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Abstract  
 
In the present paper we introduce some new sequence spaces defined by a Musielak-Orlicz 
function on semi normed spaces. We make an effort to study some topological properties and 
inclusion relations between these spaces. The study of sequence spaces over n -normed spaces 
has also been initiated in this paper. 
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1.  Introduction and Preliminaries 
 
Definition 1.1. 
 
 Let X  be a linear metric space. A function RXp : is called paranorm, if 
 
(1) 0)( xp  for all Xx ; 
 
(2) )()( xpxp   for all Xx ; 
 
(3) )()()( ypxpyxp   for all Xyx , ; and 
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(4) if )( n is a sequence of scalars with  n as n  and )( nx  is a sequence of vectors with 

0)(  xxp n  as n , then 0)(  xxp n   as n . 

 
A paranorm p for which 0)( xp  implies 0x  is called total paranorm and the pair ),( pX  is 
called a total paranormed space.  
 
It is well known that the metric of any linear metric space is given by some total paranorm, see 
Wilansky (1984),Theorem 10.4.2, pp. 183. 
 
Definition 1.2. 
 
An Orlicz function M  is a function, which is continuous, non-decreasing and convex with

0)0( M , 0)( xM  for 0x  and )(xM  as x .  
 
Lindenstrauss and Tzafriri (1971) used the idea of Orlicz function to define the following 
sequence space:  
 
Let w  be the space of all real or complex sequences )( kxx  . Then,  
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which is called as an Orlicz sequence space. The space Ml  is a Banach space with the norm  
 

.1:0inf
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It is shown by Lindenstrauss and Tzafriri (1971) that every Orlicz sequence space Ml  contains a 

subspace isomorphic to pl ).1( p
 
An Orlicz function M  satisfies  2 condition if and only if 

for any constant 1L  there exists a constant )(LK  such that )()()( uMLKLuM  , for all values 
of .0u  An Orlicz function M  can always be represented in the following integral form:  
 


x

dttxM
0

)()(  ,                                                                                                                    (3) 

 
where   is known as the kernel of ,M  is right differentiable for ,0t  ,0)0(   ,0)( t    is 
non-decreasing and  )(t  as .t  
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Definition 1.3. 
 
A sequence ࣧ )( kM  of Orlicz functions is called a Musielak-Orlicz function, see Maligranda 

(1989), and Musielak (1983).  A sequence 	ࣨ )( kN  defined by  

 
}0:)(sup{)(  uuMuvvN kk ,  ,...2,1k                                                                        (4) 

 
is called the complementary function of a Musielak-Orlicz function ࣧ. For a given Musielak-
Orlicz function ࣧ, the Musielak-Orlicz sequence space		ࣧݐ  and its subspace 	݄ࣧ  are defined as 
follows:        
                                                                                    

ࣧݐ  :wx ܫࣧ )(cx  for some 0c ,                                                                           (5)   
                      

݄ࣧ  :wx ܫࣧ )(cx  for all 0c ,                                                                               (6) 
 

where  ࣧܫ 	is a convex modular defined by 
 

ܫࣧ )()(
1

k
k

k xMx 




 ,  )( kxx  (7)                                                                                      .ࣧݐ

 
We consider ࣧݐ equipped with the Luxemburg norm 
 

0inf{  kx ܫࣧ : }1







k

x
                                                                                                  (8) 

 
or equipped with the Orlicz norm 
 

 1
1

inf ({0

k
x ܫࣧ  }.0)( :) kkx                                                                                      (9) 

 
The notion of difference sequence spaces was introduced by Kizmaz (1981), who studied the 
difference sequence )(l , )(c  and )(0 c . The notion was further generalized by Et and 

Colak (1995) by introducing the spaces )( nl  , )( nc   and )(0
nc  . Let m , n  be non-negative 

integers, then for Z  a given sequence space, we have  
 

})(:)({)( ZxwxxZ k
n
mk

n
m  ,                                                                                 (10) 

 
for cZ  , 0c  and l , where  )( k

n
m

n
m xx )( 11

mk
n
mk

n
m xx 

   and kkm xx 0 , for all k Գ, 

which is equivalent to the following binomial representation:  
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n
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v
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m x

0

)1( ቀ
݊
ቁݒ mvkx  .                                                                                                 (11) 

 
Taking 1m , we get the spaces )( nl  , )( nc   and )(0

nc   studied by Et and Colak (1995). 

Taking 1 nm , we get the spaces )(l , )(c  and )(0 c  introduced and studied by Kizmaz 

(1981). The difference sequence spaces were also discussed in Altinok et al. (2006), Isik (2004), 
and Tripathy et al. (2006). For more details about sequence spaces see [Altinok (2008), Et et al. 
(2006), Isik et al. (2013), Mursaleen (1983, 1983), Mursaleen et al. (1999), Raj et al. (2010, 
2011), Raj and Sharma (2011, 2011), Savas (2004)] and references therein. 
 
Let X  be a complex linear space and ),( qX  be a semi normed space with semi norm q . By 

)(XS  we denote the linear space of all sequences )( kxx   with Xxk )(  and the usual co-

ordinate wise operations: 
 

)( kxx     

 
and  
 

)( kk yxyx                                                                                                                   (12) 

 
for each  ԧ , where ԧ denotes the set of all complex numbers. A study of sequence spaces 

),,( sqplM  on semi normed spaces one can see in Bektas and Altin (2003).  
 
The following inequality will be used throughout the paper. If ,sup0 Hpp kk   

)2,1max( 1 HK , then 
 

}{ kkk p

k

p

k

p

kk baKba  ,    for all k  and kk ba ,  ԧ.                                           (13)                         

 

Also )( ,1max
Hpka  ,

 
for all  	ԧ.  

 
 
2.  Sequence Spaces on Semi Normed Spaces Defined by a Musielak-Orlicz                           
     Function 
 
Let  )( k   be a scalar sequence and )(XSx  then we shall write )( kk xx   .  Let U  be the 

set of all sequences )( kuu   such that 0ku , )( kpp   be a sequence of strictly positive real 

numbers and ࣧ )( kM
	
be a Musielak-Orlicz function. In the present section we define the 

sequence spaces:  
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If we take 1)(  kpp , for all k Գ, then 
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If we take 0s , we have 
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If we take 1)(  kpp , for all k  and 0s , we get 
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If we take 0s , xxq )(  and X 	ԧ, we have 
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The main purpose of this section is to study some topological properties and some inclusion 
relations between the sequence spaces which we have defined above. 
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Theorem 2.1. 
 
Let ࣧ )( kM  be a Musielak-Orlicz function and )( kpp   be a bounded sequence of positive 

real numbers. Then lࣧ ),,,,( sqpun
m  is a linear space over the field of complex numbers ԧ . 

 
Proof: 
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is nondecreasing, convex and q  is a
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Thus,  yx  	݈ࣧ ),,,,( sqpun
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m   is a linear space. 

 
Theorem 2.2.  
 
Suppose 	ࣧ )( kM

	
is a Musielak-Orlicz function and )( kpp   be a bounded sequence of 

positive real numbers. Then 	lࣧ ),,,,( sqpun
m  is a paranormed space with the paranorm defined 
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If 21   , then by Minkowski's inequality we have 
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 (iv) Finally, we prove that scalar multiplication is continuous. Let   be any complex

 

number, 
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,,...3,2,1,0,1:inf
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where  .



r  Hence, 	݈ࣧ ),,,,( sqpun
m   is a paranormed space. 

 
 
Theorem 2.3. 
 

(i) Let   kk tp0 , for each k Գ. Then, 	lࣧ ),,,( qpun
m     	lࣧ ),,,( qtun

m , 

 

(ii) Let   kk tp0 , for each k Գ. Then, 	lࣧ ),,( pun
m     	lࣧ ),,( tun

m , 

 

(iii) 	lࣧ ),,( qun
m     	lࣧ ),,,( squn

m , 

 

(iv)		lࣧ ),,,( qpun
m     	lࣧ ),,,,( sqpun

m . 

 
 
Proof:  
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which implies that 1
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 Thus, we have 
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This shows that )( kxx   	݈ࣧ ).,,,,( sqpun
m  Hence,  ݈ࣧ ),,,( qpun

m   	݈ࣧ ),,,( qtun
m . 

 
Similarly, we can prove (ii), (iii) and (iv) in view of (i). 
 
Corollary 2.4 . 
 

(i)  If  10  kp , for all k Գ, then  	lࣧ ),,,( qpun
m     	lࣧ ),,( qun

m . 

 

(ii) If  1kp , for all k Գ, then   	lࣧ ),,( qun
m     	lࣧ ),,,( qpun

m . 

 
Proof: 
 
  (i) If we take  1kt  for all k Գ, in Theorem 2.3 (i), we get 

 

	݈ࣧ ),,,( qpun
m     	݈ࣧ ),,( qun

m .                                                                                      (31) 

 
 (ii) If we take 1kp  for all k Գ, in Theorem 2.3 (i), we get 

 

	݈ࣧ ),,( qun
m     	݈ࣧ ),,,( qpun

m .                                                                                      (32) 

 
Theorem 2.5. 
 

The sequence space 	lࣧ ),,,,( sqpun
m  is solid. 

 
Proof:   
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 Let )( k be a sequence of scalars such that  1k , for all k Գ. Thus, we have 
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This shows that )( kk x  ݈ࣧ ),,,,( sqpun
m , for all sequences of scalars )( k  with 1k , for 

all k Գ  whenever )( kx ݈ࣧ ).,,,,( sqpun
m  Hence, the space ݈ࣧ ),,,,( sqpun

m  is a solid 

sequence space. 
 
Theorem 2.6.  
 
The sequence space lࣧ ),,,,( sqpun

m  is  monotone. 

 
Proof: 
 
The proof is trivial so we omit it. 
 
Corollary 2.7. 
 
 (i) Let 1ku  for all k Գ. Then  lࣧ  ),,,( sqpn

m lࣧ ).,,,,( sqpun
m  

 
 (ii) Let 1ku  for all  k 	Գ. Then  lࣧ  ),,,,( sqpun

m lࣧ ).,,,( sqpn
m  

 
Proof:  
 
It is obvious. 
 
3.  Sequence Spaces Defined by a Musielak-Orlicz Function Over n -Normed 

Spaces 
 
In this section we define some sequence spaces defined by a Musielak-Orlicz function over n -
normed spaces. We also study some topological properties on these spaces. The concept of 2-
normed spaces was initially developed by G ሷܽhler (1965) in the mid of 1960's, while that of n -
normed spaces can be found in Misiak (1989). Since, many others have studied this concept and 
obtained various results, see Gunawan (2001, 2001) and Gunawan and Mashadi (2001). 
 
Let n Գ	and X be a real vector space of dimension d , where dn  . A real valued function  
.,...,. on nX  satisfying the following four conditions: 

 
(1) 0,...,, 21 nxxx  if and only if  nxxx ,...,, 21  are linearly dependent, 

 
(2) nxxx ,...,, 21  is invariant under permutation, 
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(3) nn xxxxxx ,...,,,...,, 2121    for any  	Թ, and 

 
(4)  nxxxx ,...,, 2 nn xxxxxx ,...,,,...,, 22 

 
is called an n -norm on X, and the pair     

 .,...,.,X
 
is called an n -normed space. 

 

For example, we may take X  Թ n  being equipped with the n -norm  
Enxxx ,...,, 21  = the 

volume of the n -dimensional parallelopiped spanned by the vectors nxxx ,...,, 21 , which may be 

given explicitly by the formula 
 

)det(,...,, ,21 jiEn xxxx 
,                                                                                                  (35) 

 

where    iniii xxxx ,...,, 21 	Թ n  for each ni ,...,2,1 , and E  denote the Euclidean norm. Let 

 .,...,.,X  be an n -normed space of dimension 2 nd  and  naaa ,...,, 21  be linearly 

independent set in X. Then, the following function 


.,...,. on 1nX  defined by 

 
 niaxxxxxx inn ,...,2,1:,,...,,max,...,, 121121                                                          (36) 

   
defines an  1n  norm on X  with respect to  naaa ,...,, 21 . 

 
A sequence  kx  in an n -normed space  .,...,.,X  is said to converge to some XL  in the n -

norm if  ,0,...,,lim 11   nk
k

zzLx  for every .,..., 11 Xzz n   

 
A sequence  kx  in an n -normed space  .,...,.,X  is said to be Cauchy with respect to the n -

norm if ,0,...,,lim 11
,

  npk
pk

zzxx  for every .,..., 11 Xzz n   

 
If every Cauchy sequence in X  converges to some XL , then X  is said to be complete with 
respect to the n -norm. Any complete n -normed space is said to be n -Banach space. 
In this section we define the sequence space: 
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Theorem 3.1. 
 
 Let ࣧ =  kM  be a Musielak Orlicz function and   kpp   be a bounded sequence of positive 

real numbers. Then  lࣧ  .,...,.,,, pun
m  is a linear space over the field of complex numbers  ԧ. 

 
Proof:  
 
Let      kk yyxx , ݈ࣧ  .,...,.,,, pun

m  and  , 	ԧ. Then there exist positive numbers  1  

and 2  such that 
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Let   .2,2max 213    Since ࣧ  =  kM   is nondecreasing convex function, by using 

inequality (13) we have 
 

  kp

k
n

kk
n
mk

k zz
yxu

M

























 

1
11

3

,...,,



                                                                     

 
 

kp

k
n

k
n
mk

n
k

n
mk

k zz
yu

zz
xu

M

























 





1
11

3
11

3

,...,,,...,,






                   

 
 

k

k

p

k
n

k
n
mk

kp
zz

xu
MK


























 


1
11

1

,...,,
2

1


+  

k

k

p

k
n

k
n
mk

kp
zz

yu
MK


























 

1
11

2

,...,,
2

1


      

                                              
 

kp

k
n

k
n
mk

k zz
xu

MK

























 


1
11

1

,...,,


+

kp

k
n

k
n
mk

k zz
yu

MK

























 

1
11

2

,...,,


< .         (40) 

 



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                     609                              
          

   

Thus,   yx  ݈ࣧ  .,...,.,,, pun
m . Therefore, 	݈ࣧ  .,...,.,,, pun

m  is a linear space. 

 
Theorem 3.2. 
 
 If ࣧ =  kM  is a Musielak-Orlicz function and   kpp   be a bounded sequence of positive 

real numbers, then lࣧ  .,...,.,,, pun
m  is a paranormed space with the paranorm defined by 
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Finally, we prove that scalar multiplication is continuous. Let   be any complex number, 
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where  .



r  Hence  ݈ࣧ  .,...,.,,, pun
m  is a paranormed space. 

 
Theorem 3.3.  
 
 The sequence space lࣧ  .,...,.,,, pun

m  is solid. 

 
Proof:  
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Let   k  be a sequence of scalars such that 1k , for all k Գ. Thus, we have 
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This shows that  kk x ݈ࣧ   .,...,.,,, pun

m  for all sequences of scalars  k  with 1k . 

Hence, the space ݈ࣧ  .,...,.,,, pun
m  is a solid sequence space. 

 
Theorem 3.4. 
 
 The sequence space lࣧ  .,...,.,,, pun

m  is monotone. 

 
Proof: 
 
 The proof is trivial so we omit it. 
 
 
4.  Applications of Sequence Spaces  
 
 
(a) Applications of Sequence Spaces in Matrix Theory 
 
The theory of sequence spaces and their matrix maps has made remarkable advances in 
enveloping duality theory via unified techniques effecting matrix transformation from one 
sequence space into another. Thus, we have several important applications of the theory of 
sequence spaces. Apart from this, the theory of sequence spaces is powerful tool for obtaining 
positive results concerning Schauder basis and their associated type. Mathematicians, like 
Cesàro, Borel, Nörlund, Reisz and others have studied the general theory of matrix 
transformations motivated by special and classical results in summability theory. On the other 
hand, in most cases the general linear operators on one sequence space into another is actually 
given by an infinite matrix. The well-known German Mathematician O. Toeplitz, first observed 
in 1911, that the technique of linear space theory can be used to characterize matrix 
transformations. Later, the Banach-Steinhaus theorem and related results became useful tools in 
dealing with such problems. 
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(b) Applications of Sequence Spaces in Biomathematics: 
 
The relationship between sequences and binding properties of an aptamer for immunoglobulin 
(IgE) can be investigated using custom DNA microarrays. Single, double and some triple 
mutations of the aptamer sequences can be created to evaluate the important of specific base 
composition on aptamer binding. The functional sequence space can be represented as a rugged 
landscape with sharp peaks defined by highly constrained base compositions for more details see 
Katillius et al. (2007). One more interesting application is an Analysis of Peptides from known 
Proteins Clusterization in Sequence Space. A combinatorial sequence space (CSS) can be 
introduce to represent sequence as a set of overlapping K tupples of some fixed length which 
correspond to a point in CSS. In Strelets et al. (1994) analyse clusterization of protein sequences 
in the CSS and to test various hypothesis about possible evolutionary basis of this clusterization. 
Possible applications of sequence spaces were also discussed in Strelets et al. (1994). 
 
 5. Conclusion 
 
In this paper we have constructed some new sequence spaces defined by a Musielak-Orlicz 
function over semi normed spaces. We have also made an attempt to introduce some sequence 
spaces over n -normed spaces. We have studied some topological properties and interesting 
inclusion relations between these sequence spaces. The solutions obtained are potentially 
significant and important for the explanation of some practical physical problems. The method 
may also be applied to other sequence spaces. 
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