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Abstract  
 
The nonlinear propagation of small but finite amplitude dust-acoustic solitary waves (DAWs) in 
magnetized collision less dusty plasma has been investigated. The fluid model is a four 
component magnetized dusty plasma, consisting of positive and negative dust species, isothermal 
electrons and ions in the presence of an external magnetic field. A reductive perturbation method 
was employed to obtain the Zakharov Kuznetsov (ZK) equation for the first-order potential. The 
effects of the presence of positively charged dust fluid, the external magnetic field, and the 
obliqueness are obtained. The results of the present investigation may be applicable to some 
plasma environments, such as cometary tails, upper mesosphere and Jupiter's magnetosphere.  
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1.  Introduction 

 
The physics of charged dust, which are ubiquitous in space plasmas, has received a great deal of 
interest in understanding the electrostatic density perturbations and solitary potential structures 
that are observed in different regions of space, viz. mesosphere, cometary tails, planetary rings, 
planetary magnetospheres, interplanetary space, interstellar media, etc. [Verheest (2000), Shukla 
et al. (2002), Carlile et al. (1991), Horanyi et al. (1986)]. The charging of dust grains occurs due 
to a variety of processes [Merlino et al. (1998), Barkan et al. (1994), Whipple (1981)]. Actually 
dust grains of different sizes can acquire different polarities; large grains become negatively 
charged and ounces become small positively charged [Chow et al. (1993), Mendis and 
Rosenberg (1994), Mendis and Rosenberg (1995)].  In fact, positively charged dust particles 
have been observed in different regions of space, viz. cometary tails [Chow et al. (1993), Mendis 
and Rosenberg (1994), Mendis and Rosenberg (1995)], Jupiter's magnetosphere [Horanyi et al. 
(1993), etc.]  
 
There are three principal mechanisms by which a dust grain becomes positively charged [Fortov 
et al. (1998)]. These are photoemission in the presence of a flux of ultraviolet (UV) photons, 
thermionic emission induced by radiative heating, and secondary emission of electrons from the 
surface of the dust grains.  In other words, there is also direct evidence of the existence of both 
positively and negatively charged dust particles in the earth's mesosphere [Havens et al. (2001), 
Klumov et al. (2000), Smiley (2003)], as well as in cometary tails and comet [Horanyi et al. 
(1986), Mendis and Horanyi (1991 )]. 
 
Mamun and Shukla (2002) have considered dusty plasma model, which consists of positive and 
negative dust only, and have theoretically investigated the properties of linear and nonlinear 
electrostatic waves in such dusty plasma. Their model of Mamun and Shukla (2002) is valid only 
if a complete depletion of the background electrons and ions is possible, and both positive and 
negative dust fluids are cold.  
 
Recently, El-Wakil et al. (2006b) investigated theoretically the higher-order contributions to 
nonlinear dust-acoustic waves that propagate in a mesospheric dusty plasma with a completely 
depleted of background (or electrons and ions). However, in most space dusty plasma systems a 
complete depletion of the background electrons and ions is not possible [Sayed and Mamun 
(2007), Abdelwahed et al. (2008), Mamun (2008), El Wakil et al. (2006a), Mowafy et al. (2008)] 
and the positive dust component is of finite temperature. 
 
Later, Attia et al. (2010) investigated the higher order effects of positive and negative dust 
charge fluctuation on the propagation of dust ion acoustic waves (DIAWs) in a weakly 
inhomogeneous, weakly coupled, collision less and unmagnetized mesospheric dusty Plasma 
consisting of four components dusty plasma. The present work is therefore attempted to see how 
DAWs characteristics are adapted in magnetized plasma with two charged dust cyclotron 
frequencies. This paper is organized as follows: In Section 2 we present the basic set of fluid 
equations governing our plasma model. In Section 3 we derive the ZK equation with lowest-
order nonlinearity and dispersion. The stationary solitary wave solution of the ZK equation is 
analyzed in Section 4. Finally, discussions are given in Section 5. 
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2.  Basic Equations  

Let us consider a homogeneous system of a magnetized collision less plasma consisting of four-
component dusty plasma with massive, micron-sized, positively, negatively dust grains and 
isothermal electrons and ions. This study is based on the condition that, the negative dust 
particles are much more massive than positive ones [Horanyi et al. (1993)], Fortov et al. (1998)]. 
The dynamics of the nonlinear DA waves in the presence of an external magnetic field  
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for negative dust plasma. 
 
Equations (1-2) are supplemented by Poisson's equation 
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in e  .                                      (3c) 

 
In the above equations,  n   and  u   are the density and velocity of positively charged dusty 

grains while N  and v  are the density and velocity of negatively charged dusty grains,  en  and  

in   are the density of electrons and ions,     and  p   are the electric potential of dust fluid and 

the thermal pressure of the positively charged dust fluid, respectively. Here,  n   and  N   are 

normalized by their equilibrium values  n0   and  0N , u  and v  are normalized by s TC V , 
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1 2/( )n pZ m Z m  , and 
1
2

1( / ) ,T p B iV Z k T m  ( )p nZ Z  represents the number of the positive 

(negative) charges on the dust grain surface, 1 2( )m m  represents the mass of the positive 

(negative) dust particle, Bk  is the Boltzmann constant, iT  is the temperature of the ions, and p  

is normalized by 10 B pn k T . Since pT  is the temperature of the positively charged dust fluid and   

is normalized by  /B ik T e , x  is the space variable normalized by 
1
22
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is the time variable normalized by 
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positive and negative charged dust cyclotron frequencies normalized to plasma frequency. 
 
 
3.  Zakharov-Kuznetsov Equation 

 
To derive the ZK equation describing the behavior of the system for longer times and small but 
finite amplitude DA waves, we introduce the slow stretched co-ordinates: 
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where   is a small dimensionless expansion parameter and   is the speed of DA waves. All 
physical quantities appearing in (1-3) are expanded as power series in   about their equilibrium 
values as: 
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2 3
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The charge-neutrality condition in the dusty plasma is always maintained through the relation: 
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We impose the boundary conditions that as:  
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Substituting (4) and (5) into (1-3) and equating coefficients of like powers in the lowest-order 
equations in  , the following results are obtained: 
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Poisson's equation gives the linear dispersion relation 
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The next-order of the perturbation gives: 
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for Positive dust plasma and 
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for negative dust plasma and Poisson's equation is 
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Eliminating the second order perturbed quantities 2n , 2u , 2N , 2  and 2   in (9-11), we derive 

the desired ZK equation 
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4.  Stationary Solution 

 
In order to obtain a stationary solution for equation (12), let us introduce the following traveling 
variable 
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where   is the transformed coordinate relative to a frame which moves with the velocity  , L , 
M  and   are the directional cosines of the wave vector k  along the ,x y  and z, respectively, 

in the way that 2 2 2 1L M   . By integrating equation (12) with respect to the variable   and 

using the vanishing boundary condition for 1( )   and its derivatives up to the second-order for 

  , we have the one-soliton solution  
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where the soliton amplitude 0  and the soliton width   are given by 
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5.  Results and Discussion 

 
Three dimensional nonlinear dust-acoustic solitary waves (DAWs) in a magnetized collision less 
plasma consisting of four-component dusty plasma with massive, micron-sized, positively, 
negatively dust grains and isothermal electron and ion have been investigated. The application of 
the reductive perturbation theory to the basic set of fluid equations leads to a ZK equation (12) 
which describes the nonlinear evolution of the DAWs. 
 
To make our result physically relevant, numerical calculations were performed referring to 
typical dusty plasma parameters as given in [Havens et al. (2001), Smiley (2003)]. Since one of 
our motivations was to study the effect of some plasma parameters such as e , L , 1  and 2  

on the existence of solitary waves. For example, the basic properties amplitude and width of the 
small amplitude electrostatic solitary structures are displayed in Figures 1-4. It is obvious from 
Figures 1 and 2 that the magnitude of the soliton amplitude decrease (increase) and the width 
increase (decrease) with the increase of ( )cos  ( e ). The variations of the bell type solitons with 

respect to   and   are displayed in Fig 3. On the other hand, the effect of 1  and 2  on the 

soliton width are shown in Figure 4. 
 

The results in this paper show that the parameters e , ( )cos  , 1  and 2  modify significantly 

the properties of dust-acoustic solitary waves. Therefore the present investigation can help us to 
identify the origin of charge separation as well as dust coagulation in plasma containing positive 
and negative dust. We would like to point out that the lowest order amplitude of the DAWs 
soliton 0  is independent of the magnitude of the external magnetic field and the positive and 

negative charged dust cyclotron frequencies 1  and 2 . So, we stress the need to include the 

higher-order amplitude of the DAWs effect in the analysis to take the dependence of higher-
order corrections on the external magnetic field and the positive and negative charged dust 
cyclotron frequencies. This is outside the scope of the current investigation and may be 
addressed in subsequent work. 
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Figure captions: 

Figure (1):  The variation of the soliton  amplitude and width with respect to     for different 

values of Cos  (L=0.8 solid line, L=0.9 dotted line) for  5
3 , 0.1, 0.4,d      

0.3,  0.4,e    2 1 2 0.3,  0.62,  0.6       and  3 0.5.    

Figure (2):  The variation of the soliton amplitude and width with respect to   for different 

values of e  ( 0.01e   solid line, 0.5e   dotted line) for  
5
3 , 0.1, 0.4,d      0.8,  0.4,L    2 1 20.3,  0.62,  0.6       and  

3 0.5.   

Figure (3):  The variation of the bell type soliton with respect to   and   for different values 

of for 5
3 , 0.1, 0.4,d     0.8,  0.4,L   0.1,e   2 1 0.3,  0.5,     

2 0.55   and  3 0.5.   

Figure (4): The variation of the soliton width with respect to 1 and 2  for 
5
3 , 0.1,  0.4,d       20.3, 0.4, 0.1, 0.3e e        and 3 0.5.    

 
 
 
 



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1952 – 1963]                                  221 

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

 

 

1  

 
 

 
 
 

                                                                    
 

Fig. (1) 
 
 
 

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

 

 

1  

 
 
 
 

                                                                     
 

Fig. (2) 



222                                                                                                                                        S. A. El-Wakil et al.          

0.4

0.5

0.6

v

-5

0

5

0

0.5

1

0

 

 
 
 
 

1  

 

                                    
 

Fig. (3) 
 
 

0.54
0.56

0.58
0.6

0.5
0.55

0.6
0.65

W1

0

1

2

3

0.54
0.56

0 58

0.55
0.6

0.65

 
 

 
 
 
 
  

 

2  

 

Fig. (4) 
 

 


