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Abstract 

An analysis is carried out to investigate the magnetohydrodynamic flow and heat transfer in an 

unsteady flow of Eyring-Powell fluid over an oscillatory stretching surface. The radiation effects 

are also considered in energy equation. The flow is induced due to infinite elastic sheet which is 

stretched periodically back and forth in its own plane. Finite difference scheme is used to solve 

dimensionless partial differential equations. The effects of emerging parameters on both velocity 

and temperature profiles are illustrated through graphs. The results obtained by means of finite 

difference scheme are compared with earlier studies and found in excellent agreement. 

Keywords: Boundary layer flow, non-Newtonian fluid, Eyring-Powell fluid, heat flow, 
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1. Introduction 
The boundary layer flow and heat transfer of non-Newtonian fluids over a stretching sheet has 

numerous applications in various engineering and industrial processes. Such applications include 

manufacturing of plastic fluids, artificial fibers and polymeric sheets, plastic foam processing, 

http://pvamu.edu/aam
mailto:sk_iiu@yahoo.com
mailto:nasirali_qau@yahoo.com
mailto:za_qau@yahoo.com


894                                                                                                                                                         S.U. Khan et al.    

crystal growing, cooling of metallic sheets in a cooling bath, extrusion of polymer sheet from a 

die, heat treated materials travelling between a feed role and many others. Besides this, radiation 

plays a vital role in controlling the heat transfer in the polymer processing industry. In view of all 

these applications many authors studied the flow of different fluid models over stretching sheet. 

Sakiadis (1961)  initiated the study of boundary layer flow over a flat surface moving with a 

constant velocity. Since then many researchers extended the work of Sakiadis (1961)  for both 

Newtonian and non-Newtonian fluids. Crane (1970)  obtained the closed form solution for the 

flow caused by stretching of an elastic flat sheet that moves in its own plane. Gupta and Gupta 

(1977)  extended the work of Crane (1970)  by considering suction/blowing at the sheet surface. 

Anderson et al. (1994)  studied the diffusion of chemically reactive species over a moving 

continuous sheet. Golra et al. (1978)  discussed unsteady mass transfer in the boundary over a 

continuous moving sheet. Rajagopal et al. (1984)  discussed the flow of viscoelastic second 

grade fluid over stretching sheet. Pop (1996)  studied the unsteady flow past a stretching sheet. 

Cortell et al. (2006)  investigated the heat transfer in an incompressible second grade fluid past a 

stretching sheet. Ariel (2001)  analyzed an axisymmetric flow of second grade fluid past over a 

radially stretching sheet by finding exact numerical solution. Akyildiz et al (2006) studied the 

diffusion of chemically reactive species of a non-Newtonian fluid immersed in a porous medium 

over a stretching sheet. Hayat and Sajid (2007)   extended the problem of Ariel (2001)  by 

performing heat transfer analysis with help of homotopy analysis method. Some more 

contributions in this regard are made by Hayat et al. (2008), Sajid et al. (2012), Nazar et al. 

(2004), Ishake (2008), Ariel et al. (2006), Nazar et al. (2004), Nandeppanavar et al. (2013), Joshi 

et al. (2010) and many references therein. 

The literature shows that all these investigations are carried out for the case when sheet is only 

stretched. However, there may arise situations where the sheet is stretched as well as oscillates 

simultaneously in its own plane. To the best of our knowledge, Wang (1988)  was the first who 

discussed viscous flow due to oscillatory stretching surface. Siddapa et al. (1995)  extended 

Wang's problem for viscoelastic Walter-B fluid. Later on Abbas et al. (2009)  included the 

effects of heat transfer and slip effects on Wang's problem (1988) . In another work, Abbas et. al. 

(2008)  reported the hydromagnetic flow of viscoelastic second grade fluid over an oscillatory 

stretching sheet. Zheng et al. (2013)  discussed the Soret and Dufour effects on two-dimensional 

flow of viscous fluid over a moving oscillatory stretching surface by using homotopy analysis 

method. Recently Ali et al. (2015) investigated hydromagnetic flow and heat transfer of a Jeffrey 

fluid over an oscillatory stretching sheet by using homotopy analysis method and finite 

difference scheme. The literature survey indicates that no attempt is available in the literature 

which deals with flow and heat transfer of Eyring-Powell fluid over an oscillatory stretching 

surface with radiation effects. 

The purpose of present work is to provide such an analysis.  Eyring-Powell fluid model deduced 

from kinetic theory of liquids rather than the empirical relation (Hayat et al. (2013)).  Some 

studies on flows of Eyring-Powell fluid are reported by Sirohi eta al. (1984),Hayat et al. (2012),  
Javed et al. (2012)  and Hayat (2014).   
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The structure of this paper is as follows. In Section 2, we present the formulation of the problem. 

Solution by finite difference method is provided in Section 3.  Graphical results obtained through 

finite difference scheme are shown and discussed in detail in Section 4 . Finally, the main 

conclusions of the study are summarized in Section 5 . 

2. Flow Analysis 

Let us consider an unsteady and two-dimensional flow of incompressible Eyring-Powell fluid 

over an oscillatory stretching sheet coinciding with plane 0y   (Figure 1  ). In the Cartesian 

coordinate system x  is along the sheet and y  is perpendicular to the sheet. Let wT  denote the 

surface temperature and T  is the temperature of the fluid far away from the surface. It is 

assumed that .wT T  A magnetic field of magnitude 0B  is applied in transverse direction to the 

sheet. Using the boundary layer approximations, continuity, momentum and energy equations are 

[see Hayat et al. (2014)] 

 
Figure 1. Geometry of the problem 
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 where u and v  are the velocity component along x  and y  directions, respectively,    

represents the kinematic viscosity,   is the density,   and C  are the fluid parameters of the 

Eyring-Powell model, 
pc represents the specific heat, k  is the thermal conductivity,   is the 

electrical conductivity, T  is the temperature and rq  is the radiative heat flux which is given by 

Rosseland approximation [Raptis et al. (2004)] 
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where     represents the Stefan Boltzmann constant and k   is the mean absorption coefficient. 

Expanding the relation (4) by Tayler series, we get 

     
24 4 3 24 6 ...T T T T T T T T           

      (5) 

By neglecting higher-order terms in the above equation, one finds 
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In view of (4)  and (6) , Equation (3)  becomes 
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The flow is subjected to the following boundary conditions 
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0,                  at ,u T T y         (9) 

To non-dimensionalize the flow problem, we introduce the following dimensionless variables  

    ,    ,  , ,   , ,   y

b
y y t u bxf y v b f y    


      

  (10) 

( , ) .
w

T T
y

T T
  







    (11) 

In view of the dimensionless variables defined above, the continuity equation is identically 

satisfied and Equations (2)  and (7)  reduce to 
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with boundary conditions 

   0, sin ,         0, 0,         (0, ) 1,yf f        
   (14) 

 , 0,           ( , ) 0.yf            (15) 

In above equations 1/K BC  and 
2 3 2/ 2x b C   are dimensionless material fluid 
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parameters, /S b  is the ratio of the oscillation frequency of the sheet to its stretching rate,  

2

0 /M B b   is the Hartmann number, Pr /pc k  is the Prandtl number and 
34 T

Rd
kk
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
  is 

the radiation parameter. According to Javed et al. (2012) equation (12) is subject to the constraint 

1K  . 

The physical quantities of interest are the skin-friction coefficient  
fC   and the local Nusselt 

number ,xNu  which are defined as 
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where w  and wq  are the shear stress and heat flux at wall, respectively. In view of (10)  and 

(11)  , Equation (16)  takes the following forms 
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where Re /x wu x   is the local Reynold number. 

3. Direct numerical solution of the problem 

We intend to use a finite difference scheme to solve nonlinear boundary value problem 

consisting of Equations (12)  and (13)  with boundary conditions (14)  and (15).  Since, the flow is 

in unbounded domain, a coordinate transformation 1/( 1)y    is used to transform the semi-

infinite physical domain [0, )y   to finite calculation domain [0,1] . Thus, we get 
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Equations (18)  and (19)  are discretized for L  uniformly distributed discrete points 
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In this way, only linear equations at new time step ( 1)n  are to be solved. It should be noted 

that other different choices of time differences are also possible. By using finite difference 

method two systems of linear equations for 
 1n

if


 and 
 1n

i


  1,  2,...,i L  at the time step 

 1n  are obtained which can be solved with help of the Gaussian elimination. 

4. Results and discussion 

In order to discuss the effects of emerging parameters on velocity and temperature fields, the 

numerical technique discussed in the previous section is implemented to solve the non-linear 

partial differential Equations (12)  and (13)  with boundary conditions (14)  and (15).  In this 

section, we discuss the effects of involved parameters graphically. In all the plots, the values of 

K and   are chosen so that the product K  should be very sufficiently smaller than unity. 

Figure 2 depicts the effects of the relative amplitude of frequency to the stretching rate S , 

Hartmann number M  and fluid parameters   on the time-series of the velocity component 'f  

at a fixed distance 0.25y   from the sheet, respectively. Figure 2( )a  shows the effects of the S  

on the time-series of the velocity profile 'f  by keeping 0.1K  , 0.1   and 0.5M   fixed. 

This figure shows that the amplitude of the flow motion decreases by increasing .S  Furthermore, 

one can easily observe that a phase shift occurs which increases for large values .S  Figure 2( )b  

elucidates the behavior of Hartmann number M  on the time-series of the velocity component 'f . 

As expected, the amplitude of the flow motion decreases by increasing Hatmann number M . 

The reason is that magnetic field acts as a resistance to the flow. Figure 2( )c  shows that an 

increase in fluid parameter   results in an increase of amplitude '.f   

Figure 3(a) shows a comparison of transverse profile of velocity 'f  for Newtonian and Eyring-

Powell fluids. It is evident that magnitude of velocity inside the boundary layer for Eyring-

Powell fluid is greater than the magnitude of velocity for Newtonian fluid. Similarly amplitude 

of time-series of 'f  for Eyring-Powell fluid is also greater than the amplitude of time-series of 

'f  for Newtonian fluid (Figure 3(b)).  
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Figure 4  shows the influence of relative amplitude of frequency to the stretching rate S  on 

transverse profile of velocity 'f  at four different time instants 8.5 ,   9 ,   9.5   and 

10 .   Figure 4( )a  is plotted at time instant 8.5  . From this figure we see that velocity 

decreases by increasing .S  At time instant 9   (Figure 4( ))b  the velocity 'f  at the surface is 

zero and for away from the surface it again approaches zero. Moreover, at this time instant it 

oscillates near the wall. Figure 4( )c  shows the effects of S  on 'f  at 9.5 .   From this Figure 

we note that velocity decreases from 1  at the surface to zero far away from the surface. The 

effects of S on 'f  at time instant 10   are similar to the effects of S  on 'f  at time instant 

9 .    

The variation of Hartmann number M  on transverse profile of velocity 'f  at different time 

instants 8.5 ,   9 ,   9.5   and 10   are shown in Figure 5. Figure 5( )a  shows that 

an increase in Hartmann number M causes a decrease in the velocity at time instant 8.5 .   

Furthermore, the boundary layer thickness is also found to decrease. It is observed from Figure 

5(b) that at 9 ,   the velocity 'f  oscillates near the surface and approaches to zero far away 

from the surface. Figure 5( )c  shows that at 9.5  , the velocity 'f  at the surface decreases 

from 1  to zero far away from the surface. Moreover, at this time instant there exists no 

oscillation in the velocity '.f  The velocity profile at time instant 10   is illustrated in Figure 

5( ).d  From this Figure one can observe that velocity oscillates near the sheet and approaches 

zero far away from the surface. 

 Figure 6  illustrates the influence of fluid parameter   on the velocity profile 'f  at four 

different time instants 8.5 ,   9 ,   9.5   and 10 .   Figure 6( )a  shows the variation 

of fluid parameter   at 8.5 .   Here, we see the velocity 'f  increases by increasing fluid 

parameter  . From Figure 6( ),b  it can be seen that the velocity oscillates near the sheet before 

approaching zero far away from the sheet. The effects of   at time instant 9.5   are 

illustrated in Figure 6( )c . An opposite trend is found in velocity at this time instant, i.e. the 

velocity increases by increasing fluid parameter  . The behavior of fluid parameter   at time 

instant 10   is shown in Figure 6( )d . 

Figure 7 describes the effects of Hartmann number M  relative amplitude of frequency to the 

stretching rate ,S  fluid parameter K  and   on the time-series of shear stress at the wall for the 

first five periods   [0,10 ].  Figure 7( )a  shows the influence the variation of Hartmann 

number M  on the skin-friction coefficient 
1/ 2Rex fC  by keeping other parameters fixed. It is 

clear from this Figure that the amplitude of oscillation of the skin-friction coefficient increases 

by increasing Hartmann number M. From Figure 7(b), we observe that skin friction coefficient 

oscillates with time and the amplitude of oscillation increases for large values of S . The effects 

of fluid parameter K  and   are shown in Figures 7( )c  and ( ),d  respectively. In these Figures 

an opposite trend is observed. These Figures show that the skin friction coefficient 
1/ 2Rex fC  

decreases monotonically by increasing the fluid parameters. The temperature profile   for 

different values of , Pr,S Rd  and M are shown in Figure 8. 
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Figure 8( )a  illustrates that temperature and thermal boundary layer thickness decreases by 

increasing .S  Figure 8( )b , depicts the influence of Prandtl number Pr  on the temperature field 

  by keeping other parameters constant. It can be identified from this Figure that with the 

increase of Prandtl number Pr  i.e., with decrease of thermal diffusively or the increase of 

specific heat, the increase in the fluid temperature is relatively slow. The effects of radiation 

parameter Rd  on temperature profile   are illustrated in Figure 8( )c . It is clear from the graph 

that an increase in radiation parameter Rd results in increase of temperature field  . Figure 

8( )d  is plotted to see the effects of Hartmann number M  on the temperature profile .  As 

expected, the temperature profile increases by increasing Hartmann number .M  We also note 

that thermal boundary layer thickness increases by increasing Hartmann number .M   

Figure 9  is plotted to see the effects of Pr , S  and Rd  on the time-series of temperature profile 

.  Figure 9( )a  shows the effects of Prandtl number Pr  on the time-series of temperature   by 

keeping 0.1, 0.5, 5K Rd M    and 0.8S  . From this Figure it is clear that the temperature 

decreases for large values of Pr  . We also observe small amplitude of oscillations in temperature 

  for large of values of Pr . The effect of S  are similar to that of Pr  (Figure 9( )b  ). Figure 

9( )c  shows an opposite behavior. From this Figure it is clear that time-series of temperature 

profile increases by increasing radiation parameter. Again, small amplitude oscillations are 

observed in temperature for all values of radiation parameter Rd . 

Table 1 shows the comparison of present study with Zheng et al. (2013) . From the table we 

observe that the present results show an excellent correlation agreement with previous study. The 

numerical values of local Nusselt number for different values of Pr ,   M  , K  and Rd  are 

tabulated in Table 2 . From this table it is clear that local Nusselt number increases by increasing 

Prandtl number Pr , radiation parameter Rd  and fluid parameter K  while it decreases by 

increases by increasing Hartmann number M  and fluid parameter .   

Table 1.   Comparison of values of (0, )f    for fluid parameters 0K    (Newtonian case) with 

Zheng.et al. (2013) . 

12M   
1S     Zheng et al. (2013) Present results 

12.0 1.0 1.5  
11.678565 11.678656 

  5.5  
11.678706 11.678707 

  9.5  
11.678656 11.678656 
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Figure 2. Time-series of the velocity profile 
  f   in the first five periods  0,10    at a fixed distance to the 

sheet, 0.25y  :  ( )a   effects of S  with , 0.1,K   0.1   and 0.5M   ( )b  effects of M  

with 5S  , 0.1K   and 0.1    and ( )c  effects of   with 15S  , 0.1K  , 5M  . 

  
Figure 3. The comparison of Newtonian and non-Newtonian fluids (a) Transverse profile of velocity 

field (b) Time-series of velocity field with 15S   and 5.M   
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Figure 4. Transverse profiles of the velocity field 

  f   for the different values of S  in the fifth period 

 8 ,10   , ( )a  8.5 ,   ( )b  9  , ( )c  9.5 ,   and ( )d  10 ,   

with 0.1,K   0.1    and 1.0.M    

  

  
Figure 5. Transverse profiles of the velocity field f   for different values of M  in the fifth period 

 8 ,10   , (a) 8.5 ,   (b) 9 ,   (c) 9.5   and (d) 10   with 
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15,S   0.1K    and 0.1.    

  

  
Figure 6. Transverses profile of the velocity field f   for different values of   in the fifth period

 8 ,10   , ( )a  8.5 ,   ( )b  9 ,   ( )c  9.5    and ( )d  10   with 

15,S   0.1K   and 1.M    

  

  

Figure 7. Time-series of the skin friction coefficient in the first five periods  0,10   at a fixed 

distance to the sheet, 0.25y  : (a) effects of M  with 5,S   0.1   and 0.1K   

( )b  effects of S  with 4,M   0.1   and 0.1K  , ( )c  effects of K  with 12S  , 

0.1  , 12M   and ( )d  effects of   with 12S  , 0.1K   and 12.M   
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Figure 8. Transverse profiles of the temperature field   at 8 :   (a) effects of S  with 0.1,K   

0.1,   5M  , Pr 10,  0.5,Rd   (b) effects of Pr  with 0.1,K   0.1,   

5M   , 15,S   0.5Rd  , ( )c  effects of Rd  of with 0.1,K   0.1,   5M  , 

Pr 10   and 15S  ( )d  effects of M  of with 0.1,K   0.1,   5Rd  , Pr 10  

and 15S   . 

  

  

Figure 9. Time-series of the temperature ,  0,10   at 0.25y   (a) effects of Pr  with 

0.1,K   0.1,   5M  , 0.8,S   0.5,Rd   (b) effects of S  with 0.1,K   

0.1,   5M   ,Pr=10, 2.5Rd   and (c) effects of Rd  of with  0.1,K   0.1,   

10M  , Pr 10  and 15.S   
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Table 2. The numerical values of local Nusselt number  4
3

1 (0, )Rd     for various 

values of Prandtl number Pr , radiation parameter Rd  , Hartmann number M , fluid 

parameter   and K  when the ratio of the oscillation frequency of the sheet to its 

stretching rate 0.5S   at time instant / 2.   

Pr  K  M  Rd     4

3
1 (0, )Rd     

1.0 0.5 0.5 0.2 0.5 1.71214 

1.5     1.75424 

2.0     1.86546 

0.2 0.0    1.65745 

 0.2    1.74201 

 0.4    1.76201 

 0.5 0.2   1.65420 

  0.4   1.62548 

  0.6   1.56421 

  0.5 0.0  1.56741 

   0.2  1.65846 

   0.4  1.76213 

   0.2 0.0 1.71234 

    0.3 1.71210 

    0.6 1.70125 

 

5. Concluding remarks 

In this article, we have analyzed the study of an Eyring-Powell fluid over an oscillatory 

stretching heated sheet in the presence of thermal radiation. A coordinate transformation is used 

to transform the semi-infinite flow domain to a finite computational domain. A finite difference 

scheme is used to solve the governing nonlinear partial differential equations. The time-series of 

the flow velocity, the temperature, the structure of the boundary layer near the plate are 

illustrated graphically for various values of parameters of interest. The main observations of 

study are: 

 The amplitude of velocity decreases by increasing S , Hartmann number M , and fluid 

parameter K  . 

 The temperature increases by increasing Hartmann number M  and radiation parameter 

Rd  while it decreases with increase of Prandtl number Pr  and ratio of the oscillation 

frequency of the sheet to its stretching rate S . 

 The local Nusselt number increases by increasing Prandtl number Pr , fluid parameter 

,K  radiation parameter Rd  while it decreases by increasing Hartmann number M  and 

fluid parameter .   
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