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Abstract 
 
The effects of an overlapping stenosis on blood flow characteristics in a narrow artery have been 
investigated. To account for the non-Newtonian behavior, blood has been represented by a 
Casson fluid. The equation describing the flow has been solved and the expressions for the flow 
characteristics, namely, the impedance, the wall shear stress, the shear stress at the stenosis 
throats and the shear stress at the critical height of the stenosis have been derived. It is shown 
that the impedance increases with the non-Newtonian behavior of blood as well as with the 
stenosis size. The shear stress at the stenosis two throats assumes the same magnitude. The shear 
stress at the stenosis critical height assumes significantly lower magnitude than its corresponding 
value at the throats. With respect to any given parameter, the nature of the variations of shear 
stresses at the throats and at the critical height of the stenosis is similar to that of the flow 
resistance. 
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1.   Introduction 

The frequently occurring cardiovascular disease, stenosis or arteriosclerosis is the abnormal and 
unnatural growth in the arterial wall thickness that develops at various locations of the 
cardiovascular system under diseased conditions which occasionally results into serious 
consequences Srivastava (1996). Stenosis is a medical term which means narrowing of anybody 
passage, tube or orifice Young (1979). Although, the root causes to the formation of stenotic 
lesions are not well understood but it is established that the fluid dynamical parameters, 
particularly, the high wall shear stress play an important role in the genesis of the disease. 
Regardless of the cause, it is known that once an obstruction has developed, it results into 
significant changes in blood flow, pressure distribution, wall shear stress and the impedance 
(flow resistance).  
 
In the region of narrowing arterial constriction, the flow accelerates and consequently the 
velocity gradient near the wall region is steeper due to the increased core velocity resulting in 
relatively large shear stress on the wall even for a mild stenosis. The possibility that the 
haemodynamic factors play an important role in the genesis and proliferation of stenosis has 
attracted the interest of researchers to study blood flow through local constrictions Young 
(1968); Young and Tsai (1973); Deshpande et al. (1976), Caro et al. (1978); Ahmed and Giddens 
(1983); Ku (1997) and others during the past few decades. An account of the most of the 
theoretical and experimental studies, reported so far, may be had from Young (1979), Srivastava 
(1996, 2002), Sarkar and Jayaraman (1998), Mishra and Verma (2007), Mekheimer and Kot 
(2008), Srivastava and Rastogi (2009, 2010), etc. 

 
The studies conducted in the literature are mainly concerned with the single symmetric and non-
symmetric stenoses. However, the constrictions may develop in series (multiple stenoses) or may 
be of irregular shapes or overlapping. Chakravarty and Mandal (1994) studied the effects of an 
overlapping stenosis on arterial flow problem analytically assuming the pressure variation only 
along the axis of the tube. Layek et al. (2009) investigated the effects of an overlapping stenosis 
on flow characteristics considering the pressure variation in both the radial and axial directions 
of the arterial segment under consideration and most recently Srivastava et al. (2010) addressed 
the problem of blood flow through an overlapping stenosis assuming that the flowing blood is 
represented by a two-layered macroscopic two-phase model Srivastava (2007).  It is well 
accepted that blood behaves like a non-Newtonian fluid under certain flow conditions, 
particularly, at low shear rates Merrill et al. (1965). An examination of viscometric data 
Bugliearello et al. (1965); Chein et al. (1965); Rand et al. (1964) suggests that non-Newtonian 
behavior of blood increases rapidly, when hematocrit rises above 20%, possibly reaching a 
maximum at between 40-70%. Merrill et al. (1965) established that the Casson model holds 
satisfactory in small vessels (of diameter 130-1000 m) within certain wall shear stress limits. 
An attempt is made in the present investigation to explore the effects of an overlapping stenosis 
on the flow characteristics of blood taking into account that the flowing blood is to be treated as 
an incompressible non-Newtonian (Casson) fluid. The arterial wall segment is considered to be 
rigid as well as deformable. The wall in the vicinity of the stenosis is usually relatively rigid 
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when stenosis develops in human vasculature. The artery length is considered to be large enough 
as compared to its radius so that the entrance, end and special wall effects can be neglected. 
 

2.  Formulation of the Problem 

Consider the axisymmetric flow of blood through a circular cylindrical tube with an overlapping 
constriction specified at the position as shown in Figure 1. The geometry of the stenosis which is 
assumed to be manifested in the arterial segment is described Chakravarty and Mandal (1994); 
Layek et al. (2009); Srivastava et al. (2010) as  
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where R (z) and R0 are the radius of the tube with and without stenosis, respectively, Rp is the 
radius of the plug flow region, L0 is the length of the stenosis and d indicates its location,   is 
the maximum projection (maximum height) of the stenosis into the lumen, appears at two 
locations: z =d+L0/6 and z = d+5L0/6. The stenosis height at z = d+L0/2 from origin, called 
critical height, is 3 /4. 
 

                

                      Figure 1. The flow geometry of an arterial overlapping stenosis 
 

Blood is assumed to be represented by a Casson fluid and following the report of Young (1968) 
and considering the axisymmetric, laminar, steady, one-dimensional flow of blood in an artery, 
the general constitutive equation in a mild stenosis case, under the conditions Young (1968); 
Srivastava and Rastogi (2009), /R0<<1, Re (2 /L0) <<1 and 2R0/L0~O (1), may be written as  
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where (r, z) are the cylindrical polar coordinates with z measured along the tube axis and r 
measured normal to the axis of the tube, Re is the tube Reynolds number,   is the shear stress 
and p is the pressure. 
 
The boundary conditions are  
 

u = 0 on  r = R (z),                                                                                                                  (3) 
 

0

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r

u
 on  r = 0,                                                                                                                  (4) 

 
where u is the velocity of the fluid. 

  
For a Casson fluid, the stress-strain relationship is given by  
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where up is the constant plug flow velocity,   is the fluid viscosity and 0  is the yield stress. 

 
3.   Analysis 

The expression for the velocity, u obtained as the solution of equation (2) subject to the boundary 
conditions (3) and (4), is obtained as 
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  (7)                        

                                                                                                                                                
The constant plug flow velocity, up may be obtained from equation (7) evaluated at r =Rp. 
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The flow flux, Q when Rp<< R (i.e., the radius of the plug flow region is very small as compared 
to the non-plug flow region), is calculated as  
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The pressure drop,  p (= p at z = 0 and – p at z = L) across the stenosis in the tube of length, L is 
calculated from equation (9) as 
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The first and third integrals in the expression for   obtained above are straight forward whereas 
evaluation of the second integral is a formidable task and therefore will be evaluated 
numerically. 
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The expressions for the flow resistance, λ , the wall shear stress distribution in the stenotic 

region, Rτ , the shear stresses at stenosis throats, sτ  and at the critical height of the stenosis, cτ are 

given by    
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Following now the reports of Srivastava (1996) and Srivastava and Rastogi (2010), one obtains 
the final expressions for impedance (flow resistance), λ , the wall shear stress distribution in the 
stenotic region, Rτ , the shear stresses at stenosis throats, sτ  and at the stenosis critical height, cτ  

in their non-dimensional form as 
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where 
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0 08 /L R    and 3
0 04 /Q R    are the flow 

resistance and shear stress respectively for a Newtonian fluid in the normal artery (no stenosis). 
It is worth to mention that shear stress at the stenosis two throats assume the same value. When 

0n , the corresponding results for a Newtonian fluid are derived from equations (15) - (18) as 
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The subscript N stands for a Newtonian fluid. 
 
 
 
4.   Numerical Results and Discussion 
 
To discuss the results of the study quantitatively, computer codes are now developed to evaluate 
the analytical results obtained above (equations (15)-(18)) numerically. The parameter values  
Young(1968); Merrill et al (1965); Srivastava and Rastogi (2009) are selected as L0 (cm)= 1, 
L(cm) = 1 , 2 , 5 ; 0n  , 0.02 , 0.04 , 0.06 , 0.08 , 0.10 ; 0/ R  = 0 , 0.05 , 0.10 , 0.15 , 0.20. 

The present study corresponds to the flow of a Newtonian fluid and to the flow in a normal artery 
for parameter values 0n  and 0/ R  = 0, respectively. 

 
The impedance (resistance to flow),   increases with n  (non-Newtonian behavior of blood) and 

also with the stenosis height, 0/ R  (Figure 2). The blood flow characteristics,  decreases with 

the increasing artery length, L which in turn implies that   increases with stenosis length, L0. It 
is to note here that the difference in the magnitude of   between a Newtonian fluid and a Casson 
fluid increases with the stenosis height, 0/ R  (Figure 3). For a given stenosis height, 0/ R , the 

impedance,   increases with small increasing values of n ( 0.05) and approaches to an 

asymptotic magnitude for higher values of n  (Figure 4). 
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The wall shear stress at any axial location in the stenotic region assumes higher magnitude for 
higher values of the Casson fluid parameter, n  for any given stenosis height, 0/ R . Also, the 

blood flow characteristics, R  assumes higher magnitude for higher values of the stenosis height, 

0/ R  for any given value of the Casson fluid parameter, n  (Figure 5). R  rapidly increases  
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from its approached value at z = 0 to its peak value in the upstream of the stenosis first throat at 
z/L0 = 1/6, it then decreases steeply in the downstream of the first throat to its magnitude at the 
critical height of stenosis at z/L0 = 1/2. R  further increase steeply in the upstream of the second 
throat at z = 5/6 from its value at the critical height of stenosis to the same peak value as the first 
throat (at z/L0 = 1/6) and then decreases rapidly in the downstream of the second throat and 
attains its approached value (i.e., at z = 0) at the end point of the constriction profile at z/L0 = 1. 
 
The shear stress at the stenosis throats, s  increases with increasing non-Newtonian behavior of 

blood for any given stenosis size (height and length). The nature of the variations in s  with 

respect to any parameter is similar to that of the flow resistance,   (Figures 2 and 6). However, 
the magnitude of the shear stress at stenosis throats, s  is higher than the corresponding 

magnitude of the flow resistance,   
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 (Figure 7). The variations in the magnitude of the shear stress at the critical height (at z/L0 = 0.5) 
of the stenosis, c  is similar to that of the blood flow characteristics,   and s . The flow 

characteristics, c  assumes significantly lower magnitude than the corresponding values of both 

the blood flow characteristics,   and s (Figures 8 and 9).  

 
 
5.    Conclusion 
 
A non-Newtonian fluid (Casson) model has been applied to investigate the effects on blood flow 
characteristics due to presence of an overlapping stenosis in arteries. The flow characteristics 
(impedance, wall shear stress in stenotic region, shear stress at stenosis throats and at the critical 
height of the stenosis) increase with non-Newtonian behavior of blood as well as stenosis size 
(height and length). The shear stress at stenosis two throats assumes the same magnitude. The 
shear stress at the stenosis critical height assumes significantly lower value than its 
corresponding magnitude at the throats. The nature of variations in the flow characteristics is 
similar with respect to any parameter. The significance of the study is now well understood from 
the discussion presented above. The Casson fluid seems to be more sensitive to stenosis than 
Newtonian fluid. The condition: 0/ R  << 1, limits the usefulness of the present analysis to very 

early stages of the vessel constriction, which allows the use of fully developed flow equations 
and leads to locally Poiseuille - like flow and closed form solutions. Use of 0/ R  parameter is 

restricted to values up to 0.15 (i.e., 28% stenosis by area reduction) as beyond this value a 
separation in the flow may occur even at a relatively small Reynolds number Young (1968); 
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Srivastava (1996); Srivastava and Rastogi (2009). The study has been conducted under certain 
simplifications and limitations, the consideration of a pulsatile flow and the cases of the severe 
stenosis thus remain the future scope of the study. Further careful investigations are therefore 
suggested to address the problem close the realistic situations. 
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