flow of Sisko fluids.   

 

The numerical solution for the time-dependent free convective flow of Sisko fluid past flat 

plate moving through a binary mixture has been obtained by Olanrewaju et al. (2013). 

Siddiqui et al. (2013) have examined the drainage of Sisko fluid film down a vertical belt. 

The approximate solution of the governing equations was obtained using Perturbation method 

and Adomian decomposition method in their paper. Asghar et al. (2014) have presented the 

equations for the peristaltic flow of MHD Sisko fluid in a channel. They have considered the 

effect of strong and weak magnetic fields. 

 

Mathematically, Sisko Model can be written as in Sisko (1958) 

    

 
 1

1
:

2

n

a b

 
 

      
  

, 

 

where   and    are the stress tensor and the rate of deformation tensor, respectively; a, b 

and n are defined differently for different fluids. In the present paper, the problem of steady 

two dimensional laminar boundary layer flow of non-Newtonian fluid is analyzed. Sisko fluid 

model, one of the various fluid models of non-Newtonian fluid, is considered for stress-strain 

relationship. The cases of Newtonian fluid and Power-law fluid are also discussed. Similarity 

and numerical solutions are obtained for the defined flow problem. All the cases are 

presented graphically. 

 

2. Governing Equations 

 
The two dimensional laminar boundary layer flows past a semi-infinite flat plate is 

considered.  The geometry of present flow problem is shown in Figure 1. The governing 

equations of continuity and momentum of laminar boundary layer flow of Sisko fluid past a 

semi-infinite flat plate are: 

 

0,
u v

x y

 
 

 
                                                                                                         (1)

1

,

n

u u dU u u
u v U a b

x y dx y y y

        
      

         

                                                            (2) 

with boundary conditions: 

y = 0 : u = 0, v = 0,                                                                                                         (3) 
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         y =  : u = U(x),                                                                                                            (4)  

 

Figure 1. Flow Geometry 

 

Taking one parameter scaling Group Transformation, 

 

    
1x A x


 , 

2y A y



,

3u A u


  , 
4v A v


 , 

5 , (5)U A U



 

 

introducing (5) in Equations (1) - (2) and using simple chain rule we get: 

 

3 1 4 2

,
u v u v

A A
x y x y

       
  

     

2 2 23 1 4 3 2 5 1 3 2

(n 1) (n 1) 23 3 2 2

12 2

2 2

2

2

1
2

2
.

n

n

u u dU u u u
u v U a nb

x y dx y y y

u u dU u
A u A v A U A a

x y d x y

u u
nbA

y y

        

   

    

    





     
     

     

  
   

  

  
  

  

 

 

The above set of equations remain invariant provided: 

 

3 1 4 2 ,       

3 1 4 3 2 5 1 3 2 3 22 2 2 ( 1) .n n                      

 

Solving the above relations for ’s we get: 

 

1 2 3 4 53 3 3 3 ,          
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1

1
put   

3





   

3 4 5.      
 

 

Following Seshadri et al. (1985) one can derive the absolute invariants, so called similarity 

independent variable  and similarity dependent variables ( )f   ( )g   and ( )h  as follows: 

 
1

3
1̀

3

, (6)
y y

x y
x

x





  

  

 

   1

3

f ( ) ,
u

x

                                                                                                                   (7)                           

  

1

3

( ) ,
v

g

x




                                                                                                                 (8) 

  

11

3

( ) .
U

h c

x

                                                                                                              (9)       

 

Using Equations (6)-(9), Equations (1) and (2) are transformed into the following: 

 

( ) ( ) 3 '( ) 0,f f g      
                                                                                     

(10) 

 

 
2 12

1( ) ( ) ( ) 3 ( ) ( ) 3 ( ) 3 ( ) ( ). (11)
n

f f f g f c af nb f f        


          

 

Now, putting the value of   
1

( ) 2 ( )
3

g f f     in (11), from (10) we obtain 

  

 
12 2

1( ) 2 ( ) ( ) 3 ( ) 3 ( ) ( ) 0,
n

f f f af nb f f c     


                       (12) 

 

with the boundary conditions (3) and (4): 

 

      0 0,  0 0,  1.f f f                                                                                     (13) 

 

Case I:  

 

If we take a = 0, b = 1 and n = n in the Sisko fluid model then we obtained the Power-law 

fluid model. For this case the similarity solution (12) will be reduced in the following 

equation with the same boundary conditions given in Equation (13): 

 

 
12 2

1( ) 2 ( ) ( ) 3 ( ) ( ) 0.
n

f f f n f f c    


      
                (14)                                                                                                    
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Case II:  

 

If we take a = 1, b = 0 and n = 1 in the Sisko fluid model then we obtained the stress strain 

relationship of Newtonian fluid. For this case the similarity solution (12) will be reduced in 

the following equation with the same boundary conditions given in Equation (13): 

 
2 2

1( ) 2 ( ) ( ) 3 ( ) 0.f f f f c                      (15)
 

 

3. Results and discussions 
 

The similarity solutions obtained for the defined flow problem are solved numerically and 

presented graphically in this paper. Figures 2-4 are given for the velocity profile f’ versus eta 

of laminar boundary layer flow of Sisko fluid past a semi-infinite plate. In Figure 2 the fluid 

parameters are kept constant and different values of fluid index are considered. Figure 3 and 

Figure 4 represent the velocity vs. eta for fixed values of fluid index and different values of 

fluid parameters b and a, respectively. It shows that the velocity profile decreases with 

decreasing fluid parameters b and a, respectively.  These types of results are also discussed 

by Siddiqui et al. (2013) in their paper entitled, Analytic solution for the drainage of Sisko 

fluid film down a vertical belt. Figure 5 represents the velocity versus eta for case I, i.e., 

Power-law model. Figure 6 represents the velocity versus eta for Newtonian fluid (case II). 

The velocity increases as eta increases.         

 

4. Conclusion:  
 

The methods for obtaining similarity transformations are devided into two categories: (i) 

Direct methods, and (ii) group thoretic methods. The direct methods such as, seperation of 

variables do not invoke group invariance. On the other hand, group theoretic methods are 

more elegant mathematically. The main concept of invariance under a group of 

transformation is always invoked. In the present paper, the governing non-linear partial 

differential equations of  the laminar boundary layer flow of non-newtonian fluid are 

tranformed into non-linear  ordinary differential equations using  group thoretic method. The 

Sisko fluid model of non-Newtonian fluids is considered for the stress-strain relationship. 

Then the obtained ODE is solved by ODE solver. From Figure 2 and Figure 5, we conclude 

that the velocity profile increases more rapidly for Sisko fluid than it is in Power-law fluid.  
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Figure 2. Velocity profile for a=b=0.5 and different values of fluid index n 

 
Figure 3. Velocity profile for a=0.5, n=3/2 and different values of fluid parameter ‘b’ 

 

Figure 4. Velocity profile for b=0.5, n=3/2 and different values of fluid parameter ‘a’ 
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Figure 5. Velocity profile for a=0, b=1 and different values of fluid index 'n' (Power-Law Fluid) 

 

 
Figure 6. Velocity profile for Newtonian fluid, i.e., a=1, b=0 and n=1 
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